
Automated Documentation Inference to Explain
Failed Tests

Sai Zhang1 Cheng Zhang2 Michael D. Ernst1
1University of Washington 2Shanghai Jiao Tong University

szhang@cs.washington.edu cheng.zhang.stap@sjtu.edu.cn mernst@cs.washington.edu

Abstract—A failed test reveals a potential bug in the tested
code. Developers need to understand which parts of the test are
relevant to the failure before they start bug-fixing.

This paper presents a fully-automated technique (and its
tool implementation, called FailureDoc) to explain a failed test.
FailureDoc augments the failed test with explanatory documen-
tation in the form of code comments. The comments indicate
changes to the test that would cause it to pass, helping program-
mers understand why the test fails.

We evaluated FailureDoc on five real-world programs. Failure-
Doc generated meaningful comments for most of the failed tests.
The inferred comments were concise and revealed important
debugging clues. We further conducted a user study. The results
showed that FailureDoc is useful in bug diagnosis.

I. INTRODUCTION

A failed unit test indicates a potential bug in the tested
code. A programmer must understand the cause of the failure
and confirm its validity before starting bug-fixing. Recently,
many automated test generation techniques [2], [20], [21], [26],
[28] have been studied to create tests, but few techniques are
proposed to explain why a test fails. Understanding why a
test fails or even knowing which part of the code should be
inspected first in debugging is a non-trivial task. This is a
particular problem for automatically-generated tests which are
often long and have poor readability, but it is also relevant for
human-written tests.

For example, Figures 1 and 2 show a human-written test
and an automatically-generated test, respectively. The first test
in Figure 1 is associated with a JDK bug report. It shows that
method Arrays.toArray is not type-safe. However, when
executed, this test throws an ArrayStoreException at the
last statement, which is not obviously related to any type
safety issues. To confirm this reported bug, a programmer
must manually connect the available failure symptom (an
ArrayStoreException) with possible failure causes. The
second test, shown in Figure 2, is also not easy to understand.
This automatically-generated test involves classes such as
ArrayList, TreeSet, and Collections in the JDK, each
of which contains hundreds of lines of code. Executing this
test also does not give much useful information: the assertion
simply fails without dumping any stack trace as debugging
clues. Furthermore, the test has already been minimized: if any
of the calls is removed (and the code is fixed up so that the
test compiles again), then the bug is not triggered, and the test
passes.

1. public void test1() {
2. ArrayList<Number> nums = new ArrayList<Number>();
3. Integer i = new Integer(1);
4. boolean b0 = nums.add(i);
5. Long l = new Long(-1);
6. boolean b1 = nums.add(l);
7. Integer[] is = new Integer[0];
8. //This statement throws ArrayStoreException
9. Integer[] ints = nums.toArray(is);
10. }

Fig. 1. A human-written failed test. This test reveals a potential error in the
JDK (bug id: 7023484).

1. public void test2() {
2. int i = 1;
3. ArrayList l = new ArrayList(i);
4. Object o = new Object();
5. boolean b0 = l.add(o);
6. TreeSet t = new TreeSet(l);
7. Set s = Collections.synchronizedSet(t);
8. //This assertion (reflexivity of equals) fails
9. assertTrue(s.equals(s));
10. }

Fig. 2. An automatically-generated failed test. This test reveals an error in
JDK version 1.6. It shows a short sequence of calls leading up to the creation
of an object that is not equal to itself.

Good documentation (i.e., code comments) can help program-
mers quickly understand what source code does, facilitating
program comprehension and software maintenance tasks [8].
Unfortunately, a human-written test is often poorly documented,
and few automated test generation tools can adequately com-
ment the code they generate. Even more importantly, when a
test fails, the most useful documentation is relevant to the defect
in the tested code and leads the developer to that defect. Later,
when the test reveals a different defect, different documentation
would be best. As a result of the lack of contextually-relevant
documentation, programmers must guess about what parts of
the test and the tested code are relevant.

Proposed Approach. This paper presents a fully-automated
approach (and its tool implementation, called FailureDoc) to
infer documentation for a failed test. FailureDoc is not an
automated fault localization tool [13], [14], [29] that pinpoints
the exact buggy code. Instead, it augments a failed test with
debugging clues: code comments that provide potentially useful
facts about the failure, helping programmers fix the bug quickly.
Figures 3 and 4 show the inferred documentation for the failed
tests of Figures 1 and 2, respectively.

In Figure 3, the comments above lines 5 and 6 reveal
important clues that the test passes if object l is changed to



1. public void test1() {
2. ArrayList<Number> nums = new ArrayList<Number>();
3. Integer i = new Integer(1);
4. boolean b0 = nums.add(i);

//Test passes if line is: Integer l = new Integer(0);
5. Long l = new Long(-1);

//Test passes if l is not added to nums
6. boolean b1 = nums.add(l);
7. Integer[] is = new Integer[0];
8. //This statement throws ArrayStoreException
9. Integer[] ints = nums.toArray(is);
10. }

Fig. 3. The failing test of Figure 1 with code comments inferred by the
FailureDoc tool (highlighted by underline).

Integer type or if l is not added to the nums list. These clues
guide the programmer to discover that the test failure is because
the test erroneously adds two type-incompatible objects i and
l into the list, and later casts both of them to Integer type.
Such information is much more helpful in understanding why a
test fails, than merely dumping an ArrayStoreException. In
Figure 4, the comment above line 4 discloses a crucial fact that
the test passes if Object o implements Comparable. This
clue guides the programmer to inspect places where object o
is used. In fact, the TreeSet constructor is buggy: it should
not accept a list containing a non-comparable object, but it
does. This indicates the exact cause and a possible bug fix.

To infer useful documentation, FailureDoc simulates pro-
grammers’ debugging activity. Its design is based on the
following common debugging practice: given a failed test,
a programmer often tries to make some (minimal) edits to
make it pass, observes the difference between passing and
failing executions, then generalizes those failure-correcting
edits to understand the failure cause. FailureDoc automates
the above reasoning process, summarizing its observations as
documentation.

