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Abstract. Ownership type systems describe a heap topology and enforce
an encapsulation discipline; they aid in various program correctness and
understanding tasks. However, the annotation overhead of ownership type
systems has hindered their widespread use. We present a unified framework
for specification, type inference and type checking of ownership type
systems, and instantiate the framework for two such systems: Universe
Types and Ownership Types. We present an objective metric defining a
“best typing” for these type systems, and develop an inference approach
that maximizes the metric. The programmer can influence the inference
by adding partial annotations to the program. We implemented the
approach on top of the Checker Framework and present the results of an
experimental evaluation.

1 Introduction

When a type system requires annotations in the source code, the annotation
burden on programmers inhibits practical adoption. Therefore, it is important to
help programmers transform unannotated or partially-annotated programs to
fully-annotated ones. Another benefit of type inference is that it reveals valuable
information about how existing programs use the concepts expressed in the type
system.

Automatic type inference is especially difficult for type systems that allow
multiple valid typings, such as ownership type systems [7]. The notion of the
“best typing” is not well-understood or formalized.

This paper presents a unified framework for specifying ownership-like type
systems as well as efficient type inference and checking techniques. We give a
formal way to define the best typing and design efficient type inference techniques
that infer best typings. We have instantiated the framework for two well-known
ownership type systems: Universe Types [8], which enforces the owner-as-modifier
encapsulation discipline, and Ownership Types [4], which enforces the owner-as-
dominator encapsulation discipline, and present an empirical evaluation.

This paper makes the following contributions:

– A unified framework for specifying the type rules of ownership type systems
and instantiations of the framework for two well-known ownership type
systems, Universe Types (UT), and Ownership Types (OT). (See Sect. 2.)

– A formalization of the notion of “best typing” for ownership type systems.
The programmer specifies a ranking over all valid typings; the highest ranked
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cd ::= class C extends D { fd md } class
fd ::= τ f field
md ::= τ m(τ x) { τ y s; return y } method
s ::= s; s | x = new τ() | x = y | x.f = y | this.f = y statement

| x = y.f | x = this.f | x = y.m(z) | x = this.m(z)
τ ::= q C qualified type
q ∈ Q qualifier

Fig. 1. Syntax of a core OO language. The set Q of all qualifiers q is a framework
parameter instantiated for specific ownership type systems.

typing is the best typing. The ranking is a heuristic reflecting the desire for
deep ownership trees — higher ranked (i.e., “better”) typings give rise to
deeper runtime ownership trees. Deep ownership trees are desirable, because
they expose high degree of encapsulation. (See Sect. 3.)

– A unified type inference approach. The inference reflects programmer intent
in two ways: (1) it accepts a programmer-specified ranking over typings,
which guides the automatic inference towards the best of many valid typings,
and (2) it accepts partially-annotated programs and seamlessly integrates
programmer-provided annotations with automatic inference: the programmer
may choose to annotate a subset of the variables; the automatic inference
fills in the rest, guided by the ranking towards the best typing. (See Sect. 4.)

– A formulation of Universe Types inference as an instance of the unified
approach. We infer the “best UT typing”, in quadratic time, without annota-
tions. (See Sect. 4.3.)

– A demonstration that while the best UT typing is tractable, the best OT
typing is challenging. Our approach cannot always infer the best OT typing
without annotations. We scale Ownership Type inference by asking the
programmer to provide a small number of annotations (6 per kLOC on
average). We infer the “best OT typing” for the partially-annotated program
in quadratic time. (See Sect. 4.4.)

– An empirical evaluation which presents type inference results for UT and OT
on Java programs of up to 110kLOC, and a comparison of UT and OT. (See
Sect. 5.)

2 Unified Framework for Ownership Type Systems

This section describes our unified framework for specifying ownership type
systems. The framework can be instantiated to specific ownership type systems.
Sect. 2.1 describes the framework’s unified typing rules, Sect. 2.2 instantiates the
framework for Universe Types, and Sect. 2.3 instantiates it for Ownership Types.

For brevity, we restrict our formal attention to a core calculus in the style of
Vaziri et al. [27] whose syntax appears in Fig. 1. The language models Java with
a syntax in A-normal form. For brevity, we assume in the presentation that all
methods have a single parameter; our implementation handles the general case.
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2.1 Framework and Unified Typing Rules

The framework is instantiated to a specific type system by defining three frame-
work parameters: (1) the set of type qualifiers Q with the corresponding subtyping
hierarchy, (2) the viewpoint adaptation function B (described below), and (3)
type-system-specific constraints B, enforced in addition to the standard subtyping
and viewpoint adaptation constraints.

In contrast to a formalization of pure Java, a type τ has two orthogonal
components: ownership type qualifier q and Java class type C. The ownership
type system is orthogonal (i.e., independent) to the Java type system, which
allows us to specify typing rules over type qualifiers q alone.

Framework parameter B defines viewpoint adaptation [8]. For example, the
type of x.f is not just the declared type of field f — it is the type of f adapted
from the point of view of x. In ownership type systems, viewpoint adaptation
adapts the type of a field, formal parameter, or return type, from the viewpoint
of the receiver at the corresponding field access or method call to the viewpoint
of the current object this. Viewpoint adaptation is performed at field accesses and
method calls and is written q B q′, which denotes that type q′ is adapted from
the point of view of type q to the viewpoint of the current object this. Viewpoint
adaptation rules for each type system are given in Sections 2.2 and 2.3.

Fig. 2 shows the unified typing rules over the A-normal-form Java syntax. The
figure makes use of the three framework parameters. The environment Γ is used
to look up the type qualifier of a variable. Rule (tnew) ensures that the instantiated
type is a subtype of the type of the left-hand side and enforces the additional
type-system-specific constraints determined by B. Similarly, rule (tassign) checks
the types in assignments. The rules in Fig. 2 separate access through the current
object this from other accesses. Rule (twrite) adapts the type of the field, and
creates the subtype constraint between the type on the right-hand-side and the
adapted type of f. Auxiliary function typeof (f) retrieves the type of field f from
its declaration. Rule (tread) ensures that the adapted field type is a subtype of
the type of the left-hand-side. Rule (tcall) uses typeof (m) to retrieve the type
of method m, namely q → q′, from its declaration. Rule (tcall) then creates the
expected subtyping constraint between the type of the actual argument z and
the adapted type of the formal parameter, as well as the subtyping constraint
between the adapted return type and the type of the left-hand-side x. Finally,
rules (twritethis), (treadthis), and (tcallthis) perform the corresponding operations,
without viewpoint adaptation.

We now instantiate the framework for two well-known ownership type systems,
Universe Types (UT) [8, 5] and Ownership Types (OT) [4]. The framework can
also be instantiated for a variety of other ownership-like type systems, including
EnerJ [23], a type system for energy efficiency, and AJ [27], a type system for
data-centric synchronization.

