
Verifying TLA+ Invariants with ACL2Carlos Paheo?Department of Computer Sienes,University of Texas at Austin,Austin, Texas 78712paheo�s.utexas.eduAbstrat. We desribe the use of the ACL2 theorem prover to modeland verify properties of TLA+ spei�ations. We have written a trans-lator whose input is a TLA+ spei�ation along with onjetures andstrutured proofs of properties of the spei�ation. The translator's out-put is an ACL2 model of the spei�ation, and a list of ACL2 onjeturesorresponding to those setions of the proof outlines agged for mehan-ial veri�ation. We have used our tools to translate the Disk Synodalgorithm, and to verify two invariants of the algorithm.1 IntrodutionReasoning in TLA onsists largely of reasoning about ations. By most aounts,90% of all reasoning in TLA+ spei�ations 1 ours at the ation level, wheretemporal logi has been eliminated. Ation reasoning alone, for example, is in-volved in all but the last step of establishing an invariant of a spei�ation.Consider a system whose starting state satis�es the formula Init , and whosenext-state relation is desribed by Next . In order to prove an invariant Inv ofthe system, two lemmas are established:1. Init) Inv2. Inv ^ Next) Inv 0One we establish these two lemmas, one appliation of a TLA inferenerule, along with simple temporal reasoning, lets us establish the invariant at thetemporal level (the formula 2Inv). In the Disk Synod algorithm [2℄, establishing2Inv from formulas like (1) and (2) above takes up one page, while the reationof an invariant and its veri�ation at the ation level spans 18 pages.This report summarizes our experienes using a mehanial theorem proverto verify properties of TLA+ spei�ations. Our goal is to provide mehanialsupport for proving TLA+ invariants at the ation level. A system that deals? This work was supported by an IBM Partnership Award to J Strother Moore, aUROP grant from the Eduational Advanement Foundation, and by Compaq'sSystems Researh Center.1 TLA is a �rst-order temporal logi, while TLA+ is a spei�ation language basedon TLA.

e�etively with ation-level formulas would take us a long way in mehaniallyverifying the orretness of spei�ations.Our platform of hoie for mehanial veri�ation is ACL2 [3℄. The ACL2system is attrative for several reasons. It is among the most automated inthe spetrum of theorem provers, it blends arithmeti deision proedures withrewriting tehniques, and it is a stable and robust system, designed to takleindustrial-sized veri�ation projets.There are two main drawbaks to the use of ACL2 for verifying TLA+ spei-�ations. One is that, to make e�etive use of the prover's strengths, our TLA+onstruts must be �nite. Thus, in�nite sets are not allowed in our spei�a-tions. The seond drawbak to using ACL2 is the di�erent levels of abstrationat whih TLA+ and ACL2 users ommonly operate. ACL2 theories are usuallyfairly low-level, onrete and omputational. On the other hand, TLA+ spei�-ations tend to be more desriptive than onstrutive, and make liberal use ofhigher-level onepts whih are diÆult to handle in ACL2's �rst-order, essen-tially quanti�er-free logi. For example, in TLA+ we might write the maximalelement of a set of integers asMax �= CHOOSE x 2 S : 8 y 2 S : x � y .We an faithfully translate Max into ACL2 as follows. First, we de�ne afuntion (forall-1 S x) that aptures the meaning of the universally quanti�edstatement 8 y 2 S : x � y . Forall-1 goes through every element y in S , hekingwhether x � y , and returns t or nil aordingly. Next, we de�ne a funtion(filter-1 S) that �nds every element m in S suh that (forall-1 S m) = t.Finally, we de�ne Max as follows.(defun Max (S) (hoose (filter-1 S))).Without the restrition of a faithful translation, we may be inlined to de�nethe same onept|the maximal element of a set|in ACL2 with a single de�ni-tion, say, as (hoose-max S), where hoose-max is a reursive funtion that �ndsa maximal element in S by gradually working on a larger subset of S . (Ignorefor the moment the representation of sets as ACL2 lists):(defun hoose-max (s)(ond ((empty s) nil)((empty (dr s)) (ar s))((>= (ar s)(hoose-max (dr s)))(ar s))(t (hoose-max (dr s)))))Not surprisingly, properties of a maximal element are muh easier to derivein ACL2 under the seond representation.A way to reonile the onit between a faithful translation and an e�etivetranslation is to do our proving using what omes naturally in ACL2, and thenrelate our \natural" onstruts to their orresponding \spe-faithful" versions.(Notie that \natural" de�nitions in ACL2 will usually be at a lower-level of