FailureDoc works in four phases (Figure 5), namely value
replacement, execution observation, failure correlation, and
documentation generation. In the first phase, FailureDoc first
generates an object pool, and then mimics programmers’
activity in correcting a failed test by repeatedly replacing
existing values with possible alternatives. Each replacement
creates a slightly mutated test. In the second phase, FailureDoc
executes the mutated test, uses static slicing to prune irrelevant
statements, and selectively observes its outcomes. In the third
phase, FailureDoc uses a statistical algorithm to correlate the
replaced values with their corresponding outcomes, identifying
suspicious statements and their failure-correcting objects. In the
final phase, for each identified suspicious statement, FailureDoc
uses a Daikon-like technique [10] to summarize properties of
the observed failure-correcting objects, translating them into
explanatory code comments.
Evaluation. We implemented the FailureDoc prototype, and
evaluated its effectiveness through an experiment and a user
study. In our experiment, we used FailureDoc to generate
comments for failed tests from five real-world programs.
FailureDoc successfully generated human-readable comments
for 10 out of 12 failed tests. We validated the helpfulness of
the inferred comments by sending the documented tests to

1. public void test2() {
2. int i = 1;
3. ArrayList l = new ArrayList(i);

//Test passes if o implements Comparable
4. Object o = new Object();

//Test passes if o is not added to l
5. boolean b0 = l.add(o);
6. TreeSet t = new TreeSet(l);
7. Set s = Collections.synchronizedSet(t);
8. //This assertion (reflexivity of equals) fails
9. assertTrue(s.equals(s));
10. }

Fig. 4. The failing test of Figure 2 with code comments inferred by the
FailureDoc tool (highlighted by underline).

the developers. The developers’ reaction strongly suggests that
FailureDoc is useful in practice. We also conducted a user study
to investigate the usefulness of the inferred documentation. With
the generated comments, programmers spent 14% less time in
understanding the revealed bugs than without those comments;
and programmers spent 8.5% less time than with the aid of
delta debugging [29].
Contributions. The main contributions of this paper are:
• Technique. A technique to infer descriptive comments

to explain failed tests (Section II).
• Tool. An open-source automated tool implementing the

proposed technique (http://code.google.com/p/failuredoc/).
• Evaluation. An experiment and a user study demonstrate

the usefulness of the proposed technique (Section III).

II. TECHNIQUE

Figure 5 gives an overview of FailureDoc’s architecture.
FailureDoc consists of four major modules, working in a
pipelined manner.

(1) Value Replacement. This module takes a failed test as
input. It first uses a randomized algorithm to create an object
pool containing instances of all needed classes, then mutates
the failed test by repeatedly replacing expressions in the test
code with possible alternatives from the created object pool to
construct a set of slightly mutated tests (Section II-A).

(2) Execution Observation. This module executes the
mutated tests to obtain execution traces. For each mutated
test, this module uses static slicing to prune all irrelevant
statements from the execution trace (Section II-B).

(3) Failure Correlation. This module takes as inputs the
replaced values and the observed outcomes. It uses a statistical
algorithm to identify a small set of suspicious statements (that
have a strong correlation with the test failure) and their failure-
correcting objects (Section II-C).

(4) Documentation Generation. This module generalizes
properties of the observed failure-correcting objects for each
suspicious statement, then converts the generalized properties
into documentation (Section II-D).

A. Value Replacement

Given a failed test, the value replacement module repeatedly
replaces expressions in the test code with possible alternatives
to construct a set of mutated tests. For example, in Figure 2,
FailureDoc can replace int i = 1 on line 2 with int i =



Input:

A F ailed T est

Output:

A F ailed T est with

Debugging C lues

Ex ecu tio n
O b serv atio n

Muta ted
Tests

V alu e
R ep lacemen t

Execution
Traces

Suspicious
Sta tements

Failu re
C o rrelatio n

D o cu men tatio n
G en eratio n

Fig. 5. The architecture of FailureDoc. It augments a failed test with explanatory documentation (debugging clues) in four steps.

0, or replace TreeSet t = new TreeSet(l) on line 6 with
TreeSet t = new TreeSet(); t.put(10);.

To correctly and efficiently implement value replacement,
two key challenges must be addressed. First, FailureDoc must
create new values to replace an existing one. Second, for the
sake of efficiency, FailureDoc must select among the new
values it creates for each existing value.

1) Value Generation: The FailureDoc technique can be
instantiated using any value generation technique, such as
exhaustive generation up to a given size bound [2]. Our
current implementation uses an existing random test generation
algorithm, that of Randoop [21]. We now briefly describe it.

FailureDoc parses the failed test to extract all referred-to
classes. For example, the failed test in Figure 2 refers to
classes Integer, Object, ArrayList, TreeSet, Set, and
Collections. Optionally, the user can also provide Failure-
Doc additional classes for value generation, but our experiments
did not use this capability.

FailureDoc next uses an existing random test generation
algorithm [20], [21] to create object instances of the referred-
to classes, and keeps all created objects in a value pool.
The algorithm iteratively builds a method-call sequence that
produces an object value, by randomly selecting a method or
constructor to invoke, using previously computed values as
inputs. FailureDoc uses object values in the pool to mutate the
failed test. The mutated tests are never shown to the user.

2) Value Selection: After generating an object pool, a
natural question is how to select possible alternatives for
each expression. Many of the objects in the pool may be
similar. Hence, the naive approach of choosing every type-
compatible object from the pool to replace the existing value is
unnecessary and inefficient. On the other hand, understanding
the failure cause requires selecting a group of diverse objects
as replacement candidates, in order to expose different test
behaviors. Randomly selecting a group of objects from the
pool may end up with the same test behavior, which would
not be helpful to infer useful information.

To alleviate this problem, FailureDoc adaptively selects a
diverse set of objects as replacement candidates based on
an abstract object profile representation (described below).
Adaptive selection reduces the likelihood of choosing a group
of similar objects, in which most of the objects reveal the same
test behavior while failing to reveal other behaviors.

For each expression e of type Te in the test code, Failure-
Doc creates approximately k mutants (k is user-settable; our
experiments used the default value k = 20) by replacing e
by another value from the created pool. If the pool has k or
fewer elements of type Te, FailureDoc uses them all to create
mutants. Otherwise, FailureDoc tries to choose k values that

are as different from one another as possible, in the following
way.

For each object of type Te in the pool, FailureDoc computes
its abstract object profile. Let a be the number of distinct
abstract object profiles. FailureDoc randomly chooses dk/ae
values with each abstract object profile.

