
Scaling Up Automated Test Generation:
Automatically Generating Maintainable Regression

Unit Tests for Programs
Brian Robinson

ABB Corporate Research
brian.p.robinson@us.abb.com

Michael D. Ernst
University of Washington

mernst@cs.washington.edu

Jeff H. Perkins
MIT CSAIL

jhp@csail.mit.edu

Vinay Augustine
ABB Corporate Research
vinay.augustine@us.abb.com

Nuo Li
ABB Robotics

nuo.li@cn.abb.com

Abstract—This paper presents an automatic technique for
generating maintainable regression unit tests for programs. We
found previous test generation techniques inadequate for two
main reasons. First. they were designed for and evaluated upon
libraries rather than applications. Second, they were designed
to find bugs rather than to create maintainable regression test
suites: the test suites that they generated were brittle and
hard to understand. This paper presents a suite of techniques
that address these problems by enhancing an existing unit test
generation system. In experiments using an industrial system,
the generated tests achieved good coverage and mutation kill
score, were readable by the product’s developers, and required
few edits as the system under test evolved. While our evaluation
is in the context of one test generator, we are aware of many
research systems that suffer similar limitations, so our approach
and observations are more generally relevant.

I. INTRODUCTION

The benefits of unit and regression testing are widely
recognized. These tests reveal defects that would be difficult
and expensive to find and fix in later development phases, verify
that changes to the code do not break existing functionality,
and are integral to practices such as test-driven development
and continuous integration. A key obstacle to adopting unit
testing is the costs to develop and to maintain a unit test suite.

The cost to manually develop a regression unit test suite for
an existing codebase — most of which have no such tests — is
usually prohibitive. In addition, if the original developers are not
involved in creating the tests, the team creating the tests must
determine the correct behavior of the code on their own. And,
developers are often more interested in (and better rewarded
for) developing functionality than test code. An alternative to
creating an entire regression test suite is to incrementally create
unit tests for new code as it is developed. This fails to address
the bulk of the existing codebase, and regression defects often
make up a significant percentage of the defects detected in
a new release. A recent internal study of a product at ABB
found that 80% of post-release defects over the last three years
were either latent defects injected many releases previously, or
regression defects due to changes in the code. For this product,
creating unit tests for only new code would provide very little
perceived benefit.

The cost to maintain a regression unit test suite is also a
problem. As the software evolves over time, existing tests

must be updated to reflect changes in behavior or in the
product’s specification. There is a tradeoff between sensitivity
and brittleness: a test suite that detects many erroneous changes
is also likely to issue false positive failures for many desired
changes.1 A developer must update or remove each failing
test, and if updating is difficult or tedious, the temptation
to remove it becomes too great to resist. Ten years ago, a
product development team at ABB focused on creating a good
automated unit test suite. At substantial cost, they created a suite
that achieved ∼90% statement coverage. But, maintaining that
suite was too costly, due to brittle and difficult-to-understand
test cases, and it decayed over time. Today, it has ∼10%
statement coverage and is rarely run. This example shows that
the coverage of a test suite alone does not make it successful,
but rather the balance between coverage and maintainability.

The costs of developing and maintaining tests are not
perceived to justify the benefits of unit testing. As a result,
adequate adoption of unit testing by large industrial software
development organizations remains low [24]. Our goal in this
work is to tip the balance of the cost-benefit tradeoff, by
automatically generating maintainable regression tests for real
software programs.

Existing test generation techniques (such as random or con-
colic testing) have limitations that prevent them from fulfilling
either part of the goal (generate maintainable regression tests
or real software programs). For example, existing tools focus
on detecting crashes or exceptions. While this is helpful in
finding new defects, a maintainable regression suite needs test
oracles that determine if a new version of the software behaves
differently than the previous version. In addition, existing tools
have been evaluated on library code [20], [5], [22], [21], [19]
rather than real software programs. As we further describe
in Section III, libraries are easier for tools to handle and
do not contain many of the complexities that real software
programs have. For example, real software programs contain
persistent state and make use of external code, which prevent
existing concolic testing techniques from working. Finally, to
be industrially practical, a test generation technique should

1An example false positive failure is requiring a new version’s output
to be identical to the previous version’s output, even though the program’s
specification permits multiple behaviors, such as allowing iteration through a
set in an arbitrary order.

work without human interaction and without assuming a formal
specification or test oracle.

Since existing techniques do not meet our goal, we decided
to extend a test generation technique. We chose Randoop (an
implementation of feedback-directed random testing) as the
most practical available test generation tool. We did not use
symbolic/concolic techniques (such as Java PathFinder) because
of their limitations when applied to real systems [23]. Our ideas
would be equally applicable to any attempt to scale up such
techniques to generate regression tests for real programs.

This paper makes two main contributions.
• We present a suite of enhancements to the feedback-

directed random testing approach, and to the Randoop
tool. These enhancements address the challenge of creating
effective, maintainable regression tests for real software
programs. The enhancements are publicly available at
http://randoop.googlecode.com/. Each enhancement is con-
ceptually simple but is sometimes subtle in its application,
and their combination is novel.

• We evaluated our extensions in the context of a large,
mature industrial software system. The generated tests
have good code coverage and mutation score — better than
the manually-written tests that the development team runs
each week. Although the generated tests cover much of the
code and are sensitive to many faults (and even exposed
a previously unknown bug), they are easy for a developer
to maintain, requiring just 4 edits to accommodate 2 years
and 3 public versions of changes.

The rest of this paper is organized as follows. Section II
reviews the feedback-directed random test generation technique,
and Section III describes how we extended it. Section IV
explains our experimental methodology, and Section V presents
the results. Section VI compares our research to related work,
and Section VII states our conclusions and identifies future
work.

II. RANDOOP

Our work extends the Randoop tool, which automatically
generates unit tests. Randoop implements a technique called
feedback-directed random testing [20], [22].