2.2 Universe Types

Universe Types (UT) [8, 5] is a lightweight ownership type system that optionally
enforces the owner-as-modifier encapsulation discipline. Informally, this means
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(tnew)

Γ (x) = qx q <: qx
B(tnew)(qx, q)

Γ ` x = new q C

(tassign)

Γ (x) = qx Γ (y) = qy qy <: qx
B(tassign)(qx, qy)

Γ ` x = y

(twrite)

Γ (x) = qx typeof (f) = qf Γ (y) = qy
qy <: qx B qf

B(twrite)(qx, qf , qy)

Γ ` x.f = y

(twritethis)

typeof (f) = qf Γ (y) = qy
qy <: qf

B(twritethis)(qf , qy)

Γ ` this.f = y

(tread)

Γ (x) = qx Γ (y) = qy typeof (f) = qf
qy B qf <: qx

B(tread)(qy, qf , qx)

Γ ` x = y.f

(treadthis)

Γ (y) = qy typeof (f) = qf
qf <: qx

B(treadthis)(qf , qx)

Γ ` x = this.f

(tcall)

typeof (m) = q → q′

Γ (x) = qx Γ (y) = qy Γ (z) = qz
qz <: qy B q qy B q′ <: qx

B(tcall)(m, qy, qx)

Γ ` x = y.m(z)

(tcallthis)

typeof (m) = q → q′

Γ (x) = qx Γ (z) = qz
qz <: q q′ <: qx
B(tcallthis)(m, qx)

Γ ` x = this.m(z)

Fig. 2. Unified typing rules. The ownership type system is independent from the Java
type system, which allows us to specify the typing rules over qualifiers q alone.

that an object can be modified only by its owner and by its peers, i.e., objects
that have the same owner. There are three source-level qualifiers, i.e., QUT =
{peer, rep, any}:

– peer: an object that is referenced by a peer reference x is part of the same
representation as the current object. In other words, the two objects have
the same owner.

– rep: an object that is referenced by a rep reference x is part of the current
(i.e., this) object’s representation. In other words, the current object is the
owner of the object referenced by x.

– any: the any qualifier does not provide any information about the ownership
of the object.

The formalization of Universe Types uses the qualifier lost to express that
the result of viewpoint adaptation cannot be expressed statically, that is, a type
declaration enforces an ownership constraint, but the constraint is not expressible
from the current viewpoint. Qualifier lost is used only internally and users cannot
annotate references as lost. In contrast to previous work [5], we type the current
object this as peer and use separate rules for accesses through this, instead of
adding a self qualifier.
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1 class XStack {
2 any Link top;
3 XStack() {
4 top = null;
5 }
6 void push(any X d1) {
7 rep Link newTop;

8 newTop = new rep Link(); l

9 newTop.init(d1);
10 newTop.next = top;
11 top = newTop;
12 }
13 void main(String[] arg) {
14 rep XStack s;
15 s = new rep XStack(); s

16 any X x = new rep X(); x

17 s.push(x);
18 }
19 }
20 class Link {
21 any Link next;
22 any X data;
23 void init(any X d2) {
24 next = null;
25 data = d2;
26 }
27 }

1 class XStack {
2 〈rep|p〉 Link top;
3 XStack() {
4 top = null;
5 }
6 void push(〈p|p〉 X d1) {
7 〈rep|p〉 Link newTop;

8 newTop = new 〈rep|p〉 Link(); l

9 newTop.init(d1);
10 newTop.next = top;
11 top = newTop;
12 }
13 void main(String[] arg) {
14 〈rep|rep〉 XStack s;
15 s = new 〈rep|rep〉 XStack(); s

16 〈rep|rep〉 X x = new 〈rep|rep〉 X(); x

17 s.push(x);
18 }
19 }
20 class Link {
21 〈own|p〉 Link next;
22 〈p|p〉 X data;
23 void init(〈p|p〉 X d2) {
24 next = null;
25 data = d2;
26 }
27 }

Fig. 3. A program with qualifiers for UT (left) and OT (right) as inferred by our tool.
The boxed italic letters denote object allocation sites.

The qualifiers form the following subtyping hierarchy:

rep <: lost peer <: lost lost <: any

that is, qualifiers peer and rep are incomparable to each other and are subtypes
of lost, and all qualifiers are below any.

Viewpoint adaptation in UT is defined as follows:

peer B peer = peer
rep B peer = rep

B any = any
q B q′ = lost otherwise

Viewpoint adaptation is applied only when the receiver is not this. The type of
the receiver is qx at (twrite), qy at (tread) and qy at (tcall). Consider x.f = y. If x
is rep, then the current object is the owner of the x object. If the type of f is peer,
then the x object and field f object are peers. Therefore, the current object is the
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owner of the f object, which is expressed by the fact that the type of f, adapted
from the point of view of x’s rep, is rep.

UT imposes additional constraints, beyond the standard subtyping and view-
point adaptation constraints. In our framework, these constraints are expressed
by framework parameters B:

B(tnew)(ql, qr) = {qr 6= any}
B(twrite)(qr, qf , qo) = {qr 6= any, qr B qf 6= lost}
B(tcall)(m, qr, qo) = let typeof (m) = q → q′ in

if impure(m) then {qr 6= any, qr B q 6= lost}
else {qr B q 6= lost}

The B sets for (tassign), (twritethis), (tread), (treadthis), and (tcallthis) are all empty;
these rules do not impose additional constraints.

In (tnew), the newly created object needs to be created in a concrete ownership
context and therefore needs peer or rep as ownership qualifiers. In (twrite), the
adapted field type cannot be lost, and in (tcall), the adapted formal parameter
type cannot be lost.

The underlined constraints above enforce the owner-as-modifier encapsulation
discipline — they disallow modifications in statically unknown contexts. The
receiver cannot be any in (twrite) or in (tcall) if the method is impure, that is, if
the method might have nonlocal side effects. We use our method purity inference
tool [12], which relies on a type system for reference immutability and is another
instantiation of the unified framework described here. Note that, in contrast to
other formalizations [7], we do not need to forbid lost as receiver, because our
syntax here is in A-normal form and the programmer cannot explicitly write
lost.

Fig. 3 (left) shows a program annotated with Universe types. Variable newTop
at line 7 and the Link object l are typed rep, meaning that the XStack object is
the owner of the Link object. References top (line 2) and next are any because
they are never used to modify the object that they refer to. References d1 and
d2 are any as well, as they are never used to modify the object they refer to.

Ownership type systems give rise to a hierarchical ownership structure shown
with an ownership tree. Fig. 4 shows the object graph and the corresponding
ownership tree for the program in Fig. 3. root is the owner of objects s and x
and s is the owner of l.

2.3 Ownership Types

We now consider the classical Ownership Types (OT) [4], restricted to one
ownership parameter. The system enforces the owner-as-dominator encapsulation
discipline, meaning that an object cannot be exposed outside of the boundary of
its owner, or in other words, all access paths to the object go through its owner.
There are three base ownership modifiers in Ownership Types:

– rep refers to the current object this.
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root

s

l

x

root

s

l

x

Fig. 4. Object graph (left) and ownership tree (right) for the example in Fig. 3. UT
and OT give rise to the same ownership tree. In the object graph we show all references
between objects. In the ownership tree we draw an arrow from the owned object to its
owner and put all objects with the same owner into a dashed box.

– own refers to the owner of the current object.
– p is an ownership parameter passed to the current object.

OT qualifiers have the form 〈q0|q1〉, where q0 and q1 are one of rep, own, or p.
A qualifier 〈q0|q1〉 for reference variable x is interpreted as follows. Let i be the
object referenced by x. q0 is the owner of i, from the point of view of the current
object, and q1 is the ownership parameter of i, again, from the point of view of
the current object. Informally, the ownership parameter q1 refers to an object,
which objects referenced by i might use as owner. For example, 〈rep|own〉 x means
that the owner of i is the current object this, and the ownership parameter passed
to i is the owner of the current object. Transitively, objects referenced by i, for
example, from its fields, can have as owner (1) i itself, by using rep, (2) the
current object, by using own, or (3) the owner of the current object, by using p.

