
Static and dynamic analysis: synergy and duality

Michael D. Ernst
MIT Lab for Computer Science
Cambridge, MA 02139 USA

mernst@lcs.mit.edu

Abstract

This paper presents two sets of observations relating
static and dynamic analysis. The first concerns synergies
between static and dynamic analysis. Wherever one is uti-
lized, the other may also be applied, often in a complemen-
tary way, and existing analyses should inspire different ap-
proaches to the same problem. Furthermore, existing static
and dynamic analyses often have very similar structure and
technical approaches. The second observation is that some
static and dynamic approaches are similar in that each con-
siders, and generalizes from, a subset of all possible execu-
tions.

Researchers need to develop new analyses that comple-
ment existing ones. More importantly, researchers need to
erase the boundaries between static and dynamic analysis
and create unified analyses that can operate in either mode,
or in a mode that blends the strengths of both approaches.

1. Background

This section briefly reviews some facts about traditional
static and dynamic analyses, to set the stage for the rest of
the paper.

Static and dynamic analyses arose from different com-
munities and evolved along parallel but separate tracks. Tra-
ditionally, they have been viewed as separate domains, with
practitioners or researchers specializing in one or the other.
Furthermore, each has been considered ill-suited for the
tasks at which the other excels. This paper argues that the
difference is smaller than it appears and that certain of these
distinctions are unnecessary and counterproductive.

Static analysis examines program code and reasons over
all possible behaviors that might arise at run time. Com-
piler optimizations are standard static analyses. Typically,
static analysis is conservative and sound. Soundness guar-
antees that analysis results are an accurate description of the
program’s behavior, no matter on what inputs or in what en-
vironment the program is run. Conservatism means report-
ing weaker properties than may actually be true; the weak
properties are guaranteed to be true, preserving soundness,

but may not be strong enough to be useful. For instance,
given a functionf , the statement “f returns a non-negative
value” is weaker (but easier to establish) than the statement
“f returns the absolute value of its argument.” A conser-
vative analysis might report the former, or the even weaker
property thatf returns a number.

Static analysis operates by building a model of the state
of the program, then determining how the program reacts
to this state. Because there are many possible executions,
the analysis must keep track of multiple different possible
states. It is usually not reasonable to consider every possi-
ble run-time state of the program; for example, there may
be arbitrarily many different user inputs or states of the run-
time heap. Therefore, static analyses usually use an ab-
stracted model of program state that loses some informa-
tion, but which is more compact and easier to manipulate
than a higher-fidelity model would be. In order to maintain
soundness, the analysis must produce a result that would be
true no matter the value of the abstracted-away state com-
ponents. As a result, the analysis output may be less precise
(more approximate, more conservative) than the best results
that are in the grammar of the analysis.

Dynamic analysis operates by executing a program and
observing the executions. Testing and profiling are standard
dynamic analyses. Dynamic analysis is precise because no
approximation or abstraction need be done: the analysis
can examine the actual, exact run-time behavior of the pro-
gram. There is little or no uncertainty in what control flow
paths were taken, what values were computed, how much
memory was consumed, how long the program took to ex-
ecute, or other quantities of interest. Dynamic analysis can
be as fast as program execution. Some static analyses run
quite fast, but in general, obtaining accurate results entails
a great deal of computation and long waits, especially when
analyzing large programs. Furthermore, certain problems,
such as pointer or alias analysis, remain beyond the state
of the art; even exponential-time algorithms do not always
produce sufficiently precise results. By contrast, determin-
ing at run time whether two pointers are aliased requires a
single machine cycle to compare the two pointers (some-
what more, if relations among more than two pointers are
checked).

24



The disadvantage of dynamic analysis is that its results
may not generalize to future executions. There is no guar-
antee that the test suite over which the program was run
(that is, the set of inputs for which execution of the program
was observed) is characteristic of all possible program exe-
cutions. Applications that require correct inputs (such as
semantics-preserving code transformations) are unable to
use the results of a typical dynamic analysis, just as applica-
tions that require precise inputs are unable to use the results
of a typical static analysis. Whereas the chief challenge
of building a static analysis is choosing a good abstraction
function, the chief challenge of performing a good dynamic
analysis is selecting a representative set of test cases (inputs
to the program being analyzed). (Efficiency concerns affect
both types of analysis.) A well-selected test suite can re-
veal properties of the program or of its execution context;
failing that, a dynamic analysis indicates properties of the
test suite itself, but it can be difficult to know whether a
particular property is a test suite artifact or a true program
property.

