
Automatic Trigger
Generation for

Rule-based Smart Homes

Chandrakana Nandi, Michael D. Ernst
UW Seattle, USA

 ACM SIGPLAN PLAS, Vienna, Austria
10-24-2016

2

3

Common architecture

4

OR

How to control your home?

5

 Automation rules:
when I come home then turn lights on

How to control your home?

6

 Automation rules are easy
and useful

Ur+ CHI 2014, 2016
Ur+ HUPS 2014

Dey+ Pervasive 2006

How to control your home?

7

Writing correct automation
rules is hard

How to control your home?

8

 Huang+ Ubicomp 2015

Writing correct automation
rules is hard

How to control your home?

9

 Huang+ Ubicomp 2015

mental model actual rule

rule “start laundry”
when
 Item laundry_machine changed
then
 if (laundry_machine == FULL) {
 sendCommand(laundry_machine, “ON”)
 }
end

Effects of wrong rules

● Likely unexpected behavior
● Security vulnerabilities

10

11

Overview

● Background on automation rules

● Problem statement

● Solution

● Algorithm and tool development

● Experiments

12

Overview

● Background on automation rules

● Problem statement

● Solution

● Algorithm and tool development

● Experiments

Rule Example

13

rule "Away rule"
when
 Item State_Away changed
 or Item State_Sleeping changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

Rule Example

14

rule "Away rule"
when
 Item State_Away changed
 or Item State_Sleeping changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

Rule Example

15

rule "Away rule"
when
 Item State_Away changed
 or Item State_Sleeping changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

trigger block

Rule Example

16

rule "Away rule"
when
 Item State_Away changed
 or Item State_Sleeping changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

trigger item

trigger item

trigger block

Rule Example

17

rule "Away rule"
when
 Item State_Away changed
 or Item State_Sleeping changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

action block

rule "Away rule"
when
 Item State_Away changed
 or Item State_Sleeping changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

18

State_Away = ON

State_Sleeping = ON

19

Overview

● Background on automation rules

● Problem statement

● Solution

● Algorithm and tool development

● Experiments

Possible mistakes in rules

20

Wrong trigger block

21

rule "Away rule"
when
 Item State_Roomheater changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

Wrong trigger block

22

rule "Away rule"
when
 Item State_Away changed

then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

Wrong trigger block

23

rule "Away rule"
when
 Item trigger_1 changed
 Item trigger_2 changed
 Item trigger_n changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

Conflicts

24

rule “rule 1”
when

Item owner_entering_home changed
then

if (owner_entering_home == true) {
sendCommand (hall_light, “ON”)

}
end

rule “rule 2”
when

Item past_midnight changed
then

if (past_midnight == true) {
sendCommand (hall_light, “OFF”)

}
end

 (owner_entering_home == true && past_midnight == true)

● Wrong trigger blocks
● Conflicts

25

● Wrong trigger blocks
● Conflicts

26

Why is it bad?

27

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

28

!(State_Away = ON && State_Sleeping = ON)

29

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

30

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

31

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

32

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

33

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

34

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

35

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

36

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

37

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

38

Both states can be set to true!

rule "Visitor notification system rule"
when

Item State_Sleeping changed
then

if (State_Sleeping.state == ON) {
postUpdate (Notification_System , OFF)

} else {
postUpdate (Notification_System , ON)

}
end

39

Example Attack
rule "Visitor notification system rule"
when

Item State_Sleeping changed
then

if (State_Sleeping.state == ON) {
postUpdate (Notification_System , OFF)

} else {
postUpdate (Notification_System , ON)

}
end

rule "Away rule"
when
 Item State_Away changed
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

40

Wrongly deactivates
notification system

41

Overview

● Background on automation rules

● Problem statement

● Solution

● Algorithm and tool development

● Experiments

rule "Away rule"
when
 Item State_Away changed

then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

Solution

42

rule "Away rule"
when
 Item State_Away changed
 or Item State_Sleeping changed // Fix
then
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

Solution

43

44

Overview

● Background on automation rules

● Problem statement

● Solution

● Algorithm and tool development

● Experiments

TrigGen: automatically infer triggers
from actions using static analysis

45

Idea: live items must be triggers

46

Idea: live items must be triggers

Items that are read from before being written to, at
the beginning of the action block

rule "Away rule"
when
 Item State_Away changed
then

State_Notify = ON
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

47

rule "Away rule"
when
 Item State_Away changed
then

State_Notify = ON
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

● Identify all items in the
action block AST
○ potential triggers

48

rule "Away rule"
when
 Item State_Away changed
then

State_Notify = ON
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

● Identify all items in the
action block AST
○ potential triggers

49

rule "Away rule"
when
 Item State_Away changed
then

State_Notify = ON
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

● Identify all items in the
action block AST
○ potential triggers

● eliminate those that are
not live
○ redundant triggers

■ State_Notify

50

rule "Away rule"
when
 Item State_Away changed
then

State_Notify = ON
 if (State_Away.state == ON) {
 if (State_Sleeping.state != OFF) {
 postUpdate (State_Sleeping, OFF)
 }
 }
end

● Identify all items in the
action block AST
○ potential triggers

● eliminate those that are
not live
○ redundant triggers

■ State_Notify

● State_Away,
State_Sleeping: live

51

Implementation

item repository

 rule

identify all
potential triggers

eliminate redundant
triggers by live
variable analysis

52

rule "Rule 1"
when
 trigger
then
 action
end

State_Notify
State_Away
State_Sleeping

State_Away
State_Sleeping

 Comparer

State_Away
Laundry_Machine

State_SleepingLaundry_Machine

wrong/extra missing

end-user written

53

Overview

● Background on automation rules

● Problem statement

● Solution

● Algorithm and tool development

● Experiments

Experiments
● 96 real end-user written rules for openHAB
● Action block size: 1 - 220 LOC
● Featuring categories such as

54

Experiments
● Ground truth

○ Set of necessary and sufficient triggers, i.e. all
non-redundant triggers

○ Verified by
■ contacting the end user
■ manual inspection of rules

55

Trigger generation
TrigGen suggested a set of necessary
and sufficient triggers

91 (95%)

False positives 0

False negatives 5 (5%)

56

Missing triggers detected 77 (80%)

Number of missing triggers

57

Number of missing triggers

58

55%

Conflicts

59

Total conflicts detected 18

True positives 11 (61%)

False negatives 0

More in the paper
Conflict resolution

Group enumeration

Proving non-live triggers as redundant

60

Remarks
● TrigGen is applicable to any domain that

has trigger based rules
● We aimed at home automation involving

○ end users
○ different deployments: every home is

different!

61

Conclusions
TrigGen automatically generates a set of
necessary and sufficient triggers so that rules
don’t have:

● likely unexpected behavior
● certain security vulnerabilities

TrigGen found 80% real rules used for
experimentation to have insufficient triggers

62

63