abstration than their \spe-faithful" ounterparts). In our above example, weould prove a theorem stating the relationship between hoose-max and Max.Then, theorems about hoose-max ould be transferred to Max under appropri-ate hypotheses. This solution requires a greater degree of interation with thetheorem prover, but its lets us use ACL2 e�etively and at the same time relatesour work to to the original spei�ation.A �rst experiment at the University of Texas at Austin [8℄ onsisted in man-ually translating the Disk Synod algorithm into ACL2 and verifying two invari-ants of the algorithm. The next step, performed at Compaq's Systems ResearhCenter, was to automate the translation. Our tool not only translates TLA+spei�ations, but also strutured proofs [4℄ of onjetures about the spei�a-tions. In writing a strutured proof, we mark some reasoning steps as \hekedby ACL2" and leave others unmarked. The translator reates a list of ACL2defthm forms orresponding to the strutured proof, and gives speial names tothose orresponding to the \proof by ACL2" steps in the strutured proof. Weuse ACL2 to verify only suh defthm forms. The idea is that, short of mehani-ally verifying every step of a proof, a user might �rst want to explore piees ofa proof that are not entirely lear or where he laks on�dene. Also, we wantto use ACL2 only on those steps where it is appropriate to use ACL2 (low-level,quanti�er-free formulas). A future proof heker for TLA+ might, in addition tosteps labeled \heked by ACL2," also have steps labeled \heked by X " whereX is a di�erent theorem prover.In Setion 2 we lay out the translation proess from TLA+ to ACL2. Setion3 disusses briey the framework used to verify properties of translated spei�-ations, and disusses some aspets of the Disk Synods spei�ation where ourveri�ation e�ort shed light. Setion 4 summarizes what we learned. Appendix Adesribes the mehanial translator in more detail.2 TranslationTLA+ is based in set theory, so we need an e�etive framework to reason aboutsets in ACL2. Our translation sheme builds upon the �nite set theory workdeveloped by Moore [7℄; we will assume familiarity with it. (We also assumefamiliarity with ACL2 [3℄ and with TLA+ [5℄.) Moore's theory allows us toexpress in a natural way basi set onepts like membership, set equality, orderedpairs, funtions and sequenes.We use reursive funtions on sets to de�ne several onepts. Quanti�ationis represented as a reursive funtion that tests a set's elements for the desiredproperty. Set onstrutors, like fx 2 S : p(x)g and ff (x) : x 2 Sg, are alsode�ned as reursive funtions that transform or �lter elements of a set. Throughthe use of ACL2 maros, we provide for a onvenient notation to express quan-ti�ation or set omprehension. For example, the ACL2 maro(defall name (s) :forall x :in s :holds (p x))reates a funtion (name s) that returns t if every element x in s satis�es(p x), and returns nil otherwise. Examples of other frequently used maros are:

{ (defexists name (s) :exists x :in s :suh-that (p x)) reates a funtion(name s) that returns t if some element x in s has property (p x), andreturns nil otherwise.{ (defmap name (s) :for x :in s :suh-that (p x)) reates a funtion(name s) that returns the set of elements x in s with property (p x).{ (defmap name (s) :for x :in s :map (f x)) reates a funtion (name s)that maps eah element x in s into (f x), and returns the set of mappedelements.{ (defmap-fn name (s) :for x :in s :map (f x)) reates a funtion (name s)that maps eah element x in s into (f x) and returns the set of orderedpairs h x , (f x) i.Figure 1 presents our translation sheme for some TLA+ expressions. Wedo not provide entries for onepts that translate diretly into ACL2's built-inde�nitions (e.g. ^, _,)) or into Moore's �nite set theory de�nitions (e.g. 2,�, [, \). Every set appearing in Figure 1 is assumed to be �nite. Note thatthe onstruts we annot diretly translate deal with quanti�ation over the(in�nite) universe of TLA+ objets.2.1 Naming ConventionAs we mention above, an expression like fx 2 S : p(x)g is translated using thedefmapmaro, whih de�nes a funtion that onstruts the given set. As an ACL2funtion, this set onstrutor needs a name. We name suh expressions by on-atenating the name of the top-level de�nition in whih the expression appearswith forall, exists, subsetof or setofall, depending on the expression.Finally, we append a number to the name to disambiguate similar expressionsappearing in the same top-level de�nition. For example, if the TLA+ expressionfx 2 S : p(x)g is the �rst \set �ltering" expression to our as part of thede�nition of ation A, it gets translated into something like (A-subsetof-1 s),where A-subsetof-1 is de�ned using the defmap maro:(defmap A-subsetof-1 (s) :for x :in s :suh-that (p x)).Other TLA+ onstruts requiring a name in ACL2 are sets of reords andquanti�ed expressions. Their naming onventions are similar to the above exam-ple.2.2 System VariablesWe represent TLA+ variables as ACL2 variables. We write the variable x as x,and the primed variable x 0 as x-n.In TLA+, state variables are global. TLA+ de�nitions usually do not pass asparameters state variables involved in the de�nitions. Sine ACL2 is appliative,we must inlude as arguments any variables used, inluding state variables. Forexample, the ation Next(a) �= x 0 = x + a translates into the ACL2 event(defun next (a x x-n) (= x-n (+ x a))).