In feedback-directed random test generation, a test is built
up iteratively. Each iteration randomly selects a method or
constructor to invoke, using previously computed values as
inputs. The technique uses feedback obtained from executing
the sequence as it is being constructed, in order to guide the
search toward sequences that yield new and legal object states.
The key idea of feedback-directed testing is to execute each test
as soon as it is generated, and to use information gathered from
that execution to bias the test generation process as it creates
further tests. The bias makes the test generator less likely to
generate illegal tests, and less likely to generate redundant
tests. In particular, inputs that create redundant or illegal states
are never extended, which has the effect of pruning the search
space.

An object-oriented unit test consists of a sequence of method
calls that set up state (such as creating and mutating objects),

public class A {
public A() {...}
public B m1(A a1) {...}

}

public class B {
public B(int i) {...}
public void m2(B b, A a) {...}

}

Pool of previously-constructed sequences
B b1 = new B(0); B b2 = new B(0);

A a1 = new A();
B b3 = a1.m1(a1);

3 possible extensions
B b1 = new B(0);
A a1 = new A();
B b3 = a1.m1(a1);
b1.m2(b1,a1);

A a1 = new A();
B b3 = a1.m1(a1);
B b1 = new B(0);
b1.m2(b1,a1);

B b1 = new B(0);
B b2 = new B(0);
b1.m2(b2,null);

Fig. 1. Example code, and 6 method call sequences that could be used in
the body of a unit test for the code. The bottom three sequences show three
possible extensions, if Randoop chooses to extend sequences in the pool so as
to make a sequence that ends with m2. Adapted from [22].

and at least one assertion about the result of the final call.
Randoop creates such sequences iteratively: it creates test cases
out of short sequences, then extends the sequences to create
larger test cases.

To create a new test case, Randoop needs to choose a method
to test, as well as arguments and assertions. See Figure 1 for
an illustration.
• To choose the method, Randoop uses random choice

among the public methods of the classes under test.
• To aid in choosing the arguments, Randoop maintains a

pool of all values that have been generated by any test case
so far, along with the sequence of calls that created the
object. Randoop initializes the pool with a set of values
such as null, -1, 0, 1, ’a’, true, etc. For each argument
to the chosen method, Randoop selects a random value,
of the proper type, from the pool.

• Randoop creates assertions that detect errors. Randoop can
optionally create a regression test that detects deviations
from previous behavior by adding assertions about the
final state of the object after the test completes.
To detect errors, Randoop uses the following built-in set
of assertions. No method should throw AssertionError.
No method should throw NullPointerException if none
of its arguments was null. Some methods, such as equals,
hashCode, and toString, should never throw an error.
For any object, o.equals(o) should return true. A user
may extend these built-in assertions with domain-specific
properties, but this is not required.

III. ENHANCEMENTS TO RANDOOP

Randoop was originally targeted toward detecting existing
bugs in data structure libraries libraries such as the JDK’s
java.util. Instead, we want to extend Randoop to generate
maintainable regression tests for complex industrial software
systems.

Data structure libraries tend to be easier for tools to handle
in several ways.

1) Most library methods are deterministic. Non-
deterministic results tend to fall into simple patterns,
such as the default return value of toString, which

prints a unique identifier similar to a hash code. There
is little or no global state; global state can give the
appearance of non-determinism.

2) Most utility library methods do not make changes to
the underlying system or the outside world (such as
databases). As a result, the methods can be called in
any order, and most classes do not have to be initialized
before they can be used.

3) Most utility library methods do not interact with the
external environment. By contrast, a program’s code may
query the user for information, exit the program, etc.
However, this behavior is not acceptable in an automated
regression test. Furthermore, libraries undergo few code
changes and even fewer behavior changes to existing
functionality. By contrast, the test suite of an evolving
program may need to be updated frequently during
development.

4) Because the library is written generically, simple argu-
ments can exercise all of its behavior, and that behavior
depends on only simple properties of the arguments,
such as equality and ordering. By contrast, a program
manipulates much more complex data, and correctness
properties may depend on part or all of that data.

5) A library is less likely to be in need of a regression test
suite. Libraries rarely change, and a library is likely
to already have some tests. Test generation is used
chiefly to find bugs (as opposed to creating regression
tests), possibly using a partial specification of permitted
behavior. Only failing tests are shown to the user, while
succeeding tests can be discarded without examination.
Readability, maintainability, and redundancy of tests
generated for a library are secondary concerns.

6) General-purpose libraries are less likely than programs
to have specific “magic constants” that must be used in
order to exercise certain behaviors.

The following six sections describe enhancements we made
to extend Randoop to to create maintainable regression tests for
real software programs. The first two changes are needed by
any technique to create robust, behavior-preserving test oracles.
The next two are changes needed by any technique to support
testing real software programs. The final two changes are
enhancements specific to Randoop that improve its generated
tests, no matter what context Randoop is used it. All of these
enhancements are publicly available and documented at http:
//randoop.googlecode.com/.

A. Remove Non-deterministic Observations

A method can return different results on different invocations.
This can happen because of nondeterminism (concurrency,
the current time, dependence on hash codes, the memory
management system, etc.), but is more often caused by
dependence on program state that is exposed by a different
ordering of calls. Randoop needs to ensure that its tests do not
depend on the results of (apparently) non-deterministic methods,
because such a test would produce many false positive failures.

A concrete example from our case study is a static variable
of type Vector Randoop calls Vector methods such as add(),
remove(), and size() on its value, and the order of such
calls affects their return values. This is not just a problem
in Randoop-generated tests; manually-written test suites also
have data dependences that make results change if tests are
run in a different order [16].

During test generation, Randoop executes each statement
in a test and records certain outcomes as assertions. These
assertions may fail when the test suit is run. As described in
Section II, Randoop discards possible method sequences as it
is running that lead to redundant object states, exceptions (also
discussed in Section IV-A), or other error conditions. These
sequences may have modified the global state in ways that
other generation-time observations depended upon.

