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In the long run, programs should be written from the start with verification in mind. Programs written
in such a way are likely to be much easier to verify. They will avoid hard-to-verify features, may have
better designs, will be accompanied by full formal specifications, and may be annotated with verification
information. However, even if programs should be written this way, not all of them will. In the short run, it
is crucial to verify the legacy programs that make up our existing computing infrastructure, and to provide
tools that assist programmers in performing verification tasks and—equally importantly— in shifting their
mindset to one of program verification. I propose approaches to verification that may assist in reaching these
goals.

The key idea underlying the approaches is specification inference (Section 1). This is a machine learning
technique that produces, from an existing program, a (likely) specification of that program. Specifications
are very frequently missing from real-world programs, but are required for verification. The inferred speci-
fication can serve as a goal for verification. I discuss three different approaches that can use such inferred
specifications. One uses a heavyweight proof assistant (Section 2), one uses an automated theorem prover
(Section 3, and one requires no user interaction but provides no guarantee (Section 4).

1 Inference of likely specifications

The verification techniques described in Sections 2–4 build upon ongoing work for obtaining an operational
abstraction — a formal description of properties that held on a series of program runs and may be expected
to hold on future runs. The task of generating an operational abstraction is also known as dynamic detection
of likely invariants, or dynamic invariant detection.

Dynamic invariant detection is an important and practical problem. Operational abstractions have been
used in verifying safety properties [VH98, NE02b, NE02c], automating theorem-proving [NE02a, NEG+04],
identifying refactoring opportunities [KEGN01], predicate abstraction [DDLE02, DLE03], generating test
cases [XN03a, XN03b, Gup03, GH03], selecting and prioritizing test cases [HME03], explaining test fail-
ures [GV03], predicting incompatibilities in component upgrades [ME03, ME04a], error detection [RKS02,
HL02, PRKR03, MP04, BE04], error isolation [XN02, LAZJ03], and choosing modalities [LE04], among
other tasks. Dynamic invariant detection has been independently implemented by several research groups,
and related tools that also produce formal descriptions of run-time behavior have seen wide use.

Dynamic detection of likely invariants [ECGN01] discovers likely invariants from program executions by
instrumenting the target program (in source or binary form) to trace the variables of interest, running the
instrumented program over a set of test cases, and postulating and checking invariants over values that the
program computes. The essential idea is to use a generate-and-check algorithm to test a set of possible
invariants against the observed values of the instrumented variables. (Each set of observed values at a
program point is called a “sample”.) The invariant detector reports those properties that are tested to a
sufficient degree without falsification. The output includes properties such as “at entry to procedure foo,
myList is sorted”, “at exit from procedure bar, return ≥ myVar” (where return stands for the return value),
and “for all Link objects, this.next.prev = this”. As with other dynamic approaches such as profiling, the
accuracy of the results depends in part on the quality and completeness of the test cases. Even modest test
suites produce good results in practice [NE02c, NE02b], and techniques exist for creating good test suites for
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invariant detection [HME03, GH03, XN03b]. In the remainder of this paper, for brevity we use “invariant”
to mean “likely invariant”, unless otherwise noted.

We have built an implementation named Daikon. The Daikon dynamic invariant detector is publicly
available from http://pag.csail.mit.edu/daikon. Daikon operates on C, C++, Java, and Perl code, and
on various other data formats. It produces output in a variety of outputs, including ones appropriate
for those programming languages and for theorem provers such as LP [GG89], Isabelle [NPW02], and
ESC/Java [FLL+02] (via its integration with JML [BCC+05]). It reports properties over both variables
from the source program and also expressions composed of those variables. Its grammar of properties is
relatively rich, permitting their use in a variety of realistic verification scenarios; but the grammar is also
limited by the performance of the machine learning technique. Users can easily add new properties in order
to make the grammar richer or to customize it for a particular application domain.

Implementing dynamic invariant detection efficiently is challenging, because of the great number of
potential properties to check. We have recently developed new incremental algorithms that permit dynamic
invariant detection to run over much larger data sets, and to use a much larger grammar, than previously
possible [PE04]. Future work on dynamic invariant detection will continue to focus on performance.

2 Guiding human proofs

We propose to use execution to assist theorem-proving. Execution-based techniques such as testing can
increase confidence in an implementation, provide intuition about behavior, and detect simple errors quickly.
They cannot by themselves demonstrate correctness. However, they can aid theorem provers by suggesting
necessary lemmas and providing tactics to structure proofs.

Theorem provers are powerful tools for ensuring that purported proofs are correct, that is, that proofs
adhere to the rules of logic. The main hindrance to using theorem provers has been the amount of human
input they require. General-purpose theorem provers for sufficiently powerful logics have acted less as
automated verification tools than as interactive proof systems or proof assistants. Humans must provide
them with two primary types of input: lemmas and tactics. Lemmas provide facts about the programs being
verified, which are often necessary for correctness proofs. Tactics guide the prover in making choices during
a proof, such as which lemmas to apply or whether to reason by cases or by induction.