An abstract object profile is a boolean vector that abstracts
the object’s concrete state (the values of its fields). Each field
of the object maps to a distinct set of boolean values in the
vector.

• A concrete numerical value v (of type int, float, etc.),
maps to three abstract values v < 0, v = 0, and v > 0.

• A concrete boolean field value v maps to two abstract
values v = true and v = false.

• A concrete enumeration value v chosen from choices
e1, . . . , ej maps to j abstract values, v = ei for each
1 ≤ i ≤ j.

• A concrete object reference value v is mapped to two
abstract values v = null and v 6= null.

• A concrete array or collection value v is mapped to three
abstract values as follows: the same two abstract values
as for objects (since an array or collection is an object);
one abstract value for whether v is empty.

For example, suppose the TreeMap class has two fields int
size and Set entrySet, which represent the map size and
the internal data representation, respectively. The following
table summarizes the corresponding abstract object profiles
for an empty and a non-empty TreeMap object. T means the
property holds.

A Abstract Object Profile

TreeMap size entrySet

Object < 0 = 0 > 0 = null 6= null is empty?

an empty map F T F F T T

a non-empty map F F T F T F

The above abstract object profile, which is used in our
implementation, looks at the top level of the concrete repre-
sentation. The abstract object profile can go as deep in the
object as desired. It is straightforward to extend it to more of
the concrete representation, as follows:

• Enrich the abstraction of a concrete object reference or
enumeration value, by adding abstract values for each of its
fields. This corresponds to following two field references:
the abstract object profile depends not just on x.f, but
also on x.f.g.

• Enrich the abstraction for arrays/collections, by adding
existential abstract values according to the type of its
elements. For example, for an array of objects, add one
abstract value indicating whether the array contains any



null element, and one abstract value indicating whether
the array contains any non-null element.

B. Execution Observation

FailureDoc next executes the mutated tests, observing their
execution outcomes. For each mutated test, FailureDoc records
two types of information:

• the test execution outcome
• the value computed by each expression

FailureDoc classifies the test execution outcome into three
categories: pass, fail, and unexpected exception. The first two
categories represent that a mutated test throws no exception
or throws the exact same exception as the original failing test.
The unexpected exception category represents the scenario that
a different uncaught exception is thrown and the test aborts
without producing a final result. For example, if FailureDoc
replaces int i = 1 with int i = -1 at line 2 of Figure 2,
an IllegalArgumentException will be thrown at line 3
when executing the mutated test, since ArrayList requires a
non-negative integer as input to its constructor.

When recording expression values in a mutated test, an im-
portant problem is which expression values FailureDoc should
record. A straightforward approach is to record the runtime
values of all expressions in the mutated test. However, the
replaced value may mask the effects of some previously-created
values. So recording them would introduce incorrect noisy
data for the follow-up failure correlation phase. For example,
if FailureDoc replaces TreeSet t = new TreeSet(l) on
line 6 of Figure 2 with TreeSet t = new TreeSet(), then
objects i, l, and o created on line 2–5 will never affect the test
execution result. Those object values should not be correlated
with the test execution result. Therefore, to correctly observe
expression values, such masking effects must be identified.

To address this problem, for each mutated test, FailureDoc
computes a static backward slice [27] from the assertion
statement that fails in the original test to identify expressions
whose outcomes may affect the test execution result. Then,
FailureDoc only records computed values of those identified
expressions. For example, when executing a mutated test cre-
ated by replacing TreeSet t = new TreeSet(l) on line 6
in Figure 2 with TreeSet t = new TreeSet(), FailureDoc
analyzes the mutated test code and identifies that only the
expressions on lines 6 and 7 may affect the assertion on line
9.

FailureDoc records the execution outcomes of a mutated
test in a vector V = 〈v1, . . . , vn〉, where n is the number of
statements in the test. If the ith statement is not in the backward
slice from the assertion, then vi = Ignore (Ignore means the
outcome is not recorded). Otherwise, vi is the outcome object
of the ith statement.

After executing all mutated tests, FailureDoc collects a set
of outcome vectors. These will be used as input to the failure
correlation module, which identifies suspicious statements that
are most likely to cause the failure.

C. Failure Correlation

We devised an offline statistical algorithm that isolates a
small set of suspicious statements in a failed test. Our algorithm
is a variant of a well-established cooperative bug isolation
technique [17]. The basic idea is to identify likely buggy
statements by correlating the observed values with the execution
results in a set of passing and failing executions.

However, the statistical algorithm described in [17] cannot
be directly applied to our problem domain, for two reasons.
(1) The original algorithm uses the boolean value of an
instrumented predicate as the feature vector to identify likely
buggy predicates, while FailureDoc needs to use multiple
observed values (in an outcome vector) to isolate suspicious
statements. (2) Merely identifying suspicious statements is not
sufficient for FailureDoc. FailureDoc also needs to associate
each identified statement with a set of failure-correcting objects,
using any of which to replace the existing value will make the
test pass. The properties of such failure-correcting objects will
be generalized and translated into human-readable comments
by the follow-on documentation generation module.

To address the above two limitations, we first define a new
metric Pass and re-define three existing metrics Context ,
Increase , and Importance as proposed in [17], then present a
new statistical algorithm at the end of this section. Interested
readers can refer to [17] for more details on the design of the
three existing metrics.

For the ith statement si in a failed test, there are j different
replacing values recorded in outcome vectors, which we denote
as vi1, vi2, . . . , vij . For statement si, we define its failure-
correcting object set FCi = {vik | using vik to replace the
existing value makes the test pass}.

Let Pr(A|B) denote the conditional probability of the event
A given event B. Let S(vij) be the number of successful runs
in which value vij replaces the ith statement, and let F (vij)
be the number of failing runs in which value vij replaces the
ith statement. The probability of the test passing when using
vij to replace the existing value in the ith statement is:

Pass(vij) =
S(vij)

S(vij) + F (vij)

A lower score shows weaker correlation between vij and
the test failure. However, a single metric is often insufficient
to identify suspicious code [17], which we also experimentally
verified in Section III-A for our problem domain. The major
reason is that Pass(vij) does not consider the number of
available executions and code execution context. Intuitively, for
two replacing values vi1 and vi2, if Pass(vi1) = Pass(vi2) but
vi1 is observed in more executions, we should have a stronger
belief that vi1 is correlated with the failure. Additionally, the
observation of vij could be affected by its execution context.
In some cases, high Pass(vij) does not necessarily mean vij
is an interesting failure-correcting object, it is possible that
the decision that eventually causes the test to pass is made
earlier, and the high Pass(vij) score just reflects the fact that
this value is observed after the decision has been made.