There are six type qualifiers:
QOT = {〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉}, and there is no
subtyping hierarchy. The type of this is 〈own|p〉.

Viewpoint adaptation B is defined as follows:

〈q0|q1〉B 〈own|own〉 = 〈q0|q0〉
〈q0|q1〉B 〈own|p〉 = 〈q0|q1〉
〈q0|q1〉B 〈p|p〉 = 〈q1|q1〉

Viewpoint adaptation disallows the adapted type from containing rep, which
accounts for the static visibility constraint [4].

As an example, let us discuss the first rule: the adapted type of 〈own|own〉
from the point of view of 〈q0|q1〉 is 〈q0|q0〉. If an object i has type 〈q0|q1〉 from
the point of view of the current this object, this means that the owner of i is q0.
If object j has type 〈own|own〉 from the point of view of i, this means that both
j’s owner and ownership parameter are instantiated to the owner of i. Therefore,
j will have type 〈q0|q0〉 from the point of view of this.

As in UT, viewpoint adaptation is applied only when the receiver variable
is not this. When the receiver is this, there is no need to adapt, as the object
remains in the same context, the context of this.

For example, consider a field read x = y.f. Let y have type 〈rep|rep〉 and let
field f have type 〈own|p〉. Then y.f has type 〈rep|rep〉. The first rep in this type
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can be explained as follows: Owner own in the type of f gives us that the owner
of the f object is the same as the owner of the y object, and owner rep in the
type of y gives us that the owner of the y object is the current object. Thus, the
owner of the f object, from the point of view of the current object, is the current
object.

In OT, all B sets are empty as the system does not impose additional con-
straints beyond the standard subtyping and viewpoint adaptation constraints.
Note that the subtyping constraints degenerate into equality constraints as OT
does not have a subtyping hierarchy.

Fig. 3 (right) shows the XStack program annotated with Ownership Types.
The XStack object s is 〈rep|rep〉 meaning that the owner of s is root and the
ownership parameter passed to s is root as well. The Link object l is 〈rep|p〉
meaning that the enclosing XStack object is the owner of l, and the ownership
parameter of the XStack object is passed to l as an ownership parameter. Variable
next (line 21) has type 〈own|p〉 which means that the next link and the current link
have the same owner, the enclosing XStack object. data is typed 〈p|p〉 meaning
that its owner is the ownership parameter of Link which resolves to root . The
resulting ownership tree is shown in Fig. 4. Note that for this program UT and
OT give rise to the same ownership tree. In general however, UT and OT capture
different ownership structure, as we will discuss in Sect. 5.

We conclude this section with a brief discussion of why we choose to restrict
OT to one ownership parameter. As an experiment, we instantiated the unified
framework for ownership type systems with 2 and 3 ownership parameters.
However, the complexity of annotations was so overwhelming that we could not
manually verify the inferred results. We concluded that in order to use Ownership
Types in practice, we must restrict the system to one ownership parameter.

3 Heuristic Ranking over Typings

Ownership type systems typically allow many different typings for a given program.
The trivial typings that apply to every program (peer in Universe Types, or 〈p|p〉
in Ownership Types) give rise to flat ownership trees where every object is a
child of root . These typings permit every access and modification, so they do not
express the programmer’s intent nor detect/prevent coding errors. These goals
are better served by inferring deep ownership trees, not trivial flat trees.

This section formalizes the notion of the best typing using a ranking over all
typings. For ownership types, the ranking is a heuristic/proxy for deep ownership
trees — a higher ranked typing would likely give rise to a deeper (i.e., better)
runtime ownership tree than a lower ranked typing.

We begin by defining the notion of a valid typing. Let P be a program and F
be an ownership type system with universal set of qualifiers QF . A typing TP,F is
a mapping from the variables1 in P to the type qualifiers in QF . A typing TP,F

is a valid typing for P in F when it renders P well-typed in F . Note that a valid

1 For the rest of the paper we use “variables” to denote all annotatable types, that is,
local variable, parameter, return, allocation site, and field types.
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typing TP,F must maintain programmer-provided annotations in P , that is, if a
variable v is annotated by the programmer with q, then for every valid typing
TP,F , we have TP,F (v) = q.

We proceed to define an objective function o that can be used to rank valid
typings, and instantiations for UT and OT. The objective function o takes a valid
typing T and returns a tuple of numbers2. The tuples are ordered lexicographically.

To create the tuple, the objective function o assumes that the qualifiers are
partitioned and the partitions are ordered. Then, each element of the tuple is
the number of variables in T whose type is in the corresponding partition.

3.1 Objective Function for Universe Types

For UT, the function is instantiated as

oUT (T ) = (|T−1(any)|, |T−1(rep)|, |T−1(peer)|)

The partitioning and ordering is

{any} > {rep} > {peer}

Each qualifier falls in its own partition. This means, informally, that we prefer
any over rep and peer, and rep over peer. More formally, the partitioning and
ordering gives rise to a preference ranking OUT over all qualifiers:

OUT : any > rep > peer

Note that this preference ranking is not related to subtyping. We have T1 > T2
iff T1 has a larger number of variables typed any than T2, or T1 and T2 have the
same number of any variables, but T1 has a larger number of rep variables than
T2. Function oUT gives a natural ranking over the set of valid typings for UT. In
fact, the maximal (i.e., best) typing according to the above ranking, maximizes
the number of allocation sites typed rep, which is a good proxy for a deep UT
ownership tree.

It is interesting to note that an o with exactly one qualifier per partition gives
a meaningful heuristic ranking for other type systems, most notably reference
immutability [12, 26] and AJ [27].

3.2 Objective Function for Ownership Types

OT cannot use an objective function with one qualifier per partition. Informally,
the base modifiers are preference-ranked as

rep > own > p

2 Strictly, o and T are defined in terms of a specific type system F and program P ; for
brevity, we omit the subscripts when they are clear from context.
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(a) Object graph (b) OT tree for T1 (c) OT tree for T2

Fig. 5. Ownership trees resulting from typings T1 and T2. Edges i → m and k → l
(shown in red in the object graph) cannot be typed with owner rep simultaneously.

but, say, 〈rep|rep〉 should not carry more weight than 〈rep|p〉. The objective
function should maximize the number of rep owners regardless of ownership
parameters.

To illustrate this point, suppose that qualifiers 〈q0|q1〉 were ordered lexico-
graphically based on the ranking of base modifiers, and consider Fig. 5. A variable
roughly corresponds to an edge in the object graph [13], and therefore, we use
typing of edges instead of typing of variables. Edges i→ m and k → l cannot be
typed with owner rep simultaneously, because of the restriction to one ownership
parameter. Thus, one valid typing, call it T1, types root→ i, root→ j and i→ m
as 〈rep|rep〉, i → k as 〈rep|own〉, and the rest of the edges as either 〈own| 〉 or
〈p|p〉. T1 gives rise to the ownership tree in Fig. 5(b); T1 flattens the tree at l
and l′ — the owner of l and l′ is i, even though k dominates both l and l′ and
we would like to have k as the owner of l and l′. Another valid typing, call it T2,
types root → i, root → j as 〈rep|rep〉, i → k as 〈rep|own〉, k → l and k → l′ as
〈rep|p〉, and the rest of the edges as either 〈own| 〉 or 〈p|p〉. T2 gives rise to the
tree in Fig. 5(c); this tree is better than the tree in Fig. 5(b) because it has more
dominance. Note that lexicographical ordering ranks T1 higher than T2 because it
contains 3 〈rep|rep〉 typings, while T2 contains only 2 〈rep|rep〉 typings. However,
T2 is the better typing, because it contains 5 〈rep| 〉 typings, one more than T1,
and therefore, it preserves more dominance in the ownership tree than T1.