LogiBOOLEAN (brae t nil)8x : p no translation9x : p no translation8x 2 S : p (f S v1 : : : vk), where f adheres to the naming onvention, and isde�ned by(deftla-forall f (dom v1 : : : vk) :forall x :in dom :holds p).9x 2 S : p (f S v1 : : : vk), where f adheres to the naming onvention, and isde�ned by(deftla-exists f (dom v1 : : : vk) :exists x :in dom:suh-that p).CHOOSE x : p no translationCHOOSE x 2 S : p (hoose (f S v1 : : : vk)), where f adheres to the naming onvention,and is de�ned by(deftla-map f (dom v1 : : : vk) :for x :in dom :suh-that p).SetsSUBSET S (powerset S)UNION S (union* S)Funtionsf [e℄ (apply f e)DOMAIN f (domain f)[x 2 S 7! e℄ (f S v1 : : : vk), where f adheres to the naming onvention, and isde�ned by(deftla-map-fn f (dom v1 : : : vk) :for x :in dom :map e).[S ! T ℄ (all-fns S T)[f EXCEPT ![e1℄ = e2℄ (exept f e1 e2)Reords[h1 7! e1; : : : ; hn 7! en ℄ (fun (h1 e1) : : : (hn en))[h1 : S 1; : : : ; hn : Sn ℄ (name), where name adheres to the naming onvention and is de�nedby(defre name (h1 S1) : : : (hn Sn)).Fig. 1. TLA{ACL2 translations.

We have reated a series of maros that let us de�ne and use state fun-tions and ations without expliit referene to the variables involved. The maro(defation next (a) (= x-n (+ x a))) expands into the following events.(defun next (a x x-n) (= x-n (+ x a)))(defmaro next (a) (next a x x-n))Now, we an write (next a) when referring to ation Next(a), without writ-ing down the state variables involved. Similar maros used to hide variable ar-guments are:{ defstate : for de�ning state funtions with variable hiding. The maro(defstate name (x1 : : : xn) �) reates in turn two maros, (name x1 : : : xn)and (name-n x1 : : : xn), referring to the state funtion in the urrent and nextstate, respetively.{ deftla-exists : same as defexists, with variable hiding.{ deftla-forall : same as defall, with variable hiding.{ deftla-map : same as defmap, with variable hiding.{ deftla-map-fn : same as defmap-fn, with variable hiding.ACL2 expands away all maro alls in its output, so we will see the systemvariables as arguments to funtions in ACL2's output. We have not found it amajor distration.3 Proving ConjeturesDisk Synod is a distributed onsensus algorithm in whih a group of proessorsommuniate through disks. In the paper introduing Disk Synod [1℄, Gafni andLamport establish six invariane onjetures of Disk Synod. These invariantsare used to prove onsisteny of the algorithm. Using our tools, we translateda TLA+ spei�ation of Disk Synod, as well as strutured proofs of three ofGafni and Lamport's invariants. Of the three strutured proofs we translated,we heked most of the proof steps in two of them with ACL2. We will notdisuss the Disk Synod algorithm or its proof of orretness here; for suh adisussion refer to [1℄. The Disk Synod spei�ation, the strutured proofs andtheir translation an all be found under the sr/paxos/ diretory (where sr/is the diretory where this report is loated).Figures 2 and 3 show the proof outlines for lemmas I 2a and I 2. These proofoutlines (ast in a speial syntax{see Appendix A) are the input to our tool,whih translates them into ACL2 defthm events. In designing the translator, wewant to ensure that someone looking at the strutured proof of a onjeture antell easily whih steps are laimed to be mehanially heked. We also want toensure that someone looking at the �le of ACL2 defthm events orresponding toa strutured proof an tell easily whih events to prove in order to be onsistentwith any laims made in the strutured proof. It is obvious from looking at thestrutured proofs in Figures 2 and 3 whih steps are laimed to be mehaniallyheked. As for the list of defthm events orresponding to the strutured proofs,