Input: a failed test t
Output: a set of suspicious statements Stmts , each of which
is associated with a set of failure-correcting objects

1: Stmts ← ∅
2: for each statement si in t do
3: FCi ← {vij | S(vij) > 0 ∧ F (vij) = 0

∧Increase(vij) > 0∧Importance(vij) > k}
4: if FCi 6= ∅ then
5: Stmts ← Stmts ∪ 〈si, FCi〉
6: end if
7: end for
8: return Stmts

Fig. 6. Algorithm for isolating a set of suspicious statements. Each isolated
statement is associated with a failure-correcting object set. The threshold k

for the Importance metric is user-settable; our experiments use its default
value 0.81.

For those reasons, we re-define metrics Context , Increase ,
and Importance by considering the code execution context
and number of available executions, as follows.
Context(vij) = Pr(Test Passes | the ith line is observed)

In the above definition, Context(vij) is the probability that
the output value of the ith line is recorded (has not been pruned
after performing slicing in Section II-B) in a passing execution.
We define Context(vij) as:

Context(vij) =
SR(i)

SR(i) + FR(i)

In the above definition, SR(i) is the number of passing
executions when the output of the ith statement is recorded, and
FR(i) is the number of failing executions when the output of
the ith statement is recorded. Then, we re-define Increase(vij)
as:

Increase(vij) = Pass(vij)− Context(vij)

A value vij with Increase(vij) ≤ 0 is unlikely to be a failure-
correcting object and will be discarded by FailureDoc.

We finally re-define the Importance metric. It considers the
number of available passing executions S(vij), to avoid only
representing special cases (observed from a small number of
executions) but not being applicable to more general cases.

Importance(vij) =
2

1
Increase(vij)

+ 1
log(S(vij))

Figure 6 shows our algorithm for isolating suspicious
statements. A statement is classified as suspicious iff its failure-
correcting object set FC 6= ∅.

D. Documentation Generation
For each identified suspicious statement, FailureDoc uses a

Daikon-like [10] technique to summarize common properties
of its failure-correcting objects, and convert the summarized
properties into human-readable comments. Each comment
indicates a different way to cause the failed test to pass.
Thus, even if the comments provide different information,
the comments are never in conflict with one another.

1) Object Property Generalization: FailureDoc reports prop-
erties that are true over all failure-correcting values. The
essential idea is to use a generate-and-check algorithm to
test a set of pre-defined potential properties against the values,
and then report those properties that are not falsified.

Given a set of objects FC = {o1, o2, . . . , on}, FailureDoc
checks the following properties:
• Type: do all objects in FC have the same type? For

example, are all objects Comparable, or of Collection
type?

• Abstract Object Profile: do all objects in FC have the
same abstract object profile (Section II-A2)?

The properties can be viewed as forming a lattice based
on subsumption (logical implication). The FailureDoc imple-
mentation takes advantage of these relationships in order to
improve both performance and the intelligibility of the output.
For example, if all objects in FC are both integer type and
comparable, FailureDoc will suppress the weaker property:
being comparable is logically implied by being of integer type.

We produced the list of properties in the abstract object
profile by proposing a basic set that seemed natural and
generally applicable, based on our debugging experience. We
later added other properties we found useful in revealing
debugging clues (e.g., checking whether a collection object
is empty or not). Compared to the invariant detection engine
implemented in Daikon [10], the property set checked by
FailureDoc is highly tailored for the debugging purpose. It
discards many scalar properties that are extensively used in
Daikon, and adds some properties that Daikon lacks, such as
checking whether all objects have the same abstract object
profile.

Consider the example in Figure 2, and suppose the failure
correlation module identifies line 4 as suspicious. FailureDoc
will take its failure-correcting object set as inputs, such as {
"hi", 100, (byte)1}, and summarize the property that all
objects are Comparable.

2) Documentation Summarization: FailureDoc concatenates
all reported properties and converts them into descriptive doc-
umentation. It employs a small number of simple translations
to phrase common Java idioms. The translated documentation
is presented like a description of property as follows:
• x = null becomes “x is set to: null”
• x == (Integer)0 becomes “the line is: Integer x =

new Integer(0);” (when the type of x is not Integer
in the failed test)

• x instanceof Comparable becomes “x implements
Comparable”

• x.add(o) returns false becomes “o is not added to x”
(when x is a Collection type object)

• x has an abstract profile TreeMap〈size = 0,

entrySet 6=null〉 becomes x is a TreeMap object, in
which size is 0 and entrySet is not null

As shown in Figure 4, the translated documentation (code
comment) is presented in the form of: “Test passes if property”.
If multiple properties are reported, FailureDoc generates



Program size Failed tests Commented tests FailureDoc execution details
Program (version) LOC Classes Methods Tests Statements Tests Comments Mutants Time (seconds)

Time And Money (0.51) 2372 29 492 2 81 1 3 993 114
Apache Commons Primitives (1.0) 9368 210 1739 2 150 2 3 4740 1079
Apache Commons Math (2.2) 14469 131 1333 3 144 2 13 2037 271
Apache Commons Collections (3.2.1) 55400 445 5350 3 83 3 6 1987 780
java.util package (1.6.0 12) 48026 191 3387 2 27 2 4 734 29

Total 129635 1006 12301 12 485 10 29 10491 2273

Fig. 7. Subject programs and experimental results in evaluating FailureDoc. Column “LOC” is the number of lines of code, as counted by LOCC [19].
Column “Commented tests” is the number of failed tests for which FailureDoc can infer documentation. Column “Comments” is the total number of inferred
comments for the documented tests (one comment per suspicious statement). “Mutants” is the total number of mutated tests created by the value replacement
module (Section II-A). Column “Time” is the total time (in seconds) used in the whole documentation inference process, including the time spent on tests for
which FailureDoc cannot infer documentation.

documentation in the form of “Test passes if property 1 or
property 2”.