In OT, valid typings are ranked using the following o:

oOT (T ) = (|T−1(〈rep| 〉)|, |T−1(〈own| 〉)|, |T−1(〈p| 〉)|)

Here T−1(〈rep| 〉) is the set of variables typed with owner rep, i.e., typed 〈rep|rep〉,
〈rep|own〉 or 〈rep|p〉. T−1(〈own| 〉) is the set of variables typed with owner own,
and T−1(〈p| 〉) is the set of variables typed with owner p. The primary goal is to
maximize the number of variables typed with owner rep (regardless of ownership
parameters). Thus, the ranking maximizes the number of edges in the object
graph that are typed rep, or in other words, the best typing preserves the most
dominance (ownership). This is a good proxy for a deep OT ownership tree.
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Our type inference approach (Sect. 4) requires that all qualifiers are preference-
ranked and the ranking over qualifiers preserves partition ranking. Unlike oUT ,
oOT does not give rise to such ranking (e.g., 〈rep|rep〉 and 〈rep|p〉 are equally
preferred by oOT ). We use lexicographical order over the base modifiers:

OOT : 〈rep|rep〉 > 〈rep|own〉 > 〈rep|p〉 > 〈own|own〉 > 〈own|p〉 > 〈p|p〉

OOT preserves the partition ranking (e.g., 〈rep|p〉 > 〈own|own〉) and preference-
ranks qualifiers within partitions (e.g., 〈rep|rep〉 > 〈rep|own〉 > 〈rep|p〉).

3.3 Maximal Typing

A maximal typing is a typing that maximizes o (i.e., the best typing(s) according
to the heuristics encoded in o).

Definition 1. Maximal Typing. Given an objective function o over the set of
valid typings, a valid typing T is a maximal typing of P in F under o, if for every
valid typing T ′, we have T ′ 6= T ⇒ T ≥ T ′.

Perhaps somewhat unexpectedly, for UT, as well as other interesting systems
such as reference immutability [12], there exists a unique maximal typing. This
is discussed in detail in the next section. For OT however, in general, there are
multiple maximal typings, i.e., there are multiple typings that maximize oOT .
Consider the following program:

1 x = new X(); x

2 y = new Y(); y

3 x.f = y;

There are variables x, y, field f, and allocation sites x and y. Typing T1 types
the program as follows: T1(x) = T1(x) = 〈rep|own〉, T1(y) = T1(y) = 〈rep|own〉,
and T1(f) = 〈own|p〉. Typing T2 types the program as follows:. T2(x) = T2(x) =
〈rep|rep〉, T2(y) = T2(y) = 〈rep|rep〉, and T2(f) = 〈own|own〉. Clearly, oOT (T1) =
oOT (T2) = (4, 1, 0). There are other valid typings that maximize oOT as well.
There are nontrivial examples as well.

The following section describes a unified type inference approach, which can
be used to compute the unique maximal typing for UT, and a maximal typing
for OT given user annotations.

4 Unified Type Inference

The unified inference and checking system works on completely unannotated
programs, as well as on partially-annotated programs. We believe that neither
fully automatic inference nor fully manually annotated programs are feasible
choices. In many interesting systems, fully automatic inference is impossible;
that is, the programmer must provide initial annotations which typically reflect
semantics that is impossible to infer. We envision a cooperative system that fills
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in as many annotations as possible and queries the programmer for a small set
of annotations on certain variables to resolve ambiguities. The system seamlessly
integrates programmer-provided annotations with inferred annotations.

The key idea in our system is to compute a set-based solution S instead of a
single typing. S maps variables to sets of qualifiers: for every statement s, for
every variable v in s, and for every qualifier q ∈ S(v), there are qualifiers in
the sets of the remaining variables in s, such that q and those qualifiers make
statement s type check. Interestingly, for some systems such as UT, the set-based
solution S, which is inexpensive to compute, implies the unique maximal typing.
For other systems, such as OT, where the unique maximal typing does not exist,
S pinpoints the places where programmer-provided annotations must be added,
and as a result, reduces the number of manual annotations significantly.

Sect. 4.1 describes the computation of the set-based solution S and Sect. 4.2
describes its properties. Then, Sects. 4.3 and 4.4 describe how the type inference
is instantiated for the two ownership type systems in our study.

4.1 Set-based Solution

Set Mapping S maps each program variable (annotatable reference) to a set
of possible type qualifiers. We fix the program P and type system F , and we
write S instead of SP,F for brevity.

The initial mapping, S0, is defined as follows. Programmer-annotated variables
are initialized to the singleton set which contains only the programmer-provided
annotation. Variables that are not annotated are initialized to the maximal set
of qualifiers QF . The analysis, a fixpoint iteration, iterates over the statements
in the program and refines the initial sets, until it reaches the fixpoint.

Transfer Functions We now describe the transfer functions applied by fixpoint
iteration. There is a transfer function fs for each statement s. Statements s can
be of kinds as shown in Fig. 2. Each fs takes as input mapping S and outputs an
updated mapping S′. Informally, fs removes all infeasible qualifiers from the sets
of the variables v ∈ s. After the application of fs, for each variable vi ∈ s and each
qi ∈ S′(vi), there exist q1 ∈ S′(v1), . . . , qi−1 ∈ S′(vi−1), qi+1 ∈ S′(vi+1), . . . , qk ∈
S′(vk), such that q1, . . . , qk type check with the rule for s in Fig. 2. The transfer
functions are defined in terms of the typing rules in Fig. 2; making s type check
requires that the subtyping, viewpoint adaptation, and B constraints for s hold.

More formally fs : S → S′ is defined as follows:

foreach vi ∈ s
S′(vi) = { qi | qi ∈ S(vi) and

∃q1 ∈ S(v1), . . . , qi−1 ∈ S(vi−1), qi+1 ∈ S(vi+1), . . . , qk ∈ S(vk)
s.t. q1, . . . , qk type check with the rule for s in Fig. 2 }

For example, the transfer function fx=y : S → S′ for UT is as follows:

S′(x) = { q | q ∈ S(x) and ∃qy ∈ S(y) s.t. qy <: q }
S′(y) = { q | q ∈ S(y) and ∃qx ∈ S(x) s.t. q <: qx }
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Suppose that we apply transfer function fx=y for UT on S, where S(x) =
{rep, peer} and S(y) = {any, peer}. fx=y removes rep from S(x) because there
does not exist qy ∈ S(y) that will make the type constraint for (tassign), namely
qy <: rep, hold. Next, it removes any from S(y) because any <: peer does not hold.
After the application of the transfer function, S′(x) = {peer} and S′(y) = {peer}.

As another example, consider fx.f=y for OT applied on S, where S(x) =
{〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉}, the set for field f, S(f) =
{〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉} and S(y) = {〈own|own〉}.
〈rep|rep〉 is removed from S(x) because there does not exist q ∈ S(f) such that the
type constraint for (twrite), namely 〈rep|rep〉B q = 〈own|own〉, holds. 〈rep|p〉 and
〈p|p〉 are removed as well, and S′(x) = {〈rep|own〉, 〈own|own〉, 〈own|p〉}. Similarly,
〈rep|rep〉, 〈rep|own〉, and 〈rep|p〉 are removed from S(f) (recall that viewpoint
adaptation for OT disallows exposed fields from being rep). Thus, S′(f) =
{〈own|own〉, 〈own|p〉, 〈p|p〉} and S′(y) remains the same.