Randoop previously addressed the problem of test outcome
nondeterminism using a very simplistic approach: it discarded
(did not place in the pool) String values that contained the
pattern typical of Object.toString(). This was sufficient for
certain libraries on which Randoop had been evaluated, but
not for real programs.

We developed a new approach. Now, after generating an
entire test suite, Randoop runs it before outputting it. If any test
fails, Randoop assumes the failing test is nondeterministic and
retains the test in the suite but disables each failing assertion.

Alternative approach: An alternative approach we considered
would remove any non-deterministic method call from the test
suite. This approach would yield a smaller test suite, since the
suite does not contain calls whose results are ignored. This
simple approach does not work, because removing a method
call in one test can cause a subsequent, putatively independent,
test to fail. This is because tests can interact through shared
variables: side effects in one test cause differences to the
behavior of subsequent tests. Even changing the order of tests
in a suite (or, equivalently, performing test case selection or
prioritization on the suite) can cause other tests to fail. For
example, if an array is smaller than it was on a previous test
execution, a test that previously succeeded could now throw
a index-out-of-bounds exception. In conclusion, (apparently)
non-deterministic behavior cannot be removed from a suite, as
its removal could easily lead to other changes in the global
state and further spuriously-failing tests.

B. Prevent Changes to the Underlying System

Application code may depend on and make changes to the
underlying system (e.g., add, delete, or modify files in the file
system). Putting aside for the moment the fact that this may
lead to nondeterministic behavior, automatically created unit
tests may perform unexpected or even catastrophic changes to
the computer system.

To prevent this problem, Randoop now uses a Java security
manager. A security manager can prevent certain operations,
and is useful in contexts beyond preventing security breaches.
In our case study, the security manager gives permissions
to specific properties and the socket used to connect to the
database.

A second, related change is that Randoop now provides
an option for its user to specify setup code that should be
performed at the beginning of testing or of running a test. This
was necessary in our case study, as the program connects to a
database and performs other initialization activities.

C. Modify Inappropriate Calls

Application code may interact with the user (such as creating
a dialog box) in a variety of different situations. In our case
study, which targeted the logic connected to a GUI, this was
often only to confirm a particular action. If such calls occur
during either test generation or test execution, the tests cannot
be run without manual intervention.

We added a feature to Randoop that allows a user to
specify a mapping from current method calls to a re-
placement call. For example, the javax.swing.JOptionPane

.showMessageDialog method, which usually presents a dialog
box, can be replaced with a call that simply prints out the
message and returns. The feature works via bytecode rewriting.
In the experiments, we used this feature to remove dialog
boxes that require a response. We also removed calls to
System.exit().

We found another compelling use for this feature. During
test maintenance, it can be used to understand regression test
errors that result from behavioral changes. A developer can
selectively (on a per-method basis) revert application behavior
back to the behavior in the previous software release, in order
to reproduce old behavior, cause a failing regression test to
succeed again, and thereby verify exactly what changes caused
a regression test failure.

For example, in our case study we discovered that, between
versions, the developers changed the behavior of a method so
that it created two columns in a database rather than one. This
simple change caused a relatively large number of failures in
the automatically-generated regression unit tests. We mapped
each of these calls to a wrapper routine that converted to the
old arguments and results. The complete code required was 11
lines long.

Once the regression tests have been verified on a new release
(including any possible changes to the new version due to errors
that were uncovered), a tester has two choices. The tester can
update the suite, or the tester can simply discard it and use
Randoop to build a new regression suite for the new version.
The wrapper routines are not a permanent fixture of the tests
but are only used when debugging failing tests on a newer
software version.

D. Observe Pure Methods

As described in Section II, Randoop tests that a result has
the expected value. For example:

assert result.equals(expected);

Using an existing equals method may be too strict (because
equals checks undesired fields or data, or even implements
reference equality) or too lenient (because equals skips
important information).

We modified Randoop to apply a set of user-defined observer
methods to the value and check their results. An observer
method is a method with no side effects. Thus, instead of
having a single assertion at the end of a generated test, there
may be many assertions at the end, one for each applicable
observer method. For example:

assert result.f1().equals(expected.f1());
assert result.f2().equals(expected.f2());
assert result.f3().equals(expected.f3());

We define an observer method as a pure nullary non-void
method; that is, it has no side effects, it takes no arguments
except the receiver, and it returns a value. For instance, a getter
method such as Point.getX() is an observer method. Randoop
takes as input a set of observer methods; a user could mark
these manually, or use an automated analysis to compute them.

Randoop utilizes observer methods in a second way: to
avoid making no-op method calls. Randoop conservatively
assumes that any method may side-effect any of its arguments.
Without this assumption, Randoop would never call a void

method! Another way of saying this is that Randoop treats
each method as having multiple outputs: its return value and
the final values of its non-primitive arguments. However, this
can lead to useless calls in the middle of a sequence, if the
call has no side effect. Randoop can use knowledge about
(lack of) side effects to ignore some of these possible outputs.
Randoop’s equality testing can often detect lack of side effects,
but our approach is more direct and efficient.

E. Filter Lexically Redundant Tests

Randoop builds larger tests out of smaller ones. This means
that every time Randoop adds a test, the new test lexically
subsumes at least one, and perhaps many, shorter tests. For
example, suppose that methods a() through d() perform side
effects. Randoop might output these four tests:

{ a(); }
{ a(); b(); }
{ a(); b(); c(); }
{ a(); b(); c(); d(); }

The first three tests are lexically redundant. As a heuristic,
we enhanced Randoop to remove them from the test suite that
it generates.

If Randoop is run with a time limit, then removing lexically
redundant tests creates smaller and easier-to-understand suites.
If Randoop is run with a size goal (number of tests to output),
then removing lexically redundant tests rather than outputting
them has three effects. Generation time increases slightly. The
test run time also increases marginally, since the tests tend to
be slightly larger on average (the smaller ones were removed).
Most importantly, test suite quality improves, because the
resulting suite has more diversity than it would have had
otherwise.