III. EVALUATION

We have implemented a tool, called FailureDoc, and investi-
gated the following two research questions:

1) RQ1: Can FailureDoc scale to realistic programs, and
generate meaningful documentation for failed tests?

2) RQ2: Does the inferred documentation help programmers
to understand failed tests?

To answer these research questions, we designed an experi-
ment and a controlled user study.

1) For RQ1, we applied FailureDoc to five real-world
programs to infer explanatory documentation for failed tests
(Section III-A). We examined the inferred documentation and
also sent it to the subject developers for feedback.

2) For RQ2, we designed a controlled user study to investi-
gate whether the generated documentation aids bug diagnosis
(Section III-B). The user study involved 16 participants with
an average of 4.1 years of Java programming experience.

A. Experiment: Inferring Debugging Clues

FailureDoc takes as input a failed test. We generated failed
tests by running Randoop [21] on five real-world subject
programs (Apache Commons Collections1, Primitives2, Math3,
Time and Money4, and java.util5). Randoop checked 5
default programming rules defined in Java such as the symmetry
property of equality: o.equals(o). Randoop outputted 12
failed tests; each one indicates a distinct, real bug in a subject
program. On average, each test has 41 lines of code excluding
assert statements. Next, FailureDoc inferred documentation for
each failed test. Finally, we examined FailureDoc’s output
to judge the quality of inferred documentation. Figure 7
summarizes the experimental results.

Results. Like the example in Figure 2, most failed tests involve
complex code interactions between multiple classes. It was

1Apache Commons Collections: http://commons.apache.org/collections/
2Apache Commons Primitives: http://commons.apache.org/primitives/
3Apache Commons Math: http://commons.apache.org/math/
4Time And Money: http://sourceforge.net/projects/timeandmoney/
5JDK 1.6: http://download.oracle.com/javase/6/docs/api/

hard for us to tell the failure cause by simply looking at the
source code or executing the test.

FailureDoc successfully inferred documentation for 10 of 12
failed tests. The comments FailureDoc creates are reasonably
succinct, approximately 1 comment per 17 lines of test code.
FailureDoc is fast enough for practical use, taking 189 seconds
on average to infer documentation for one failed test.6 The time
used to infer documentation for a test is roughly proportional to
the length of the test, rather than the size of the tested program.
Most of the time is spent performing value replacement,
because reflectively executing a failed test with multiple input
values takes a considerable amount of time.
Example. Figure 8 shows a documented test from subject
Apache Commons Collections. The comments indicate which
part of the test code programmers should inspect first, while
ignoring other irrelevant method calls and variables.

In Figure 8, the comments indicate three ways to cor-
rect this failed test by either changing the value of s0

on line 26 from (Short)1 to (Integer)0, or not adding
s0 to listOrderedSet0 on line 27, or not adding i5

to listOrderedSet11 on line 59. In particular, the com-
ment above line 26 reminds programmers the test will
pass if an existing value is added to listOrderedSet0

(the same value as the new Integer(0) object defined
on line 24, is added to listOrderedSet0 on line 25).
This information guides programmers to check the code
inside method ListOrderedSet.add(Object). After fur-
ther inspection, programmers would find the add method
does not update a ListOrderedSet object state cor-
rectly when adding a new element: it only adds the ele-
ment to the collection field, but forgets to update the
setOrder field. Note that listOrderedSet9 is just a
wrapping object of listOrderedSet0 on line 23. Thus,
updating listOrderedSet0 also changes the state of
listOrderedSet9. Thus, this comment indicates the exact
cause for the assertion failure.

FailureDoc failed to infer comments for two failed tests, in
subjects Time And Money and Apache Commons Math. That
is mainly due to the characteristics of the revealed bugs. In
Time And Money, the static factory method everFrom in class

6The experiment used a 2.67GHz Intel(R) Core 2 PC with 2GB physical
memory (512MB is allocated for the JVM), running Fedora 12.



public void testListOrderedSet() throws Throwable {
1. ListOrderedSet listOrderedSet0 = new ListOrderedSet();

...
23. ListOrderedSet listOrderedSet9

= ListOrderedSet.decorate((Set)listOrderedSet0, list6);
...

24. Integer i2 = new Integer(0);
25. boolean b3 = listOrderedSet0.add((Object)i2);

//Test passes if line is: Integer s0 = new Integer(0);
26. Short s0 = new Short((short)1);

//Test passes if s0 is not added to listOrderedSet0
27. boolean b4 = listOrderedSet0.add((Object)s0);

...
33. ListOrderedSet listOrderedSet11 = new ListOrderedSet();

...
58. int i5 = listOrderedSet21.size();

//Test passes if i5 is not added to listOrderedSet11
59. boolean b8 = listOrderedSet11.add((Object)i5);

...
//this assertion (transitivity of equals) fails

61. assertTrue(listOrderedSet11.equals(listOrderedSet9)
== listOrderedSet9.equals(listOrderedSet11));

}

Fig. 8. A failed test for Apache Commons Collections. FailureDoc
automatically augmented it with the underlined debugging comments.

TimeInterval incorrectly passes a hard-coded null value to
a constructor. In subject Apache Commons Math, the revealed
bug is due to the fact that two objects new Double(0.0d)

and new Double(-0.0d), though numerically equal, have
different hash codes. For both failed tests, there is no way for
client code to use value replacement to correct them. Therefore,
FailureDoc fails to infer useful code documentation.
Feedback from Developers. We sent the documented failed
tests to the subject program developers, asking them to judge
the documentation quality. As of August 2011, we received
several pieces of positive feedback from the developers. Luc
Maisonobe, a developer of Apache Commons Math gave us
the following comment:

I think these comments are helpful. They give a hint
about what to look at. In both (failed test) cases, I
had to run the test in a debugger to see exactly what
happened but the comment showed me exactly the
variable to look at.

All reported bugs and documented tests are pub-
licly available at: http://www.cs.washington.edu/homes/szhang/
failuredoc/bugreports/.
Experimental comparison with delta debugging. Delta de-
bugging [29] is a general technique to isolate failure-inducing
inputs. It has the potential to isolate suspicious statements from
a failed test, just as our statistical algorithm (Section II-C) does.

We implemented the isolating delta debugging algorithm
described in [29], and applied it to the 12 failed tests in Figure 7.
Delta debugging [29] experimentally validates whether a certain
statement is suspicious, by removing it from the failed test
code and re-executing the simplified test, to see whether the
same failure occurs again. One limitation of delta debugging
is that it cannot isolate statements whose removal would cause
a compilation error.