our translator appends the suÆx \-ACL2" to those events that must be mehan-ially heked. Other events are named aording to their step number in thestrutured proof.We write strutured proofs using a speial syntax (see Appendix A). Weuse the TLA+ front end (in development at SRC) to parse the proof outlines.However, the front end has no notion of strutured proofs; it only parses TLA+expressions and modules. Using TLA+ syntax that the front end an handle,we enode strutured proofs as TLA+ expressions. After the front end parsesthem, we detet them as strutured proofs and handle them aordingly. Formore details on how strutured proofs are handled and translated into ACL2defthm events, see Appendix A.We disuss lemmas I 2a and I 2 and their proofs at length in [8℄. Here, wegive some highlights.In addition to spotting a number of typographi errors in Gafni and Lam-port's written proofs, we disovered a nontrivial error in the statement of the-orem I 2: an invariant (HInv2) was omitted as a hypothesis. Our proof e�orthas yielded a orretion to the statement of Lemma I 2.Our goal of mehanial veri�ation also fored us to think about subtle andimportant details that should be mentioned in the original strutured proofs ofLamport and Gafni. We now disuss two examples.The next-state ation. Disk Synod's next-state ation is existentially quan-ti�ed on the outside:Next �= 9 p 2 Pro : _ StartBallot(p)_ 9 d 2 Disk : _ Phase0Read(p; d)_ Phase1or2Write(p; d)_ 9 q 2 Pro p : Phase1or2Read(p; d ; q)_ EndPhase1or2(p)_ Fail(p)_ EndPhase0(p)The next-state ation is typially a hypothesis in an invariant onjeture. Insuh a proof, we might want to show that every proessor in the system has someproperty � whih is preserved aross steps. We do this by assuming a onstantproess p with property �(p), and showing that �0(p) holds with respet to thenext-state ation. Notie that we have mentioned the variable p twie|one inthe de�nition of Next above, and one in mentioning a partiular proessor p forwhih � holds. However, these two mentions of p are not neessarily mentionsof the same proessor.What does it mean to assume Next? It means that for some proessor |allit p2|Next holds, or intuitively, an ation of Next is \exeuted." Does it followthat p2 is the same as the onstant p for whih �(p) holds? Not neessarily. Yet,in their proof of lemma I 2, Gafni and Lamport make no distintion betweenp2 and p. In our veri�ation e�ort, we were required to make suh distintions,and to establish invariants for both ases.

HInv1 ^HNext) HInv10Assume: 1. onstant p 2 Pro2. onstant q 2 Pro n fPg3. onstant d 2 Disk4. HInv15. _ StartBallot(p)_ Phase0Read(p; d)_ Phase1or2Write(p; d)_ Phase1or2Read(p; d; q)_ EndPhase1or2(p)_ Fail(p)_ EndPhase0(p)6. ChosenAllinputAtionProve: HInv10h1i1. ase: StartBallot(p)Assume: 1. onstant b 2 Ballot(p)2. ^ b > dblok[p℄:mbal^ dblok0[dblok exept ![p℄:mbal = b℄Prove: HInv10Proof: By ACL2.h1i2. ase: Phase1or2Write(p,d)Proof: By ACL2.h1i3. ase: Phase1or2Read(p,d,q)Proof: By ACL2.h1i4. ase: Phase0Read(p,d)Proof: By ACL2.h1i5. ase: Fail(p)Proof: By ACL2.h1i6. ase: EndPhase0(p)Assume: 1. onstant b 2 Ballot(p)2. ^ 8 r 2 allBloksRead(P) : B > r:mbal^ dblok0 = [dblok exept ![P ℄ = [r exept !:mbal = B℄℄iProve: HInv10Proof: By ACL2.h1i7. ase: EndPhase1or2(p)Proof: By ACL2.h1i8. Q.E.D.Proof: Cases are exhaustive. Fig. 2. Lemma I2a.