Removing lexically redundant tests is a heuristic, because
the removed tests are not necessarily semantically redundant.
In the example above, it is possible that a() has internal state,
and that a fault occurs only after calling it four times (also
see Section III-A). In this case, removing the first three tests

would reduce the fault detection capability of the overall test
suite. We have never observed this effect in practice.

Even though the redundant tests are removed from the
generated test suite, they are kept in the pool, to permit creating,
for example, { a(); b(); e(); }.

We implemented this feature as a response to ABB develop-
ers’ objections to the original Randoop-generated tests. When
industrial developers examined the tests, they identified, and
objected to, lexical redundancies in the tests. They thought
the redundancies might negatively impact maintainability, by
making some tests needlessly longer and by increasing the
number of redundant test failures when the software evolves.

F. Use Source Code Literals as Arguments

A constant that appears in the source program may be
relevant to its behavior. For example, a program may have
different behavior when a data structure is larger vs. smaller
than a given threshold. A parser may expect a string to start
with a given sequence of characters; the parser may not exhibit
interesting behavior for malformed inputs. Test code may define
a special user and password, without which certain functionality
cannot be accessed. An integer may be used as an enumeration
to control behavior.

Randoop previously used only a small set of constant values:
for numbers, -1, 0, 1, 10, and 100; for characters, ’#’, ’ ’, ’4’,
and ’a’; and for strings, "" and "hi!". This may be adequate to
exercise much of a utility library, but is inadequate to exercise
a real program.

We enhanced Randoop to add, to the initial pool, any
constants that appear in the source code under test. Suppose
a constant appears in class package.Class. As a user option,
Randoop can use the constant only when generating tests
within class package.Class, for any tests in package package,
or anywhere. Our experiments use the package choice. Using
the source code literals indiscriminately was not effective,
because a realistic program has many literals, and the pool
would be so large that the likelihood of choosing the right one
for any particular method would be vanishingly small. Using
the class granularity was suboptimal as well: we saw cases
in which a literal in one class needed to be supplied as as
argument to a method in a different class (that might eventually
call the first one).

IV. STUDY DESIGN

We conducted a study with two main goals.
1. Determine the impact of our Randoop enhancements

(Section III) on the quality of the generated tests. To determine
the improvement due to each added feature, we generated
test suites with and without the added features enabled. As a
measure of quality, we used statement coverage and mutation
kill score (see Section IV-D). These two metrics are believed
to be correlated with defect detection.

2. Determine how maintainable the Randoop-generated
regression test suite is. To measure this, we used Randoop to
create a test suite for one version of a system, ran the test
suite on a subsequent version of the system, and determined

how much effort was required to return the suite to the passing
state.

When generating tests, we used all of Randoop’s defaults,
including its maximum of 100 seconds of test generation time
per class.

Sections IV-A and IV-B expand on our methodology for
assessing quality and maintainability, respectively.

A. Measuring Quality

We refined the quality goal into these research questions:
1) Can Randoop create an effective regression suite for a

non-library program?
2) Does using string literals from the program improve the

effectiveness of the generated tests?
3) Does removing lexically redundant tests improve the

effectiveness of the generated test suites?
4) Does using observer methods improve the effectiveness

of the tests generated?
5) Which has greater impact on test effectiveness, larger

test suites or longer test cases?
The results for these research questions are shown in Sec-
tion V-A.

We evaluated the first research question by measuring the
quality of Randoop-generated tests and by comparing them
to good-quality human-generated tests. We evaluated the next
three research questions by running Randoop to generate two
test suites, one with and one without the given feature, and
comparing the suites. We used a test suite size of 2000 tests
per class — beyond this size, additional tests have negligible
effect. We evaluated the fifth research question by generating
and comparing test suites of different sizes.

We evaluated each pair of suites based on their statement
coverage and mutation kill score. (We also computed branch
coverage, but the results were similar, so this paper omits those
measurements for brevity.) We computed statement coverage
for all classes, and computed mutation scores for 72 classes
(see Section IV-D for justification).

It would be better to directly measure defect detection:
the number of previously-unknown errors that each test suite
reveals. This is infeasible to compute for most real software
systems: the lack of a formal specification makes it difficult
to know whether a given test execution exposes a failure. For
example, most exceptions thrown by randomly-generated tests
are valid behavior caused by illegal inputs. To avoid a flood of
false positives, we ran Randoop in a mode where it ignored any
test that throws an exception. Randoop thus created regression
tests that ensured the software’s non-exceptional behavior did
not change.

B. Measuring Maintainability

We refined the maintainability goal into these research
questions:

1) How much editing is required to maintain the generated
tests through a major version change?

2) Does removing lexically redundant tests improve the
maintainability of the generated test suites?

3) What is developers’ opinion of the readability and
maintainability of the generated tests?

The results for these research questions are shown in Section
V-B.

We evaluated test maintainability by using the generated
unit test suite as a regression test suite: that is, we ran it on a
later version of the software. Any failures on this later version
are due to a behavioral change in the software — either a
regression defect or an intended change. A test failure due
to intended behavioral changes is seen as a false positive by
developers. There is a tradeoff between the sensitivity of a
test suite and its brittleness. Ideally, a test suite should detect
many defects, but should issue few false positives when the
code changes over time. A suite that misses too many defects
is useless for testing, and a suite that issues too many hard-to-
interpret false positives will be too hard to maintain and will
be abandoned by developers.

Similar to many other test generation strategies, Randoop
has many parameters that affect the test suites that it generates.
We measured the effect of three parameters that we believed,
based on our previous experience, would be important: test
suite size, test case size, and test suite run time. In addition to
a quantitative analysis of test suite maintenance, we asked the
developers to evaluate the generated test suite qualitatively, as
the acceptance of the test suite by the development teams is
critical.