Delta debugging isolated 4 suspicious statements in 3 failed
tests (such as, statement 5 in Figure 4, and statements 27
and 59 in Figure 8). By comparison, our statistical algorithm

isolated 29 suspicious statements in 10 failed tests, including
all 4 statements isolated by delta debugging.

Even more importantly, the statements isolated by delta
debugging gave limited information for understanding the
failure. For instance, in Figure 4, the comment above statement
5 indicates that the Object o defined on line 4 is related to
the failure, but does not tell why the test fails. In contrast,
FailureDoc additionally isolates statement 4 as suspicious, and
generates a comment for it, guiding programmers to better
understand the failure cause.

Section III-B empirically compares delta debugging with
FailureDoc via a user study to show that delta debugging
produces less useful results in understanding the failure cause.
Experimental comparison with a single metric statistical algo-
rithm. We next verified the necessity of using multiple metrics
(Pass , Increase, and Importance defined in Section II-C) in
isolating suspicious statements. We implemented a simpler
statistical algorithm only using metric Pass , and compared
its results with FailureDoc’s output. This simpler algorithm
changes line 3 of Figure 6 to

FCi ← {vij | Pass(vij) > 0 ∧ F (vij) = 0}

This simpler algorithm isolated 32 suspicious statements from
the 10 failed tests in Figure 7: the 29 suspicious statements
isolated by our algorithm, plus 3 additional statements that are
implied by FailureDoc’s output. The 3 additional statements are
further from the root cause, and are less useful in understanding
the test behavior.

B. User Study: Understanding Failed Tests

We performed a controlled user study to investigate two
questions. First, can FailureDoc help programmers understand
a failed test and fix the revealed bug? Second, is the information
provided by FailureDoc more useful than delta debugging [29],
a state-of-the-art automated debugging technique?

The participants were given test cases and asked to un-
derstand and fix the underlying error. There were three
experimental treatments: some test cases were as produced by
Randoop; some had been annotated with suspicious statements
identified by delta debugging; and some had been annotated
with FailureDoc documentation.
Setup. The participants were 16 graduate students majoring
in computer science. On average, they had 4.1 years of Java
programming experience (min = 1, max = 7, sd = 1.7), and 1.9
years of JUnit experience (min = 0.1, max = 4, sd = 1.5). None
of them was familiar with the subject code. Before the user
study started, we gave each participant a 15-minute tutorial
about the basic concept of JUnit tests, the default contracts that
Randoop’s JUnit tests check, and (when relevant) the format
of FailureDoc’s inferred documentation.

Each participant was given 30 minutes per failed test case.
For each failed test, we gave the participant two goals. First,
participants were asked to understand why the test fails, write
down its failure cause, and tell us when they had found it.
Second, participants were asked to write a patch to fix the



Success Rate Time Used (in minutes)
Goal JUnit FailureDoc JUnit FailureDoc

mean sd max min mean sd max min
Understand Failure 75% 75% 22.6 7.4 30 11 19.9 10.0 30 2
Understand Failure + Fix Defect 35% 35% 27.5 4.8 30 17 26.9 6.9 30 5

(a) Comparison of original un-documented failed tests (column “JUnit”) with FailureDoc-documented tests (column “FailureDoc”).

Success Rate Time Used (in minutes)
Goal Delta debugging FailureDoc Delta debugging FailureDoc

mean sd max min mean sd max min
Understand Failure 75% 75% 21.7 8.1 30 6 20.0 9.6 30 2
Understand Failure + Fix Defect 40% 45% 26.1 6.1 30 9 26.5 6.8 30 5

(b) Comparison of tests annotated with faulty statements isolated by Delta debugging [29] (column “Delta debugging”) with FailureDoc-documented
tests (column “FailureDoc”).

Fig. 9. User study results. “Success Rate” represents the percentage of finished tests for a certain goal. “Time Used (in minutes)” represents the average time
to complete one task. We used 30 minutes (the maximum allowed time) for participants who failed to complete a certain goal.

defect. After all participants finished their tasks, we checked
the correctness of the identified failure cause (the first goal)
and the proposed bug fixes (the second goal).

Each participant was assigned to understand and fix 2–4
different failed test cases chosen from Figure 7. 5 participants
received two test cases with FailureDoc documentation, then
two un-documented test cases. 5 participants received first two
un-documented test cases, then two FailureDoc-documented
test cases. 3 participants received 1 FailureDoc-documented
test case, then 1 test case annotated with suspicious statements
identified by delta debugging. 3 participants received 1 delta-
debugging-annotated test case, then 1 FailureDoc-documented
test case. We assigned fewer participants to the delta debugging
treatment, because delta debugging identified suspicious state-
ments for only 3 failed tests. For the other 7 failed tests, we
re-used the experimental data for the un-documented test cases.
Using this approach, each sub-table of Figure 9 compares the
same experimental subjects, which avoids conflating individual
differences with treatment differences.

Results. Figure 9 summarizes the user study results.
As shown in Figure 9(a), participants using FailureDoc-

documented tests and un-documented tests completed the
same number of tasks. However, participants using FailureDoc-
documented tests understood the failure cause 14% faster (2.7
minutes faster) than the participants using un-documented
tests. For each defect, participants with FailureDoc-inferred
documentation spent slightly less time (0.6 minute) to fix, than
participants without the documentation. This indicates that the
explanatory documentation is most useful for understanding
the failure cause.

As shown in Figure 9(b), participants using FailureDoc-
documented tests completed more tasks than participants with
the aid of delta debugging (40% versus 45% success rate in
fixing defects). The two treatments led to the same success rate
in understanding a failed test, but participants using FailureDoc-
documented tests spent 8.5% less time (1.7 minutes) to do so.
The delta debugging treatment led to slightly faster fixes than
with FailureDoc (0.4 minute), despite delta debugging’s lower
success rate. This is primarily due to one programmer who
fixed one defect extremely quickly under the delta debugging

treatment. In retrospect, setting the maximum permitted time
to be larger would have yielded more discriminating results:
the average successful bug fix (across all treatments) took 23.2
minutes, which is not much less than the 30 minutes that the
statistics use for unsuccessful participants.