Fixpoint Iteration The analysis is a fixpoint iteration. It initializes the mapping
S0 as described earlier in this section, and keeps iterating over the program
statements, using the above transfer functions, until one of the following happens:
(1) S reaches the fixpoint, i.e., S remains unchanged from the previous iteration, in
which case the analysis terminates successfully, or (2) a key is assigned the empty
set, in which case the analysis terminates indicating the program is untypable.

The computation fits the requirements of a monotone framework [19]. The
property space is the standard lattice of subsets, with the set of qualifiers QF

being the bottom 0, and the empty set ∅ being the top 1 of the lattice. The
transfer functions are monotone. Therefore, the set-based solution S produced
by fixpoint iteration is the unique least solution (for historical reasons sometimes
this solution is referred to as the “maximal fixpoint solution” [19]).

4.2 Properties of the Set-based Solution

Let us now consider the properties of the set-based solution S. These properties
help establish that for certain type systems one can derive a maximal (i.e., best)
typing from the set-based solution S.

The first proposition states that if the algorithm removes a qualifier q from
the set S(v) for variable v, then there does not exist a valid typing that maps v to
q. The notation T ∈ S0 denotes that for every variable v we have T (v) ∈ S0(v).

Proposition 1. Let S be the set-based solution. Let v be any variable in P and
let q be any qualifier in F . If q /∈ S(v) then there does not exist a valid typing
T ∈ S0, such that T (v) = q.

Proof. (Sketch) We say that q is a valid qualifier for v if there exists a valid
typing T , where T (v) = q. Let v be the first variable that has a valid qualifier
q removed from its set S(v) and let fs be the transfer function that performs
the removal. Since q is a valid qualifier there exist valid qualifiers q1, ..., qk that
make s type check. If q1 ∈ S(v1) and q2 ∈ S(v2), . . . , and qk ∈ S(vk), then by
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definition, fs would not have had q removed from S(v). Thus, one of v1, . . . , vk
must have had a valid qualifier removed from its set before the application of
fs. This contradicts the assumption that v is the first variable that has a valid
qualifier removed.

The second proposition states that if we map every variable v to the maximal
qualifier in its set S(v) according to its preference ranking over qualifiers3, and
the typing is valid, then this typing maximizes the objective function.

Proposition 2. Let o be the objective function over valid typings, and S be the
set-based solution. The maximal typing T is the following: T (v) = max (S(v))
for every variable v in P . If T is a valid typing, then T is a maximal typing of
P in F under o.

Proof. (Sketch) We show that T is a maximal typing. Suppose that there exists a
valid typing T ′ > T . Let pi be the most-preferred partition such that T ′−1(pi) 6=
T−1(pi). Since T ′ > T , there must exist a variable v such that T ′(v) = q′ ∈ pi,
but T (v) = q /∈ pi. In other words, T ′ types v with T ′(v) = q′ ∈ pi, but T types
v differently — and lesser in the preference ranking, because T ′−1(pk) = T−1(pk)
for 0 ≤ k < i (here pk are the more-preferred partitions than pi). Since T (v) =
max (S(v)), it follows that q′ /∈ S(v). By Proposition 1, if q′ /∈ S(v) there does
not exist a valid typing which maps v to q′, which contradicts the assumption
that T ′ is a valid typing.

When each partition in the preference ranking has only a single element, then
the weaker assumption “there exists a valid typing T ′ ≥ T” can be contradicted,
showing that the maximal typing is unique.

The optimality property holds for a type system F and a program P if and
only if the typing derived from the set-based solution S by typing each variable
with the maximally/preferred qualifier from its set, is a valid typing.

Property 1. Optimality Property. Let F be a type system augmented with
objective function o and let P be a program. The optimality property holds for
F and P iff T (v) = max (S(v)), for all variables v, is a valid typing.

The set-based solution is computed in O(n2) time where n is the size of
the program. At each iteration through the program, at least one of the O(n)
variables changes its set to a smaller set. Therefore, there are at most O(|QF | ∗n)
iterations. At each iteration, the computation goes through O(n) statements.
Since |QF | is a small constant (3 in UT, 6 in OT), it follows that the complexity
is O(n2). Therefore, for type systems for which the optimality property holds for
arbitrarily annotated programs, a maximal typing can be computed in quadratic
time, with no manual annotations. If the programmer provides inconsistent initial
annotations in P , the computation would terminate within O(n2) time with a
message that there is no valid typing for P .

Remarkably, for several interesting systems (UT, AJ, reference immutability),
the optimality property holds for unannotated programs, which means that the

3 Rankings OUT and OOT ensure that the maximal qualifier is uniquely defined.
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Variable Initial Iteration 1 Iteration 2

top all all all

d1 all any, peer any, peer

newTop all rep, peer rep, peer

new Link() all rep, peer rep, peer

s all rep, peer rep, peer

new XStack() all rep, peer rep, peer

x all all all

new X() all rep, peer rep, peer

next all any, peer any, peer

data all any, peer any, peer

d2 all any, peer any, peer

Fig. 6. Inference of Universe Types for the example in Fig. 3.

unique maximal typing can be computed in O(n2) time with no manual annota-
tions. However, for OT, the property does not hold for unannotated programs.
We will discuss each ownership system in turn in the next two subsections.

4.3 Inference of Universe Types

For Universe Types, the preference ranking over all qualifiers is OUT (previously
defined in Sect. 3). Libraries receive default type {peer}.

Fig. 6 illustrates the computation of the set-based solution for UT for the
example in Fig. 3. Consider statement s.push(x) at line 17. Initially, S(s) = S(x) =
S(d1) = {any, rep, peer}. In iteration 1, the transfer function for s.push(x) removes
any from S(s) because push is impure. It also removes rep from S(d1) because
q B rep = lost which the type rule for (tcall) forbids. See Fig. 6. Choosing the
maximal type from each set gives us T (s) = rep, T (x) = any, and T (d1) = any,
which type checks with the rule for (tcall).

We show through case analysis that for each statement s, after the application
of the transfer function for s, s type checks with the maximal typing:

(tassign) Consider x = y. We must show that after the application of fx=y, x = y type
checks with max (S′(x)) and max (S′(y)).
• If max (S′(x)) = any the statement type checks with any value for

max (S′(y)).
• Suppose that max (S′(x)) = rep. Thus, any is not in S′(x), and therefore

any cannot be in S′(y). max (S′(y)) cannot be peer; this contradicts the
assumption that max (S′(x)) = rep (rep would have been removed from
x’s set). Thus, max (S′(y)) = rep and x = y type checks.
• Suppose now that max (S′(x)) = peer. The only possible value for

max (S′(y)) is peer and the statement again type checks.
(tnew) is shown exactly the same way.

(tread) Consider x = y.f. We must show that after the application of the transfer
function fx=y.f , the statement will type check with max (S′(x)), max (S′(f))
and max (S′(y)).
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Variable Initial Iteration 1 Iteration 2 Iteration 3

top all all 〈rep|p〉 〈rep|p〉
d1 all 〈p|p〉 〈p|p〉 〈p|p〉
newTop all 〈rep|p〉 〈rep|p〉 〈rep|p〉
new Link() 〈rep|p〉 〈rep|p〉 〈rep|p〉 〈rep|p〉
s all all all all

new XStack() all all all all

x all all all all

new X() all all all all

next all 〈own|own〉, 〈own|p〉, 〈p|p〉 〈own|p〉 〈own|p〉
data all 〈own|own〉, 〈own|p〉, 〈p|p〉 〈p|p〉 〈p|p〉
d2 all 〈own|own〉, 〈own|p〉, 〈p|p〉 〈p|p〉 〈p|p〉

Fig. 7. Inference of Ownership Types for the example in Fig. 3.