The focus of much previous work on making provers easier to use has been on analyzing syntactic
structures in axioms and conjectures in order to generate potentially useful lemmas and tactics. When these
lemmas and tactics do not suffice, humans must provide additional input based on their understanding of the
semantic content of the axioms and conjectures. Often this understanding is faulty or incomplete. The focus
of the work described here is on making it easier to use theorem provers for verifying distributed algorithms
by reducing the need for this kind of human input. To this end, we use a dynamic analysis of the results of
executing a program, in addition to a static analysis of the program’s text and of its test suite, to increase
human insight, to discover semantic content in the program’s behavior, and to generate potentially useful
lemmas and tactics for correctness proofs.

This is a new use for execution, which has been a traditional part of algorithm and system development,
but does not yet play a direct part in formal verification. Because execution requires little human effort,
it has traditionally served as a powerful prelude to formal verification, a task that requires much greater
human effort. When used for testing, execution can reveal departures from desired behavior that can be
corrected before attempting to prove code correct. Execution can serve in additional ways as a prelude to
formal verification. Tools for dynamic program analysis can extract descriptions of program behavior from
executions, and programmers can match the extracted descriptions against their expectations. Unlike the
traditional use of execution to test behavior, this use can reveal unexpected behaviors, not just departures
from anticipated behaviors. Furthermore, simulated execution can be used to test specifications (expressed,
for example, as abstract programs) in the same way that actual execution tests programs, even in the absence
of a complete implementation.

These uses of execution to test programs and specifications occur before verification and are largely
disjoint from it. We propose to integrate information obtained from execution into the process of formal
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verification.
First, we use descriptions of program behavior, extracted by dynamic analysis from executions, as lemmas

in proofs. Unlike human proofs, which are peppered with phrases like “it is obvious that,” machine-checked
proofs often require many explicit lemmas. Some lemmas are tedious and obvious, some are not. In either
case, using dynamic program analysis to provide these lemmas saves human effort.

Second, information used to construct test suites can also play a role in verification. During testing,
such information ensures adequate test coverage by ensuring that all interesting cases—normal, abnormal,
or borderline, as determined by the programmer, by the tester, or by static analysis—are tested. During
verification, this information can be used to supply proof tactics, for example, to choose helpful case splits.
Thus, tactics generated from test suites for simulated execution can complement tactics built into the prover
in reducing human input.

We have applied these techniques to correctness proofs of three distributed algorithms: the Peterson mu-
tual exclusion algorithm [Pet81], an algorithm for ensuring memory atomicity in the presence of distributed
caches [BGL02], and the Paxos algorithm for achieving distributed consensus [Lam98]. We performed each
proof using two rather different theorem-provers: LP and Isabelle. Considering multiple algorithms and
multiple theorem-provers suggests that our technique is general. We found that the lemmas and tactics
that were automatically suggested by our tools eliminated on the order of 90% of user interaction with
the tools (100%, in one case), and in one case led to a shorter proof than we had previously been aware
of [NEG+04, NEG02].

3 Automated theorem prover

The experience with theorem-proving described in Section 2 indicates that humans can effectively use the
guidance provided by a dynamic (runtime) analysis tool to assist them in theorem-proving. We have per-
formed a pair of complementary experiments to further investigate the efficacy of dynamic analysis. Both
experiments use the ESC/Java [FLL+02] tool, an automated theorem-prover, as an automatic measure of
the adequacy of a specification — whether produced by a tool or by a human.

The first experiment [NE02b] assesses how accurate the results of the dynamic analysis are. Producing
specifications by dynamic (runtime) analysis of program executions is potentially unsound, because the
analyzed executions may not fully characterize all possible executions of the program. Surprisingly, small test
suites captured nearly all program behavior required by the ESC/Java static checker. ESC/Java guaranteed
that the implementations satisfy the generated specifications, and ensured the absence of runtime exceptions.
Measured against this verification task, the generated specifications scored over 90% both on precision, a
measure of soundness, and on recall, a measure of completeness.

This is a positive result for testing, because it suggests that dynamic analyses can capture all seman-
tic information of interest for certain applications. The experimental results demonstrate that a specific
technique, dynamic invariant detection, is effective at generating consistent, sufficient specifications for use
by a static checker. Finally, the research shows that combining static and dynamic analyses over program
specifications has benefits for users of each technique, guaranteeing soundness of the dynamic analysis and
lessening the annotation burden for users of the static analysis.