C. Industrial System Studied

Our experiments use a subject program that we call Rata.
Rata is a mature real-time monitoring and control product
developed at ABB. Rata contains two parts of approximately
equal size. The control algorithms and connectivity components
in the system are written in C. The business logic, database
connectivity, and UI are written in Java, and consist of 652
total classes. Of these 652 classes, only 568 are testable, as 41
classes are interfaces and 43 are GUI components. The 568
testable classes are the focus of this study and contain 127k
lines of code.

Rata has above-average quality when compared to other ABB
products, with regards to field defects. The product does not
currently have a unit-level regression test suite. Release testing
currently finds the majority of the defects. The development
team would like to have a unit test suite, but there is no business
case for manually writing one. The Rata development team
does have a black-box regression suite they run manually each
week. We call this the “manual suite”.

D. Mutation Analysis

The mutation kill score is computed by mutation analysis.
Mutation analysis constructs many variants of a program, each
of which differs from the original in some small respect, such
as by replacing one instance of “+” by “-”. The variants are
called “mutants”, and the code changes are called “mutations”.
Given a set of mutants, a test suite’s mutation score, or kill
score, is the fraction of mutants that are detected by the test
suite. A mutation score is computed by the following equation:

killed mutants / # total mutants. A killed mutant is a mutation
that is detected by a test in the suite. The main purpose of
mutation is comparing two test suites: the suite with the larger
score is better.

Creating mutants for all 568 classes of Rata and evaluating
all of the generated test suites against them would be computa-
tionally infeasible. Therefore, we asked the Rata developers to
identify the package they see as the most critical. We performed
mutation analysis on only this package. (Randoop works on
all of Rata, and our other results use all 568 testable classes.)

We created mutants using MuJava [13] version 3 and the
MuClipse plugin [26] for the Eclipse IDE. However, MuJava
does not work on classes that contain GUI components. It
created mutants for 72 of the 109 classes in the package.
Therefore, our mutation results in this paper are for those 72
classes.

We now describe our configuration of MuJava. For con-
sistency with other research papers, we used only MuJava’s
method (code) level mutation operators, not its class level
mutation operators. Furthermore, we reduced the number of
equivalent mutants by disabling MuJava’s AOIS mutation.

MuJava created 10,026 mutants from the 72 mutated classes.
We evaluated these mutants against four test suites from
72 classes, resulting in over 2,887,488,000 test executions.
Executing all of these tests on all of the mutants took a quad
core server, executing continuously, over one month of calendar
time.

E. Experimental Setup

To evaluate test suite size, we ran Randoop to generate
three different test suites containing 500, 1000, and 2000 tests
per class. We ran Randoop with an arbitrary but consistent
random seed, so for a given class a smaller suite is a subset
of a larger suite. Each suite includes some non-consistent tests
(non-deterministic observations) that are disabled, as discussed
in Section III-A. Thus, the number of tests that are run is about
1% smaller than the number of tests in the suite.

In these suites, test case size is conflated with test suite size:
larger suites contain, on average, larger tests. The reason is
that to create a new test, Randoop extends an existing test.
Therefore, Randoop tends to add larger and larger test cases
over time. To control for this factor, we created an additional
test suite of size 500, by choosing the last 500 tests that were
added to the 2000-test suite. It contains the same number of
tests as the 500-test suite, but each test is larger on average.
We call this suite the “last 500” suite.

F. Threats to Validity

Internal validity involves influences that can affect the results
without the researcher’s knowledge. Because of computational
cost, the mutation analysis was only performed on the package
selected by the Rata developers. Other packages might provide
different results.

Threats to external validity are conditions that limit the
generalization of the results. The primary threat here involves
the use of only one industry program, which will not be

50%

60%

70%

80%

90%

100%
ve
ra
ge
 b
y
Cl
as
s

500

1000

2000

Last 500

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 101 201 301 401 501

St
at
em

en
t C

ov
er
ag
e
by

 C
la
ss

Classes

500

1000

2000

Last 500

Manual

Fig. 2. Coverage is nearly the same for each of the generated test suites, and
is much better than the manual suite, which covers only a few classes.

60%

70%

80%

90%

100%

y
Cl
as
s

500

1000

2000

last 500

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 26 51

M
ut
at
io
n
Ki
ll
Sc
or
e
by

 C
la
ss

Classes

500

1000

2000

last 500

Manual

Fig. 3. Mutation coverage is similar for the generated test suites, and is
much better than for the manual suite.

representative of all industrial programs. To address this
threat, we included JHotDraw, an open source program, in the
maintainability analysis. Future work will be needed to verify
that the technique provides similar results on other industrial
software systems.

Threats to construct validity arise when measurement in-
struments do not properly capture what they are intended to
capture. We addressed this threat in a few ways. First, the end
to end process of generating the tests, executing them, and
calculating the results was automated, providing a consistent
process for each of the dependent variables in the study. Second,
we ran randomly-selected tests outside the automated process
to verify the results were correct and consistent. Finally, some
values and measures between separate test runs are not affected
by the dependent variables, and we checked them to verify
consistency between test runs.

V. EXPERIMENTAL RESULTS

This section presents the results of the studies described in
Section IV.

A. Test Suite Quality

1) Randoop for Non-library Programs: To address the
first research question, we present the results of the best
test suite that our enhanced Randoop tool generated. This
suite was generated by Randoop with string literals and
removing lexically redundant tests enabled, and observer
functions disabled. The best test suite size, when considering

test generation time, execution time, mutation scores, statement
coverage, and maintainability, is the last 500 tests suite. This
suite retains over 99% of the coverage and mutation scores
of the full 2000 test suite, while executing more quickly and
reporting fewer redundant errors when valid behavioral changes
are made to the software over time.

This suite averages 52% statement coverage and 62%
mutation kill score. Figures 2 and 3 show the coverage and
mutation data at the class level, sorted from highest to lowest.
These results answer the first research question by showing
that Randoop can provide the Rata development team an
automatically generated regression test suite that covers more
than half the code and is able to detect a large number of
potential defects.