Unsound dynamic analysis has been traditionally
denigrated by the programming languages community.
Semantics-preserving program transformations such as
compiler optimizations require correct information about
program semantics. However, unsoundness is useful in
many other circumstances. Dynamic analysis can be used
even in situations where program semantics (but not per-
fect program semantics) are required. More importantly,
humans are remarkably resilient to partially incorrect infor-
mation [10], and are not hindered by its presence among (a
sufficient quantity of) valuable information. Since in most
domains human time is far more important than CPU time,
it is a better focus for researchers. As a result, and be-
cause of its significant successes, dynamic analysis is gain-
ing credibility.

2. Static and dynamic analysis: synergies

As noted in Section 1, static and dynamic analysis have
complementary strengths and weaknesses. Static analysis
is conservative and sound: the results may be weaker than
desirable, but they are guaranteed to generalize to future ex-
ecutions. Dynamic analysis is efficient and precise: it does
not require costly analyses, though it does require selection
of test suites, and it gives highly detailed results regarding
those test suites.

The two approaches can be applied to a single problem,
producing results that are useful in different contexts. For
instance, both are used for program verification. Static anal-
ysis is typically used for proofs of correctness, type safety,
or other properties. Dynamic analysis demonstrates the
presence (not the absence) of errors and increases confi-
dence in a system.

This section considers the use of static and dynamic anal-
ysis in tandem, to complement and support one another.
First, static and dynamic analyses enhance each other via
pre- or post-processing. Second, existing static and dy-
namic analyses can suggest new analyses. Third, static and
dynamic analyses should be combined into a hybrid analy-
sis.

2.1. Performing both static and dynamic analysis

Static or dynamic analyses can enhance one another by
providing information that would otherwise be unavailable.
Performing first one analysis, then the other (and perhaps
iterating) is more powerful than performing either one in
isolation. Alternately, different analyses can collect differ-
ent varieties of information for which they are best suited.

This well-known synergy has been and continues to be
exploited by researchers and practitioners alike. As one
simple example, profile-directed compilation [1] uses hints
about frequently executed procedures or code paths, or
commonly observed values or types, to transform code. The
transformation is meaning-preserving, and it improves per-
formance under the observed conditions but may degrade
it in dissimilar conditions (the correct results will still be
computed, only consuming more time, memory, or power).
As another example, static analysis can obviate the collec-
tion of certain information by guaranteeing that collecting a
smaller amount of information is adequate; this makes dy-
namic analysis more efficient or accurate.

2.2. Inspiring analogous analyses

Both static and dynamic analysis can always be applied
to a particular program, though possibly at different cost,
and their results have different properties. Whenever only
one of the analyses exists, it makes sense to investigate the
other, which may be able to use the same technical ap-
proach. In many cases, both approaches have already been
implemented by different parties.

One simple example is static and dynamic slicing [14].
Slicing indicates which parts of a program (may) have con-
tributed to the value computed at, or the execution of, a par-
ticular program expression or statement. Slicing can oper-
ate statically, dynamically, or both.

As a more substantive example, Purify [8] and
LCLint [6] are tools for detecting memory leaks and uses of
dead storage. (Each has capabilities missing from the other,
but this discussion considers only the intersection of their
capabilities.) Purify performs a run-time check, essentially
by use of tagged memory. Each byte of memory used by the
program is allocated a 2-bit state code indicating whether
that memory is unallocated, uninitialized, or initialized; at
each memory access, the memory’s state is checked and/or
updated by instructions that Purify inserts in the executable.

25



LCLint operates statically, checking user-supplied annota-
tions that indicate assumptions. It performs a dataflow anal-
ysis whose abstract state contains includes definedness and
allocation state; each program operation has particular re-
quirements on its inputs and produces certain results. The
rules and abstract states used by Purify and LCLint are es-
sentially identical: they perform the same analysis, Purify
dynamically and LCLint statically.