Participants’ feedback. After the user study, we asked all
participants to complete a survey, writing down their feedback
and suggestions on the inferred documentation. 15 out of
16 participants thought unfamiliarity with the subject code
was the major reason for their slow progress or their failure
to fix the defect. When asked to classify the usefulness of
inferred documentation as either very useful, useful, not very
useful, and not useful at all (misleading), 1 participant thought
the documentation was very useful, 12 out of 16 participants
thought the documentation was useful, while the remaining 3
participants thought the documentation was not very useful.

The 13 participants who found the documentation useful (or
very useful) have an average of 4.3 years of Java programming
experience, while the remaining 3 participants have an average
of 2.6 years of experience. Two participants said they expected
the comments to exactly pinpoint the buggy code (that is
not the goal of FailureDoc), and thus thought the inferred
documentation less useful, and the other participant said the
comments were not very useful if he was not familiar with the
tested program. More experienced participants could leverage
their own experience with the given hint to find the right code
to inspect.

During the study, one participant accidentally overlooked a
comment in the assigned test, and spent over 25 minutes in
understanding one failed test. However, as soon as he noticed
the overlooked comment, he understood why the test fails.
That participant gave us the following comment: I should have
noticed the comments (earlier). The comment at line 68 did
provide information very close to the bug!

In contrast, another participant efficiently leveraged the
inferred documentation, understood the failure cause and
proposed a good fix for the failed test in less than 5 minutes.
He gave us the following comment: The comments are useful,
because they indicate which variables are suspicious, and help
me narrow the search space. The participant who thought the



comment was very useful said: this kind of comments can
help to eliminate the wrong search path and the possibility of
missing a bug, thus reducing the debugging time.

The three participants who thought the comments were
not very useful said the information provided by FailureDoc
interfered with their established debugging habits. They gave
three pieces of negative comments. One participant said: the
comments usually provide information about data and control
dependencies, but their meanings are not so obvious for bug
fixing. They can be more useful, if they are more descriptive
in natural language. Another participant said that his assigned
test was already very simple, and though the comments helped
him understand what the test was doing, they were not so
useful. The third participant said: the comments, though [they]
give useful information, can easily be misunderstood, when I
am not familiar with the [program].

After the user study, we asked the 6 participants who received
both FailureDoc-documented tests and tests annotated with
suspicious faulty statements by delta debugging to judge which
information is more useful. All 6 participants thought Failure-
Doc provided richer and more useful information than delta
debugging, since the documentation not only indicated which
statements are relevant to the bug, but also gave hints on why
the test failed.

Summary. We have three chief findings: (1) compared to
an undocumented test, FailureDoc’s inferred documentation
slightly speeds up the task of understanding and fixing a bug,
(2) compared to delta debugging, FailureDoc slightly speeds up
the task of understanding a bug, and leads to greater success
in fixing the bug, and (3) the inferred documentation is more
useful for more experienced programmers.

Threats to validity. There are three major threats to validity.
First, the five programs and the diagnosed bugs may not be
representative. Thus, we can not claim the results can be
extended to an arbitrary program. Second, the generality of
our user study is obviously limited: this was a small task, a
small sample of people, limited time, and unfamiliar code.
Third, the differences in the means are relatively small and
not statistically significant, in part because of the 30-minute
time limit. These three threats can be reduced by performing
experiments on more subjects and users.

IV. RELATED WORK

We next discuss closely-related work on automated software
testing, error explanation, statistical program analysis, and
automated documentation inference for source code.

Automated software testing. Many automated testing tech-
niques and tools [5], [7], [20], [21], [30], [31] have been
developed to find defects in software. Tools like Eclat [20]
and Randoop [21] generate random method-call sequences for
object-oriented programs. Previous test generation tools have
been demonstrated to be promising in finding new bugs, but
none of them can explain a failed test. With the wider adoption
of automated testing tools, quickly understanding failed tests
becomes a demanding requirement. This paper addresses this

problem with the FailureDoc tool, to infer descriptive code
comments as debugging clues.

ARTOO [5], an adaptive random test generator, uses a
distance metric to select a diverse set of objects for test case
creation. The metric does not map each concrete field value to
an abstract domain. Instead, it directly uses the concrete field
values to compute distance between two objects. In contrast, the
abstract object profile used in FailureDoc characterizes a Java
object at a coarser granularity, by mapping each concrete value
to a much smaller abstract domain. This is appropriate because
FailureDoc uses the abstract object profile to distinguish two
Java objects, instead of computing their distance as ARTOO
does.

Program Error Explanation. Explaining a counterexample [1],
[12], [16] is fundamentally different from FailureDoc’s goal.
Representative work like [12] is similar in spirit to delta
debugging [29]. It takes an error trace produced by a model
checker, and computes a minimal transformation between error
and correct traces by conducting a modified binary search
over program states. In contrast, FailureDoc takes as input a
failed test, creates additional execution traces, and generalizes
failure-correcting edits as documentation to explain the test
failure. FailureDoc is also different from the state-of-the-art
fault localization techniques [6], [13], [14], [29], which can
pinpoint the likely buggy code. FailureDoc augments a failed
test with debugging clues, helping programmers understand
the failure cause and fix the bug.

Statistical Program Analysis. Recently, statistical algorithms
have been applied to the program analysis domain [9], [17],
[18]. Podgurski et al. [9] applied statistical feature selection,
clustering, and multivariate visualization techniques to the task
of classifying software failure reports. The CBI project [17]
analyzes execution traces collected from deployed software
to isolate software failure causes. Specifically, the program
is instrumented to collect information from certain run-time
values and this information is passed on to a statistical engine
to compute likely buggy predicates. Compared to the CBI
project, FailureDoc has several differences and a rather different
goal. First, instead of having many collected execution traces,
FailureDoc is given only one failed test (i.e., a single failing
execution trace). It needs to construct extra execution traces
before applying a statistical algorithm. FailureDoc addresses
this problem by using value replacement to construct slightly
mutated tests, and then obtain extra execution traces. Second,
the CBI project uses the value (true/false) of an instrumented
predicate as the feature vector, while FailureDoc uses a finer
granularity: it observes and records multiple computed values
of related expressions. Third, FailureDoc does not track the
usually long execution trace across the whole program as CBI
does. FailureDoc’s static analysis and runtime monitoring is
intra-procedural, permitting lower overhead. Fourth, CBI and
FailureDoc have different goals. CBI uses statistical algorithms
to identify likely buggy predicates as final output, while Failure-
Doc identifies a set of suspicious statements and their failure-
correcting objects for documentation inference.