The remaining subsections present the answers for the other
research questions listed in Section IV-A. These answers also
provide the rationale for the Randoop settings used in this
section.

2) Effectiveness of String Literals: We calculated coverage
and mutation scores for test suites generated with and without
string literals support. For the vast majority of the classes in
Rata, the impact of string literals on statement coverage was
quite small. There are only six classes where the statement
coverage was improved by more than 20%.

By contrast, string literals have a large impact on mutation
kill scores. Across all of the classes of Rata, the mutation kill
scores are approximately 10% better. Six classes had mutation
scores go from 0% to 100% and five other classes improved
by over 50%. On the other hand, two classes had a loss of
around 10% for their mutation kill scores. These two classes
only check strings for null, which Randoop now uses less
frequently due to its larger pool of string values.

3) Effectiveness of Removing Lexically Redundant Tests:
We created a test suite with Randoop configured to remove
lexically redundant sequences before outputting a suite of
the specified size, and compared it to a second set of tests
created without removing redundant sequences. The difference
in statement coverage between the two suites is quite small;
only three classes had any difference. The mutation score, on
the other hand, increases slightly for eight classes, while the
remaining classes have no difference. These results make sense,
as removing lexically redundant tests is supposed to reduce
test suite size without materially affecting test effectiveness.

4) Effectiveness of Observers: To determine the effective-
ness of specifying observer functions to Randoop, we randomly
selected 10 classes from the mutated package, and manually
determined which of their methods were observers. (For a
description of observer methods, see Section III-D.) We then
used Randoop to generate test suites of all four suite sizes,
both with and without the observers specified.

Specifying observers to Randoop has very little impact on
statement coverage, which is very high to start with. This makes
sense, as the observers do not heavily impact test sequences,
only the values Randoop uses for the test oracle. Observers
have a larger impact on mutation score at smaller test suite
sizes. The results show that the 500 test suite has a noticeable

difference in mutation score, while the 1000 test suite shows a
smaller difference, and finally the 2000 and last 500 test suites
show a negligible difference. These graphs are omitted due to
space limitations.

Specifying observers to Randoop for small test suites can
triple the number of assert statements each test contains. These
additional asserts at the small test suite level are responsible
for the increase in mutation score when observers are used.

In a larger suite, Randoop is more likely to have called all
observers via its ordinary selection of random methods. There
is little benefit from the explicit observer calls that Randoop
adds when the user specifies observer methods.

5) Effectiveness of Test Suite Size and Test Case Length:
This study involved evaluating the four different-sized Randoop
test suites, as well as the manually written test suite, on Rata
and computing the statement coverage and mutation scores.
The results are shown in Figures 2 and 3.

Test suite size only slightly impacts statement coverage. For
a given class, the average difference in statement coverage
is only 3%. The last 500 tests provide the same statement
coverage as the entire 2000 test suite. This shows that test case
length is more important for statement coverage than test suite
size.

The mutation kill scores are influenced more by test suite
size. The scores increase the most between 500 and 1000 tests,
and then the improvement decreases sharply for the 2000 test
suite. For the majority of the classes, the last 500 suite has
the same mutation score as the 2000 test suite, showing that
test case length is also more important than test suite size for
mutation kill score.

The generated tests perform significantly better than the
manually-written tests for both coverage and mutation score.
The Randoop test suites also execute significantly faster than
the manual suite, since the manual suite is manually executed
by clicking elements in the UI. Overall, the Randoop test
suite will be a much better regression test suite for the Rata
developers.

B. Test Suite Maintenance

In order to determine how much effort is required to maintain
the generated test suites, we conducted experiments on Rata
and on JHotDraw, an open source program commonly used
in empirical studies in software engineering. We evaluated
the maintainability of these tests in a few ways. First, we
determined the effort required to maintain a Randoop test
suite on both Rata and JHotDraw (Section V-B1). Next, we
determined the impact that removing lexically redundant tests
has on maintainability (Section V-B2) in Rata. Finally, we
asked the Rata developers to examine the tests by hand to offer
a qualitative analysis (Section V-B3).

1) Maintainability of the Regression Suite: For this evalua-
tion, we ran the best Randoop regression suite (described in
Section V-A1) on Rata version X and version X +3. Using the
same parameters, we created a test suite for JHotDraw version
5.1 and ran it against version 5.2 and 5.3. Since the test suite is
generated from a base version of the project, each subsequent

Test % tests Behavior False
Program Tests failures failed Defects changes positives
Rata X+3 184619 6950 3.8% 1 2 0
JHotDraw 5.2 35966 467 1.3% 0 3 0
JHotDraw 5.3 40461 14564 36% 0 45 0

Fig. 4. Maintenance analysis. We ran Randoop on Rata version X and
JHotDraw 5.1 to generate tests. The table reports the number of root causes
for the test failures when running those tests on subsequent versions. In Rata
version X +3 and in JHotDraw 5.2, there were only 3 root causes for all the
failures.

version represents a new set of changes that need regression
testing. For Rata, these two releases represent two years of
development effort (and two intermediate releases). The Rata
files we tested suffered 8.9% code churn: that is, 8.9% of the
source lines were modified between the two releases. These
changes included both bug fixes and new functionality. For
JHotDraw, each version was released approximately one year
apart. The code churn from 5.1 to 5.2 was 15%, and from 5.1
to 5.3 was 54%.

There are three reasons a regression test may fail on a
later version. (1) A regression defect was introduced during
development. In this case, the developer must change the source
code to fix the bug. (2) A desired behavior change causes the
software to conform to a different specification, but the tests
check for the old specification. In this case, the developer must
change the test case to accommodate the new behavior. (3) The
software is changed in such a way that it still satisfies the old
specification, but the test was too strict and checked for the old
implementation-specific behavior. This is a false positive, and
the developer must generalize the test case to accommodate all
permitted behaviors. Developers will resent any work required
for case #3, and the work for case #2 should be kept to a
minimum. The maintenance burden of a large number of failed
tests caused by valid changes may lead developers to stop
updating them, and they may abandon the regression suite over
time.