As another example, consider program specifications,
which are formal mathematical abstractions of program be-
havior. When used to verify behavior, the standard static
technique is theorem proving, which typically requires hu-
man interaction. The dynamic analog of theorem-proving
is theassert statement, which verifies the truth of a par-
ticular formula at run time. Specifications are best written
by the designer before implementation commences. When
specifications are synthesized after the fact, the typical ap-
proach is a static one that proceeds by examining the pro-
gram text. This task is sometimes done automatically with
the assistance of heuristics, but very frequently it is done
by hand. The dynamic analog to writing down a specifica-
tion is generating one automatically by dynamic detection
of likely invariants [4, 5]. The invariant detection technique
postulates potential invariants, tests them over program ex-
ecutions, and then prunes them via static analysis, statistical
tests, heuristics, and other techniques. As a result, its output
is often close to the ideal (over its grammar) that a perfect
static analysis or human would produce [11].

Dynamic invariant detection was invented as a direct re-
sult of considering the duality between dynamic and static
analysis. There existed static analyses that could generate
specifications (or formulas syntactically identical to speci-
fications, if the term “specification” is reserved for human-
produced formulas), but no dynamic analyses existed. (Dy-
namic techniques for other varieties of specifications al-
ready existed [2].) This led to a new technique that has
since been applied to refactoring, bug detection, fault isola-
tion, test suite improvement, verification, theorem-proving,
detection of component incompatibilities, and other tasks.
Other researchers would be well advised to look for other
missing analyses, in order to inspire development of new
analyses by comparison with their existing analogs. Where
just one (static or dynamic) analysis exists, the other is
likely to be advantageous.

2.3. Hybrid static-dynamic analysis

Presently, tool users must select between static and dy-
namic analysis. (Section 2.1 noted cooperative strategies
that use one analysis as a prepass for the other, but the over-
all output is that of the final analysis.) In some cases, one
or the other analysis is perfectly appropriate. However, in
other cases, users may prefer not to be forced to choose be-
tween the two approaches.

A better alternative is to create new, hybrid analyses
that combine static and dynamic analyses. Such an anal-
ysis would sacrifice a small amount of the soundness of
static analysis and a small amount of the accuracy of dy-
namic analysis to obtain new techniques whose properties
are better-suited for particular uses than either purely static
or purely dynamic analyses.

The hybrid analyses would replace the (large) gap be-
tween static and dynamic analysis with a continuum. Users
would select a particular analysis fitted to their needs: they
would, in a principled way, turn the knob between sound-
ness and precision. It seems unlikely that one extreme or
the other is always the appropriate choice: users or system
builders should be able to find the “sweet spot” for their
application. Indeed, different analyses (both static and dy-
namic) already use different amounts of processing power
to produce results of differing precision. This could be a
starting point for the work. Another starting point could be
use of only a subset of all available static information, much
as already practiced by some tools [12, 7]. A third starting
point is an observation about the duality of static and dy-
namic analysis, noted immediately below in Section 3. One
potential barrier is different treatments (optimistic vs. con-
servative) of unseen executions.

3. Static and dynamic analysis: duals

Static and dynamic analysis are typically seen as distinct
and competing approaches with fundamentally different the
techniques and technical machinery. (Section 2.2 noted that
in some cases, the underlying analyses are quite similar.)
This section argues that the two types of analysis are not
as different as they may appear; rather, they are duals that
make many of the same tradeoffs.

The key observation is that both static and dynamic anal-
ysis are able to directly consider only a subset of program
executions. Generalization from those executions is the
source of unsoundness in dynamic analysis and imprecision
in static analysis.

A dynamic analysis need not be unsound. A sound dy-
namic analysis observes every possible execution of a pro-
gram. If a test suite contains every possible input (and ev-
ery possible environmental interaction), then the results are
guaranteed to hold regardless of how the program is used.
This simple goal is unattainable: nontrivial programs usu-
ally have infinitely many possible executions, and only a
relatively small (even if absolutely large) set of them can
be considered before exhausting the testing budget (in time,
money, or patience). Researchers have devised a number of
techniques for using partial test suites or for selection of par-
tial test suites [13]. These techniques are of interest solely
as efficiency tweaks to an algorithm that works perfectly in
theory but exhausts resources in practice.