The second experiment [NE02c] artificially degraded the quality of the dynamic analysis via use of
unreasonably small test suites. Then, we performed a human experiment with 41 experienced programmers,
in which each was asked to verify a small program using ESC/Java. Some were given no assistance; some
were given Daikon output (dynamically detected likely invariants) obtained from a good test suite; some
were given Daikon output obtained from a bad test suite; and some were assisted by a static technique
(Houdini [FL01]) designed by the authors of ESC/Java. Some sort of user assistance seems necessary: users
find the annotation task tedious, difficult, and unrewarding, and therefore often refuse to perform it [FJL01].
In other words, users seem to view the cost of annotation as greater than the benefits of static checking.
Thus, we considered how to reduce the annotation burden.

In brief, the statistically significant results suggest that both tools contribute to success, and neither harms
users in a measurable way. Unsoundness did not hinder users: even very inaccurate dynamic analysis output
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produced from tiny test suites is better than no assistance. Additionally, Houdini helps users to express more
properties in fewer annotations, and Daikon helps users express more true properties than strictly required,
with no time penalty. However, users reported concerns with Houdini’s speed and opaqueness and with
Daikon’s verbosity on poor test suites.

4 Predicting incompatible software component upgrades

Large software systems are usually made up of a number of components, not all produced by a single
development team. Ensuring that separately designed components can cooperate is a major challenge in
building a large system, and the difficulty is compounded when components change over time. System
integrators would often like to know whether an updated version of a software component can be added to
a system without disrupting its correct operation.

We have developed a new technique to assess whether replacing one or more components of a software
system by purportedly compatible components will change the behavior of the system. The technique oper-
ates prior to integrating the new components into the system, permitting quicker and cheaper identification
of problems. It takes into account the system’s use of the components, because an upgrade may be desirable
in one context but undesirable in another. No formal specifications are required, permitting detection of
problems due to errors in the components or errors in the system. Both external and internal behaviors can
be compared, enabling detection of problems that are not immediately reflected in the system’s output.

The two key techniques that underly our method are describing observed behavior (via dynamic invariant
detection) and comparing those behaviors via logical implication. Operational abstractions are more useful
for our purposes than human-written formal specifications of desired behavior, because we want to find
incompatibilities induced by the actual behavior of the software.

Because operational abstractions are simply collections of statements in a formal language, they can be
mechanically compared to determine if one abstraction is logically implied by another. If our system, using
an automatic theorem prover, can verify that the abstraction describing a component’s desired behavior is
a logical consequence of the abstraction of its observed behavior during testing, we have evidence that the
component will indeed function correctly.

We have formulated a general model for the semantics of a multi-component system, based on a division
into modules with certain behaviors and certain expectations of the behavior of other modules. This model
encompasses a variety of component interactions, including components with state, access to shared variables,
callbacks, and upgrades that require the simultaneous replacement of multiple components. From this model,
we use an algorithm to construct logical relations which, if they hold over the operational abstractions of a
set of components, indicate that each component’s expectations will be satisfied when the system executes.
These relations are then checked using the Simplify automatic theorem prover. We have supplemented
the basic technique with several enhancements that make it more effective in practical applications: these
deal with nonlocal data and nondeterministic behavior, and allow the technique to differentiate between
preexisting innocuous incompatibilities from new ones, which are more dangerous.

We have applied the technique to real-world components: Perl modules from the Comprehensive Perl
Archive Network (CPAN) [ME03], and the main Linux system library, as used by 48 applications [ME04a]. In
these case studies, our implementation verifies the safety of some upgrades, while discovering incompatibilities
in other upgrades that cause applications to malfunction. Our technique’s comparisons can be performed
efficiently, and its rate of false positive warnings is low.

In ongoing research [ME04b], we are focusing on giving a precise description of the multi-component
upgrade condition in the context of a simplified formal model. The model idealizes the operational ab-
stractions used by the technique to abstractions that soundly approximate the behavior of the components
they describe. A soundness result for the formalization (which we have so far achieved for the case of a
two-component upgrade) corresponds to a relative soundness of the real system, which restricts the source of
unsoundness to the finiteness of the testing used in constructing the abstractions. Work on the formalization
has also motivated refinements and led to a better understanding of the technique as implemented, including
trade-offs between accuracy and performance.
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5 Conclusion

All programmers test their programs, but research in verification has too often ignored the rich information
that is available in test suites and in program executions. We propose to integrate such dynamic information
into verification — and we have made significant steps toward such integration. Although dynamic analyses
are inherently unsound, their results can nevertheless be of assistance to both humans and to automated
tools, even when the goal is sound verification. Dynamic and static analyses have complementary strengths:
dynamic analyses can often produce more, and more precise, properties, and static analyses can check these
to determine which ones can be guaranteed. Furthermore, dynamic analyses may be an important stepping-
stone in analyzing legacy programs and in educating programmers for the transition from current, error-prone
methodologies to ones in which verification techniques and tools are commonplace.
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