• If max (S′(x)) = any this is clearly true.
• Suppose that max (S′(x)) = rep; then max (S′(f)) must be peer and

max (S′(y)) must be rep.
• Finally, when max (S′(x)) = peer, one can easily see that max (S′(f)) must

be peer and max (S′(y)) must be peer as well.

(twrite) and (tcall) are analogous; they are omitted for brevity. We implemented
an independent type checker which verifies the inferred solution.

4.4 Inference of Ownership Types

For Ownership Types, the preference ranking over all qualifiers is OUT (see
Sect. 3). Library variables receive default {〈own|p〉, 〈p|p〉} as explained in [14].

Fig. 7 shows the computation of the set-based solution for the example
program in Fig. 3. Note that this computation assumes annotation 〈rep|p〉 at
allocation site new Link(); given this annotation, the optimality property holds,
and the set-based solution computes the maximal typing for the program.

As mentioned earlier, the optimality property does not always hold in OT.
As an example, consider the program:

1 x = new A();
2 y = new 〈own|own〉 C();
3 x.f = y;

The application of transfer functions yields S(x) = {〈rep|own〉, 〈own|own〉, 〈own|p〉},
S(f) = {〈own|own〉, 〈own|p〉, 〈p|p〉} and S(y) = {〈own|own〉}. If we map every vari-
able to the maximal qualifier we have

T (x) = 〈rep|own〉, T (f) = 〈own|own〉, T (y) = 〈own|own〉

which fails to type check because 〈rep|own〉B 〈own|own〉 equals 〈rep|rep〉, not
〈own|own〉. The set-based solution contains several valid typings. If we chose the
maximal value at x, we will have typing

T (x) = 〈rep|own〉, T (f) = 〈p|p〉, T (y) = 〈own|own〉
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and if we chose the maximal value at f, we will have

T (x) = 〈own|own〉, T (f) = 〈own|own〉, T (y) = 〈own|own〉

The set-based solution is valuable for two reasons. First, it restricts the search
space significantly. Initially, there are 6 possibilities for each variable and there
are n variables, leading to 6n potential typings. Second, the set-based solution
highlights the points of non-determinism where programmer-provided annotations
can guide the inference to choose one typing over another. With a small number of
programmer-provided annotations, OT inference can scale up to large programs.
We explain the process in the remainder of this section.

The points of non-determinism arise at field access and method call statements
due to viewpoint adaptation. A statement s is a conflict if it does not type check
with the maximal assignment derived from the set-based solution. In the example
above, statement x.f = y is a conflict, because if we map every variable to the
maximal qualifier, the statement fails to type check. Our approach performs the
following incremental process. Given a program P , which may be unannotated or
partially annotated, the tool runs the set-based solver, and if there are conflicts,
these conflicts are printed. The programmer selects a subset of conflicts (usually
the first 1 to 5), and for each conflict, annotates variables. Then the programmer
runs the set-based solver again. This process continues until a program P ′ is
reached, where the optimality property holds for P ′. The solver computes a
maximal typing for P ′.

In the above example, the solver prints conflict x.f = y and the set-based
solution

S(x) = {〈rep|own〉, 〈own|own〉, 〈own|p〉}
S(f) = {〈own|own〉, 〈own|p〉, 〈p|p〉}
S(y) = {〈own|own〉}

If the programmer chooses to annotate x with 〈rep|own〉, this results in typing

T (x) = 〈rep|own〉, T (f) = 〈p|p〉, T (y) = 〈own|own〉

and if he/she chooses to annotate f with 〈own|own〉 this results in typing

T (x) = 〈own|own〉, T (f) = 〈own|own〉, T (y) = 〈own|own〉

5 Empirical Results

5.1 Implementation

Our inference tool is built on top of the Checker Framework [21, 6]. The tool
extends the Checker Framework to specify type system constraints and preference
ranking over qualifiers; it generates the constraints for the type systems by
traversing the AST and it implements the set-based constraint solver described
in Sect. 4. The tool is freely available at http://www.cs.rpi.edu/˜huangw5/cf-
inference/.
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The constraint solver takes as input a number of constraints and it iteratively
refines the sets of valid type qualifiers until it reaches a fixpoint. If conflicts
(as defined in Sect. 4.4) occur in the solution, the solver prints all conflicts and
prompts the user to solve the conflicts by providing manual annotations.

5.2 Results

Benchmarks We evaluated our implementation using eight Java programs of up
to 110kLOC (see Fig. 8). The analysis processes only application code; libraries
are handled using the defaults specified in Sect. 4.3 and Sect. 4.4. The analysis is
modular, in the sense that it can analyze whatever code is available, including
libraries with no main method.

All evaluations were conducted on a server with IntelR© XeonR© CPU X3460
@2.80GHz and 8 GB RAM (all benchmarks run within a memory footprint of
1GB). The software environment consists of JDK 1.6 and GNU/Linux 2.6.38.

Benchmark #Lines #Meths Description

JOlden 6223 326 Benchmark suit of 10 small programs

tinySQL 31980 1597 Database engine

htmlparser 62627 1698 HTML parser

ejc 110822 4734 Compiler of the Eclipse IDE

javad 4207 140 Java class file disassembler

SPECjbb 12076 529 SPEC’s benchmark for evaluating server side Java

jdepend 4351 328 Java package dependency analyzer

classycle 8972 440 Java class and package dependency analyzer

Fig. 8. The benchmark programs used in our evaluation.

Universe Types Inference of Universe Types requires information about method
side effects. As stated earlier, we used our purity inference tool [12]. The purity
inference relies on a type system for reference immutability, which itself instan-
tiates our unified framework. The optimality property holds for unannotated
programs for UT, and the set-based solver infers the unique maximal typing.

Fig. 9 shows the inference results for Universe Types. Across all benchmarks,
9%–33% of all variables are inferred as any, the best qualifier. 1% to 10% of
all variables are inferred as rep. A relatively large percentage (57%–92%) of the
variables are inferred as peer, resulting in a flat ownership structure. This is
consistent with previous results [7]. There are several possible reasons that lead to
flat ownership structures. One is due to utility methods whose formal parameters
are passed to impure methods. This forces the formal parameters to be peer.
Another reason is that the inference uses the default peer annotation for libraries.