26



A static analysis need not be approximate. A perfectly
precise static analysis considers every possible execution of
a program, maintaining, for each execution, the program’s
full state (or, rather, all possible states). This is not typ-
ically feasible, because there are infinitely many possible
executions and the state of the program is extremely large.
Researchers have devised many abstractions, primarily of
state but also of executions, that permit them to consider a
smaller state space or a smaller number of executions, re-
ducing the problem to one that can often be solved on to-
day’s computers. The abstractions are of interest solely as
efficiency tweaks to an algorithm that works perfectly in
theory [3] but exhausts resources in practice.

Both dynamic and static analyses consider only a sub-
set of all possible executions, but that subset is chosen dif-
ferently. (Executions not in the set may be dealt with dif-
ferently, as well. In particular, the unobserved executions
may be treated conservatively and pessimistically or may be
treated optimistically, which often means simply ignoring
them. This distinction between sound and unsound analysis
is important but is omitted for reasons of space and because
it is orthogonal to the main point.)

The set of executions considered by a dynamic analysis
is exactly those that appear in the test suite or that were ob-
served during execution. This set is very easy to enumerate
and may characterize a particular environment well; how-
ever, the set may be difficult to formalize in mathematical
notation. The set of executions considered by a static anal-
ysis is those that induce executions of a certain variety. For
instance, thek-limiting [9] abstraction considers in detail
only the executions that create data structures with pointer-
directed paths of length no more thank; another popular ab-
straction considers only executions that traverse each loop
either zero or one times [6, 7].

Each of the descriptions is simpler in some respects and
more complicated in others. Given a data-structure-centric
description like those used for static analysis, it is difficult to
know what executions induce the data structures or whether
particular programs or execution environments will suffer
degradation of analysis results. Given a set of inputs or ex-
ecutions, analysis is required to understand what parts of a
program are exercised, and in what ways.

Recognition of this duality — both analyses consider a
subset of executions — should make it easier to translate
approaches from one domain to the other and to combine
static and dynamic analyses, or at least lead to a better un-
derstanding of the gap between them.

4. Conclusion

This paper has listed some widely-recognized distinc-
tions between static and dynamic analysis, notably sound-
ness versus precision. It noted ways that static and dynamic

analysis can interact: by augmenting one another, by inspir-
ing new analyses, and by creating hybrid analyses that com-
bine them. Some of these seem to have been overlooked by
previous authors. Finally, it noted a duality between static
and dynamic analysis, both of which consider (differently-
specified) subsets of program executions. We encourage
other researchers to join us in bringing these research ideas
to fruition.

References

[1] B. Calder, P. Feller, and A. Eustace. Value profiling. In
MICRO-97, pages 259–269, Dec. 1–3, 1997.

[2] J. E. Cook and A. L. Wolf. Event-based detection of concur-
rency. InFSE, pages 35–45, Nov. 1998.

[3] P. M. Cousot and R. Cousot. Automatic synthesis of opti-
mal invariant assertions: Mathematical foundations. InACM
Symposium on Artificial Intelligence and Programming Lan-
guages, pages 1–12, Aug. 1977.

[4] M. D. Ernst. Dynamically Discovering Likely Program In-
variants. PhD thesis, U. Wash. Dept. of Comp. Sci. & Eng.,
Seattle, Washington, Aug. 2000.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE TSE, 27(2):1–25, Feb. 2001.

[6] D. Evans. Static detection of dynamic memory errors. In
PLDI, pages 44–53, May 21–24, 1996.

[7] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
PLDI, pages 234–245, 2002.

[8] R. Hastings and B. Joyce. Purify: A tool for detecting mem-
ory leaks and access errors in C and C++ programs. InWin-
ter 1992 USENIX Conference, pages 125–138, Jan. 1992.

[9] N. D. Jones and S. S. Muchnick. Flow analysis and op-
timization of Lisp-like structures. InProgram Flow Anal-
ysis: Theory and Applications, chapter 4, pages 102–131.
Prentice-Hall, Englewood Cliffs, N.J., 1981.

[10] G. C. Murphy, D. Notkin, and E. S.-C. Lan. An empirical
study of static call graph extractors. InICSE, pages 90–99,
Mar. 1996.

[11] J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. InISSTA, pages 232–242, July 2002.

[12] PREfix/Enterprise.www.intrinsa.com , 1999.
[13] G. Rothermel and M. J. Harrold. Empirical studies of a safe

regression test selection technique.IEEE TSE, 24(6):401–
419, June 1998.

[14] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3(3):121–189, 1995.

27