Documentation Inference for Source Code. There has been
some limited work on automated documentation inference for
source code. Semi-automated approaches like [22], [23] either
determine un-commented code segments and prompt developers
to enter comments, or generate comments from user-provided
high level abstractions. Some techniques generate comments
for exceptions [3], API function cross-references [11], software
changes [4], [15], and descriptive summary comments for
methods [24], [25]. However, none of the previous work
generates documentation to explain a failed test. The difficulties
raised in understanding a failed test motivate this work.

V. CONCLUSION AND FUTURE WORK

We have presented FailureDoc, a fully-automated technique
to infer documentation to explain failed tests. FailureDoc uses
a combination of several lightweight techniques to achieve
its goal. In our experiment, FailureDoc successfully inferred
documentation for 10 out of 12 failed tests from five real-
world programs, showing good scalability. The documentation
inferred by FailureDoc revealed important information about the
test failure, guiding programmers to inspect the right code place.
Our user study and developers’ reaction further demonstrated
its usefulness.

As future work, we plan to investigate alternative strategies
in performing value replacement, particularly for failed tests
where multiple values need to be replaced to make it pass. We
also plan to use more sophisticated techniques like [1] to guide
documentation inference, making the tool more accurate and
efficient.
Acknowledgements We thank the participants in the FailureDoc
user study. We also thank Werner Dietl for performing a careful
check on the experimental data. This work was supported in
part by ABB Corporation and by NSF grant CCF-0963757.
Cheng Zhang’s work was supported in part by National Natural
Science Foundation of China (NSFC) grants 60673120 and
60970009.

REFERENCES

[1] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard
Trefler. Explaining counterexamples using causality. In Proc. CAV’09,
pages 94–108, 2009.

[2] C Boyapati, S Khurshid, and D Marinov. Korat: automated testing based
on Java predicates. In ISSTA ’02, 2002.

[3] R P.L. Buse and W R. Weimer. Automatic documentation inference for
exceptions. In ISSTA ’08, pages 273–282, 2008.

[4] Raymond P.L. Buse and Westley R. Weimer. Automatically documenting
program changes. In ASE ’10, 2010.

[5] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer.
ARTOO: adaptive random testing for object-oriented software. In ICSE
’08, pages 71–80, 2008.

[6] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. DSD-Crasher: A
hybrid analysis tool for bug finding. TOSEM, 17(2):1–37, April 2008.

[7] V Dallmeier, N Knopp, C Mallon, S Hack, and A Zeller. Generating
test cases for specification mining. In ISSTA ’10, 2010.

[8] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira.
A study of the documentation essential to software maintenance. In Proc.
SIGDOC ’05, pages 68–75, 2005.

[9] W Dickinson, D Leon, and A Podgurski. Finding failures by cluster
analysis of execution profiles. In ICSE’01, pages 339–348, 2001.

[10] M D. Ernst, J Cockrell, W G. Griswold, and D Notkin. Dynamically
discovering likely program invariants to support program evolution. In
Proc. ICSE ’99, pages 213–224, 1999.

[11] L Fan, W Xi, and C Yang. API hyperlinking via structural overlap. In
Proc. ESEC/FSE ’09, pages 203–212, 2009.

[12] Alex Groce and Willem Visser. What went wrong: explaining counterex-
amples. In Proc. SPIN’03, pages 121–136, 2003.

[13] D Jeffrey, N Gupta, and R Gupta. Fault localization using value
replacement. In ISSTA ’08, pages 167–178, 2008.

[14] James A. Jones and Mary Jean Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proc. ASE ’05, pages
273–282, 2005.

[15] Miryung Kim. Analyzing and inferring the structure of code change.
PhD thesis, University of Washington, 2008.

[16] B Lerner, M Flower, D Grossman, and C Chambers. Searching for
type-error messages. In PLDI ’07, pages 425–434, 2007.

[17] B Liblit, M Naik, A X. Zheng, A Aiken, and M I. Jordan. Scalable
statistical bug isolation. In PLDI ’05, 2005.

[18] Ben Liblit. Cooperative Bug Isolation: Winning Thesis of the 2005 ACM
Doctoral Dissertation Competition, volume 4440 of Lecture Notes in
Computer Science. Springer, 2007.

[19] LOCC home. http://csdl.ics.hawaii.edu/Plone/research/locc/.
[20] C Pacheco and M D. Ernst. Eclat: Automatic generation and classification

of test inputs. In ECOOP 2005, 2005.
[21] C Pacheco, S K. Lahiri, M D. Ernst, and T Ball. Feedback-directed

random test generation. In ICSE ’07, 2007.
[22] David Roach, Hal Berghel, and John R. Talburt. An interactive source

commenter for prolog programs. In Proc. SIGDOC’90, pages 141–145,
1990.

[23] Pierre N. Robillard. Schematic pseudocode for program constructs and
its computer automation by schemacode. Commun. ACM, 29:1072–1089,
November 1986.

[24] G Sridhara, E Hill, D Muppaneni, L Pollock, and K. Vijay-Shanker.
Towards automatically generating summary comments for Java methods.
In Proc. ASE’10, pages 43–52, 2010.

[25] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. Automatically
detecting and describing high level actions within methods. In Proc.
ICSE ’11, May 25–27, 2011.

[26] W Visser, C S. Pǎsǎreanu, and S Khurshid. Test input generation with
Java PathFinder. In ISSTA ’04, pages 97–107, 2004.

[27] Mark Weiser. Program slicing. In Proc. ICSE ’81, 1981.
[28] T Xie, D Marinov, W Schulte, and D Notkin. Symstra: A framework

for generating object-oriented unit tests using symbolic execution. In
TACAS 2005, pages 365–381, 2005.

[29] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 28:183–200, February 2002.

[30] Sai Zhang. Palus: a hybrid automated test generation tool for Java. In
ICSE ’11 SRC track, pages 1182–1184, 2011.

[31] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. Combined
static and dynamic automated test generation. In ISSTA ’11, pages
353–363, 2011.