Compared to previous results [7], our inference reports a larger percentage of
any variables. One reason is that there are more pure methods in our inference
than in [7]. In our inference, pure methods are inferred automatically while in
[7] pure methods are annotated manually. For example in javad, 40 methods
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Benchmark #Pure #Ref #any #rep #peer #Manual Time

JOlden 175 685 227 (33%) 71 (10%) 387 (56%) 0 11.3

tinySQL 965 2711 630 (23%) 104 ( 4%) 1977 (73%) 0 18.2

htmlparser 642 3269 426 (13%) 153 ( 5%) 2690 (82%) 0 22.9

ejc 1701 10957 1897 (17%) 122 ( 1%) 8938 (82%) 0 119.7

javad 60 249 31 (12%) 11 ( 4%) 207 (83%) 0 4.1

SPECjbb 195 1066 295 (28%) 74 ( 7%) 697 (65%) 0 13.6

jdepend 102 542 95 (18%) 14 ( 3%) 433 (80%) 0 7.2

classycle 260 946 87 ( 9%) 11 ( 1%) 848 (90%) 0 9.9

Fig. 9. The inference results for Universe Types. Column #Ref gives the total number
of references excluding implicit parameters this. Column #Pure gives the number of pure
methods inferred automatically based on reference immutability [12]. Columns #any,
#rep, and #peer give the number of references inferred as any, rep, and peer, respectively.
No user annotations are needed for the inference of Universe Types; therefore, there are
only zeros in the #Manual column. Last column Time shows the total running time in
seconds including parsing the source code, type inference, and type checking.

were manually annotated as pure in [7] while 60 were inferred automatically in
our inference; we verified that the extra 20 methods were indeed pure. Another
reason is that our qualifier ranking always prefers any over rep. When a variable
is mapped to set {any, rep} in the set-based solution, our tool picks any instead
of rep. This happens for variable x in Fig. 6. Although x is assigned by a rep
allocation site, the tool still infers x as any because x is readonly in the main
method. In contrast, Dietl et al. [7] use a different heuristic which uses program
location to preference-rank qualifiers. They choose rep over any in certain cases,
which results in a larger percentage of variables reported as rep. It is important to
note that the larger percentage of any variables does not imply a flatter ownership
tree compared to [7]; this is because an any variable can refer to a rep object
as is the case with variable x. What matters for ownership structure are the
allocation sites, and as we shall see shortly, the inference reports a considerably
larger percentage of reps for allocation sites compared to reference variables.

Ownership Types In OT, we add an additional modifier norep, which refers
to root , as described in detail in [14]. We use norep as the default type for String
and boxed primitives such as Boolean, Integer, etc.

Fig. 10 shows the inference results for OT. Note that there are many 〈norep| 〉
variables; the majority of these are strings and boxed primitives, e.g. 521 out of
688 〈norep|norep〉 variables in SPECjbb are strings and boxed primitives whose
default type is norep.

Compared to UT, a relatively large percentage (4%–24%) of variables are
inferred as 〈rep| 〉 in OT. Note however, that this does not imply a deeper
ownership tree compared to UT . In UT, many of the any variables can refer to a
rep object (as UT distinguishes readonly access); in contrast, in OT only a rep
variable can refer to a rep object. Due to the fact that the optimality property
does not hold for OT, as discussed in Sect. 4.4, the inference requires manual
annotations. Column #Manual gives the total numbers of manual annotations
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Benchmark #Ref #〈rep| 〉 #〈own| 〉 #〈p| 〉 #〈norep| 〉 #Manual Time

JOlden 685 67 (10%/10%) 497 (73%) 24 ( 4%) 97 (14%) 13 ( 2) 10.3

tinySQL 2711 224 ( 8%/11%) 530 (20%) 5 ( 0%) 1952 (72%) 215 ( 7) 18.4

htmlparser 3269 330 (10%/11%) 629 (19%) 36 ( 1%) 2274 (70%) 200 ( 3) 33.6

ejc 10957 467 ( 4%/ 4%) 1768 (16%) 50 ( 0%) 8672 (79%) 592 ( 5) 122.4

javad 249 44 (18%/19%) 27 (11%) 74 (30%) 104 (42%) 46 (10) 5.5

SPECjbb 1066 166 (16%/16%) 141 (13%) 71 ( 7%) 688 (65%) 73 ( 6) 17.1

jdepend 542 130 (24%/25%) 156 (29%) 128 (24%) 128 (24%) 26 ( 6) 13.7

classycle 946 153 (16%/20%) 173 (18%) 28 ( 3%) 592 (63%) 90 (10) 11.7

Fig. 10. The inference results for Ownership Types. Column #Ref again gives the total
number of references excluding the implicit parameters this. Columns #〈rep| 〉, #〈own| 〉,
#〈p| 〉, and #〈norep| 〉 give the numbers of variables whose owners are inferred as rep,
own, p, and norep, respectively. The boldfaced number in parentheses in column #〈rep| 〉
is an upper bound on rep typings; it is discussed in the text. #Manual shows the total
number of manual annotations and, in parentheses, the number of annotations per
1kLOC. Time shows the running time in seconds.

that were added and, in parentheses, the number of annotations per 1kLOC. The
annotation burden is low — on average, 6 annotations per 1kLOC. Although
the set-based solver cannot produce a maximal typing automatically, it is quite
valuable, because it reduces the burden of annotations on programmers. The
set-based solver prints all conflicts and lets the programmer choose an annotation
that resolves the conflict in such a way that it reflects their intent. This process
continues until all conflicts are resolved. By doing so, the first author annotated
JOlden (6223 LOC) in approximately 10 minutes and SPECjbb in approximately
2 hours. The annotations reflect the intent of the first author, but not necessary
the intent of the programmers of these benchmarks. Finally, the last column
Time shows the time in seconds to do type inference and type checking after the
manual annotations. It is approximately equal to the initial run that outputs all
conflicts and does not include the time to annotate the benchmark.

The boldfaced percentage shown in parentheses in column #〈rep| 〉, is the
percentage of all references that contain a 〈rep|rep〉, 〈rep|own〉 or 〈rep|p〉 in their
set-based solution. This is an upper bound on the possible rep typings: even an
ownership type system with many ownership parameters will be unable to type a
larger percentage of variables as rep. The fact that the percentage of #〈rep| 〉’s in
our typing is close to this bound, has two implications: (1) our typing is precise
(at least with respect to the heuristic defined in Sect. 3), and (2) one ownership
parameter may be sufficient in practice (again, if the goal is to maximize the
number of rep typings).

5.3 Comparing Universe Types vs. Ownership Types

In this section, we compare Universe Types, which enforce the owner-as-modifier
encapsulation discipline, to Ownership Types, which enforce the owner-as-domi-
nator encapsulation discipline, using examples we observed in the benchmarks.
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Fig. 11. Write access to enclosing context results in flatter structure for UT as compared
to OT (The bold edge from j to k highlights the write access).
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Fig. 12. Readonly sharing of internal representation results in flatter structure for OT
as compared to UT (The dotted edge from i to e highlights the readonly access).

In some cases, Universe Types inferred flatter structures than Ownership
Types. This happens when an object j modifies an object k in an enclosing
context. For example, consider Fig. 11. If object j modifies k, j and k must be
peers in UT, which will force the flat ownership tree in Fig. 11(c). In contrast, OT
reflects dominance and produces the deeper ownership tree shown in Fig. 11(b).

In other cases, Ownership Types inferred flatter structures than Universe
Types. OT disallows exposure of internal objects outside of the boundary of the
owner. UT is more permissive, in the sense that it allows readonly exposure.
Consider Fig. 12. which represents a container c, its internal representation e
and an iterator i over e. The OT tree is flatter because the iterator i creates a
path to e which does not go through c. Therefore, c, e, and i must have x as
their owner. In contrast, UT allows the exposure of i to x because this exposure
is readonly. Therefore, c remains the owner of both e and i.