Figure 4 shows the results of running the regression test
suites on the later versions of the two programs. For Rata, our
best Randoop test suite had 3.8% of tests failed. We believe
this is a small enough number not to discourage a developer,
especially because just a few edits can correct all the test
failures. There are just three underlying causes for the failures
found in version X + 3. Furthermore, in practice regression
tests would be run at least daily, not once every two years,
so defects and behavioral changes would be noticed quickly
when their impact is small and the code changes are fresh in
the developers’ minds.

Once they had investigated the failures, developers would
regenerate the test suite from the new version of the code. This
causes tests to be created for new functionality, while also
automatically fixing tests that failed due to changed behavior.

For JHotDraw, version 5.2 had 1.3% failures, which is close
to the results for Rata. Version 5.3 was different. In this case,
there were 36% failures. JHotDraw 5.3 was a major change: its
development site notes that projects created in previous versions
may not work in the new version, and that they brought together

% tests Behavior False
Failures failed Defects changes positives

Redundant sequences 18000 4.1% 1 2 0
No redundant sequences 17113 3.9% 1 2 0

Fig. 5. The effect of lexically redundant tests on regression test failures.

three different development versions that forked off of 5.2. The
vast majority of the failures were due to removed API functions
that are easy to debug. Even with this extreme case, 64% of
the tests still succeeded.

2) Maintainability of Removing Redundant Tests: For this
evaluation, we ran Randoop both with and without elimination
of redundant tests, as described in Section V-A3. We ran the
resulting test suites on Rata version X and version X +3. The
results are shown in Figure 5. When redundant tests are not
eliminated, they are responsible for failure of 0.2% of the tests.

3) Human Assessment of Maintainability: We showed the
Randoop-generated tests (from the 2000-test suite, without
use of observers, and with lexically redundant tests) to Rata
developers. While these developers are familiar with JUnit
and unit testing and would like to have a unit test suite, as
described in Section IV-C, there is no business case for writing
one by hand.

Overall, the developers found the generated tests to be un-
derstandable, with acceptable style, code format, and coverage.
The developers were surprised by the size of each test in the
suite: the tests were longer than they expected. The developers
may have expected a unit test to consist of a few lines of
setup code followed by an assertion or two. While tutorial
examples often look like this, much larger tests are required to
test complicated behavior. Once they understood the behavior
of the tests, the developers found the test length acceptable.

When we showed the developers the overall results from
our experiments, they became very excited. They are now in
the process of incorporating Randoop and its tests into their
development process.

VI. RELATED WORK

Our work builds on the feedback-directed random testing
technique, and on the Randoop tool described in Section II.
Feedback-directed random testing was first proposed and
evaluated in the context of the Eclat [20] tool, which was
itself inspired by the “operational abstraction” approach [12],
[31] to measuring test quality. Eclat’s main goal is to classify
test results, in the absence of an oracle or specification, so
that a human can be directed to examine the most promising
ones. Eclat prunes sequences that appear to be illegal because
they make the program behave differently than a set of correct
training runs. Eclat’s test generation differs from Randoop in
that Eclat makes no assumption about a specification or oracle,
but Randoop builds in known tests (contract checking), such
as for the behavior of the equals() method. Randoop also
has more heuristics for directing the random search, and has
been ported to C# and extensively evaluated [22], [21], finding
important errors in a variety of libraries. Our work differs in
being focused on regression testing, maintainability, and real

programs, domains for which Randoop was not previously
suited.

Automatic test input generation is an active research area
with a rich literature. We focus on input generation techniques
that create method sequences.

Random testing Random testing [10] has been used to find
errors in many applications; a partial list includes Unix utili-
ties [15], Windows GUI applications [7], Haskell programs [1],
and Java programs [2], [20], [18].

JCrasher [2] creates test inputs by using a “parameter graph”
to find method calls whose return values can serve as input
parameters. Randoop does not explicitly create a parameter
graph; instead it uses a component set of previously-created
sequences to find input parameters. Randoop creates fewer
redundant and illegal inputs because it discards component
sequences that create redundant objects or throw exceptions.
JCrasher creates every input from scratch and does not use
execution feedback, so in practice it creates many invalid tests
that throw an exception because of illegal input rather than
because of a bug in the code under test.

Systematic testing Many techniques have been proposed
to systematically explore method sequences [29], [3], [30],
[9], [25], [4], [28]. Bounded exhaustive generation has been
implemented in tools like Rostra [29] and JPF [28]. JPF and
Rostra share the use of state matching on objects that are
receivers of a method call, and prune sequences that create a
redundant receiver. Randoop performs state matching on values
other than the receiver and introduces permits a sequence
to create some redundant and some nonredundant objects.
Only sequences that create nothing but redundant objects
are discarded. Rostra and JPF do not favor repetition or use
contracts during generation to prune illegal sequences or create
oracles. Randoop is scalable, but these tools are not: Rostra
was evaluated on a set of 11 small programs (34–1000 LOC),
and JPF’s sequence generation techniques were evaluated on
4 data structures; neither Rostra nor JPF found errors in the
tested programs.

An alternative to bounded exhaustive exploration is symbolic
execution, implemented in tools like Symstra [30], XRT [9],
JPF [27], DART [8], [25], and jCUTE [25]. Symbolic execution
executes method sequences with symbolic input parameters,
builds path constraints on the parameters, and solves the
constraints to create actual test inputs with concrete parameters.
Some of these, like DART and jCUTE, even integrate random
input generation into their symbolic execution approach, an
idea investigated earlier by Ferguson and Korel [6]. Randoop is
closer to the other side of the random-systematic spectrum: it
is primarily a random input generator, but uses techniques that
impose some systematization in the search to make it more
effective.