Fig. 13 compares OT and UT on the benchmarks. We consider only allocation
sites, excluding strings and boxed primitives. Allocation sites provide the best
approximation of ownership structure. On average 25% of the OT 〈rep| 〉 sites
are typed rep in UT as well. On the other hand, on average 64% of the UT
rep sites are typed 〈rep| 〉 in OT as well. The discrepancy shows that it may
be more common to have write access to enclosing context (which lowers rep
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Benchmark OT: 〈rep| 〉 〈rep| 〉 not 〈rep| 〉 not 〈rep| 〉
UT: rep peer rep not rep

JOlden 26 (22%) 8 ( 7%) 19 (16%) 66 (55%)

tinySQL 32 ( 6%) 123 (24%) 13 ( 2%) 355 (68%)

htmlparser 27 ( 2%) 234 (20%) 16 ( 1%) 926 (77%)

ejc 44 ( 2%) 336 (12%) 81 ( 3%) 2321 (83%)

javad 6 (10%) 38 (66%) 0 ( 0%) 14 (24%)

SPECjbb 75 (26%) 84 (29%) 25 ( 9%) 110 (37%)

jdepend 13 ( 7%) 71 (41%) 1 ( 1%) 90 (51%)

classycle 1 ( 0%) 109 (45%) 5 ( 2%) 128 (53%)

Fig. 13. Ownership Types vs. Universe Types on allocation sites. The four columns give
the number of OT/UT pairings and, in parenthesis, the corresponding percentages. For
example, column 〈rep| 〉/peer shows the number of allocation sites that were inferred as
rep in OT and peer in UT.

to peer in UT), than it is to have readonly sharing of internal structure (which
allows an object to stay rep in UT while it is not rep in OT). On average 40%
of all allocation sites are inferred as rep in OT, and 14% are inferred as rep in
UT, which suggests that write access to enclosing context is more common than
readonly sharing of internal structure. The results suggest that in general, UT
and OT capture distinct ownership structure. Note that as expected, there is
a significantly larger percentage of rep allocation sites in UT compared to rep
variables.

To further understand the differences between UT and OT, we examined the
results of two of the benchmarks, javad and SPECjbb. Fig. 14(a) shows a partial
object graph for javad. Here j represents the jvmDump object, c is the classFile
object, f and f ′ are the fieldSection and fieldInfo objects, and m and m′ are the
methodSection and methodInfo objects. d is the DataStream object. All of c, f ,
f ′, m and m′ modify d, which is an object from enclosing context. This forces all
c, f , f ′, m, m′ and d to be peers, and children of j in the UT ownership tree.
Edges c→ f, f → f ′, c→ m and m→ m′ are 〈rep| 〉 in OT, but are peer in UT.
Now consider Fig. 14(b). It shows a partial object graph for SPECjbb. c is the
Company object, w is a Warehouse object, d is a District object, and a is Address
object which represents the District’s address. j is a JBBmain thread, m is a
TransactionManager, t is a Transaction and b is an array that stores transactions.

root

j

c

f f ’ m m’

d

root

c

w

d a

j

m

t b

(a) javad (b) SPECjbb

Fig. 14. Partial object graphs for the javad and SPECjbb case studies.
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Edges w → a and t→ a expose the Address object outside of its creating object
d. Therefore, the edge d→ a cannot be 〈rep| 〉 in OT. However, the exposure is
readonly, and it remains rep in UT.

6 Related Work

We discuss related work on ownership inference as well as other work on inference
of pluggable and extended types.

Several dynamic approaches for ownership inference exist [9, 18, 22, 28]. Al-
though a dynamic approach may produce more precise results, it is inherently
unsound and incurs a significant performance overhead. Also, it is difficult to gen-
eralize a dynamic approach to different type systems. In contrast, our approach
is static and can be applied to multiple type systems.

Aldrich et al. [1] present an ownership type system and a type inference algo-
rithm. Their inference creates equality, component and instantiation constraints
and solves these constraints. Our inference solves different kinds of constraints,
namely subtyping and adapt constraints.

Ma and Foster [16] propose Uno, a static analysis for automatically inferring
ownership, uniqueness, and other aliasing and encapsulation properties in Java.
Uno infers “stricter” ownership in which an owned object can only be accessed by
its owner. Our inference has a less-restrictive ownership model. Uno’s inference is
based on Soot and it is difficult to map the inference results back to the source
code, subsequently inhibiting type checking. Our type inference is integrated into
the Checker Framework; we perform type checking as well.

Greenfieldboyce and Foster [11] present a framework called JQual for inferring
user-defined type qualifiers in Java. JQual is effective for source-sink type systems,
for which programmers need to add annotations to the sources and sinks and
JQual infers the intermediate annotations for the rest of the program. Our tool
handles more complex type systems such as Ownership type systems. In addition,
JQual does not scale well in its field-sensitive mode as reported by Artzi et al.[2].
In contrast, our inference scales to programs of up to 110kLOC.

Chin et al. [3] propose CLARITY for the inference of user-defined qualifiers
for C programs based on user-defined rules, which can also be inferred given
user-defined invariants. CLARITY infers several type qualifiers, including pos and
neg for integers, nonnull for pointers, and tainted and untainted for strings. These
type qualifiers are not context-sensitive. Our tool focuses on type systems for Java,
and it is context-sensitive (viewpoint adaptation models context sensitivity).

Dietl et al. [7] present a tunable static inference for Generic Universe Types
(GUT). Constraints of GUT are encoded as a boolean satisfiability problem,
which is solved by a weighted Max-SAT solver. The inference is tunable in the
sense that programmers can direct the inference by setting different weights or
partially annotating the source code. In contrast, our inference can only be tuned
by accepting programmers’ manual annotations. However, by defining a ranking
over typings, we avoid the exponential SAT solver and manage to scale to larger
programs. A detailed comparison is left as future work.
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Milanova and Vitek [17] present a static dominance inference analysis, based
on which they perform Ownership Type inference. Our current work is an
improvement over [17]. First, it accepts manual annotations to direct the inference,
while [17] does not. Second, it provides optimality guarantees, while the inference
in [17] does not provide guarantees — in theory, it may end up with a solution
which produces a flat ownership tree. Third, our work includes a type checker
which is not available in [17], and it works on more and larger benchmarks.

Sergey and Clark [24] introduce the notion of gradual ownership types and a
corresponding consistent-subtyping relation. Their formalism provides a static
guarantee of ownership invariants for fully annotated programs, but requires
dynamic checks for partially-annotated programs. Their prototype works on
non-generic Java programs and they analyzed 8,200 lines of code. In contrast,
our inference is static and works on Java programs of up to 110kLOC.

Work on introducing generics to Java [10, 15] solves similar challenges, because
leaving every type as raw is a legal typing, but a useless one that expresses no
design intent and detects no coding errors. In contrast to our work, Donovan
et al. [10] use heuristics to find desirable solutions and their inference requires
a pointer analysis. Kieżun et al. [15] make use of type constraints to ensure
behavior preservation. They also use heuristics, otherwise user’s input is required.

Our algorithm for computing the set-based solution (Sect. 4.1) is similar to the
algorithm used by Tip et al. [15, 25]. Both algorithms start with sets containing
all possible answers and iteratively remove elements that are inconsistent with the
typing rules. Our work differs as we introduce a ranking over valid typings and
use the ranking to guide the automatic inference towards a final “best” typing.

Our work, as well as [25], falls in the category of type-based and constraint-
based analysis, originally proposed by Palsberg and Schwartzbach [20].

7 Conclusion

We presented a unified framework for type inference and type checking of owner-
ship type systems, and instantiated the framework for two such systems: Universe
Types and Ownership Types. We presented a heuristic ranking over valid typings,
and an efficient inference approach that produced maximal typings. We imple-
mented the approach on top of the Checker Framework and presented results for
Universe Types and Ownership Types on benchmarks of up to 110kLOC.
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