Check-n-Crash [3] creates abstract constraints over inputs
that cause exceptional behavior, and uses a constraint solver to
derive concrete test inputs that exhibit the behavior. DSD [4]
augments Check-n-Crash with a dynamic analysis to filter out
illegal input parameters.

Comparing random and systematic Theoretical studies have
shown that random testing is as effective as more systematic
techniques such as partition testing [11], [17]. However, the
literature contains relatively few empirical comparisons of
random testing and systematic testing. Ferguson and Korel
compared basic block coverage achieved by inputs generated
using their chaining technique versus randomly generated
inputs [6]. Marinov et al. [14] compared mutant killing rate
achieved by a set of exhaustively-generated test inputs with a
randomly-selected subset of inputs. Visser et al. [28] compared
basic block and a form of predicate coverage achieved by model
checking, symbolic execution, and random testing. In all three
studies, undirected random testing achieved less coverage or
killed fewer mutants than the systematic techniques. However,
undirected random testing is a strawman; Randoop has been
found to outperforms systematic techniques.

VII. CONCLUSION

We have presented an effective, fully automatic technique
for creating a sensitive yet maintainable regression test suite. It
is applicable to large, real-world software systems. It builds on
the previously-known technique of feedback-directed random
testing, and extends the Randoop implementation. It extends
both the technique and the implementation to overcome a
variety of limitations that we encountered while using Randoop.
Our implementation is publicly available, under a permissive
license, at http://randoop.googlecode.com/. Experiments with
an industrial software system demonstrated that Randoop now
creates test suites that have high code coverage and mutation
kill score, that are comprehensible to developers, and that are
easy to maintain even when years of changes are applied to the
system under test. We also investigated the effects of various
choices for Randoop’s parameters, including test suite size, use
of observer methods, and elimination of lexically redundant
tests. We believe that the result is highly encouraging for the
continued use of random testing, and feedback-directed random
testing in particular, as one tool in the tester’s toolbox.

REFERENCES

[1] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. In ICFP, pages 268–279, Sep. 2000.

[2] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester
for Java. Software: Practice and Experience, 34(11):1025–1050, Sep.
2004.

[3] C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combining static
checking and testing. In ICSE, pages 422–431, May 2005.

[4] C. Csallner and Y. Smaragdakis. DSD-Crasher: A hybrid analysis tool
for bug finding. In ISSTA, pages 245–254, July 2006.

[5] M. d’Amorim, C. Pacheco, D. Marinov, T. Xie, and M. D. Ernst.
An empirical comparison of automated generation and classification
techniques for object-oriented unit testing. In ASE, pages 59–68, Sep.
2006.

[6] R. Ferguson and B. Korel. The chaining approach for software test data
generation. ACM TOSEM, 5(1):63–86, Jan. 1996.

[7] J. E. Forrester and B. P. Miller. An empirical study of the robustness of
Windows NT applications using random testing. In USENIX Windows,
pages 59–68, Aug. 2000.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI, June 2005.

[9] W. Grieskamp, N. Tillmann, C. Campbell, W. Schulte, and M. Veanes.
Action machines – towards a framework for model composition,
exploration and conformance testing based on symbolic computation. In
QSIC, Sep. 2005.

[10] D. Hamlet. Random testing. In Encyclopedia of Software Engineering.
John Wiley and Sons, 1994.

[11] D. Hamlet and R. Taylor. Partition testing does not inspire confidence.
IEEE TSE, 16(12):1402–1411, Dec. 1990.

[12] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites via
operational abstraction. In ICSE, pages 60–71, May 2003.

[13] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: An automated class
mutation system. STVR, 15(2):97–133, June 2005.

[14] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard. An
evaluation of exhaustive testing for data structures. Technical Report
MIT/LCS/TR-921, MIT Lab for Computer Science, Sep. 2003.

[15] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability
of UNIX utilities. CACM, 33(12):32–44, Dec. 1990.

[16] K. Muşlu, B. Soran, and J. Wuttke. Finding bugs by isolating unit tests.
In ESEC/FSE, New Ideas Track, pages 496–499, Sep. 2011.

[17] S. Ntafos. On random and partition testing. In ISSTA, pages 42–48, Mar.
1998.

[18] C. Oriat. Jartege: A tool for random generation of unit tests for Java
classes. In QoSA/SOQUA, pages 242–256, Sep. 2005.

[19] C. Pacheco. Directed Random Testing. PhD thesis, MIT Dept. of EECS,
June 2009.

[20] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and
classification of test inputs. In ECOOP, pages 504–527, July 2005.

[21] C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors in .NET with
feedback-directed random testing. In ISSTA, pages 87–96, July 2008.

[22] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In ICSE, pages 75–84, May 2007.

[23] X. Qu and B. Robinson. A case study of concolic testing tools and their
limitations. In ESEM, Sep. 2011.

[24] P. Runeson. A survey of unit testing practices. IEEE Softw., 23(4):22–29,
July 2006.

[25] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools. In CAV, pages 419–423, Aug. 2006.

[26] B. H. Smith and L. Williams. An empirical evaluation of the MuJava
mutation operators. In TAICPART-MUTATION 2007, pages 193–202,
Sep. 2007.

[27] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. ASE, 10(2):203–232, 2003.

[28] W. Visser, C. S. Păsăreanu, and R. Pelánek. Test input generation for
Java containers using state matching. In ISSTA, pages 37–48, July 2006.

[29] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting
redundant object-oriented unit tests. In ASE, pages 196–205, Sep. 2004.

[30] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework
for generating object-oriented unit tests using symbolic execution. In
TACAS, pages 365–381, Apr. 2005.

[31] T. Xie and D. Notkin. Tool-assisted unit test generation and selection
based on operational abstractions. ASE, 13(3):345–371, July 2006.