HInv1 ^HInv2 ^ HInv3 ^HNext) HInv30Assume: 1. onstants p; p2 2 Pro2. onstant q 2 Pro3. onstant q2 2 Pro n fPg4. onstants d ; d2 2 Disk5. HInv1 ^HInv2 ^HInv36. _ StartBallot(p2)Phase0Read(p2; d2)_ Phase1or2Write(p2; d2)Phase1or2Read(p2; d2; q2)_ EndPhase1or2(p2)Fail(p2)EndPhase0(p2)7. ChosenAllinputAtion8. phase 0[p℄ 2 1; 2 ^ phase 0[q ℄ 2 1; 2 ^ hasRead(p; d ; q)0 ^ hasRead(q ; d ; p)0Prove: _ [blok 7! dblok0[q℄; pro 7! q℄ 2 bloksRead0[p℄[d℄_ [blok 7! dblok0[p℄; pro 7! p℄ 2 bloksRead0[q℄[d℄h1i1. ase: StartBallot(p)Assume: 1. onstant b 2 Ballot(p)2. ^ b > dblok[p℄:mbal^ dblok0[dblok exept ![p℄:mbal = b℄Prove: _ [blok 7! dblok0[q℄; pro 7! q℄ 2 bloksRead0[p℄[d℄_ [blok 7! dblok0[p℄; pro 7! p℄ 2 bloksRead0[q℄[d℄Proof: By ACL2.h1i2. ase: Phase1or2Write(p,d)Proof: By ACL2.h1i3. ase: Phase1or2Read(p,d,q)h2i1. ase: d2 6= dProof: By ACL2.h2i2. ase: d2 = dh3i1. ase: p2 6= p ^p2 6= qProof: By ACL2.h3i2. ase: p2 = ph4i1. ase: q26=qProof: By ACL2.h4i2. ase: q2=qProof: By ACL2.h4i3. Q.E.D.Proof: Cases h4i1 and h4i2 are exhaustive.h3i3. ase: p2=qh4i1. ase: q26=qProof: By ACL2.h4i2. ase: q2=qProof: By ACL2.h4i3. Q.E.D.Proof: Cases h4i1 and h4i2 are exhaustive.h3i4. Q.E.D.Proof: Cases h3i1, h3i2 and h3i3 are exhaustive.h2i3. Q.E.D.Proof: Cases h2i1 and h2i2 are exhaustive.h1i4. ase: Phase0Read(p,d)Proof: By ACL2.h1i5. ase: Fail(p)Proof: By ACL2.h1i6. ase: EndPhase0(p)Proof: By ACL2.h1i7. ase: EndPhase1or2(p)Proof: By ACL2.h1i8. Q.E.D.Proof: Cases are exhaustive. Fig. 3. Lemma I2.

An unmentioned invariant. For our veri�ation to sueed, we had toestablish an unmentioned invariant of Disk Synod, whih we all the well-behavedinvariant. In Disk Synod, if every proessor has a loal opy of a variable namedx , the set of these loal variables is modeled as one shared variable x , whih isa funtion mapping eah proessor p to its orresponding value x [p℄. The well-behaved invariant says that when a proessor p hanges the value of a sharedvariable like x , it hanges only its own slot in the variable. Figure 4 shows thewell-behaved invariant. This invariant is ruial in heking most steps of LemmaI 2.HNext(p2) ^ (p2 6= p)) _ input 0[p℄ = input [p℄_ output 0[p℄ = output [p℄_ disk 0[p℄ = disk [p℄_ phase 0[p℄ = phase[p℄_ dblok 0[p℄ = dblok [p℄_ diskswritten 0[p℄ = diskswritten[p℄_ bloksread 0 [p℄ = bloksread [p℄Fig. 4. The \well-behaved" invariant.4 ConlusionAn important lesson we learned is perhaps an obvious one: use a tool only whereits strengths will shine. ACL2 is a general-purpose theorem prover, and one anuse it to verify every step of a proof in any mathematial domain, from realanalysis to iruit design. In our �rst experiments, we used ACL2 to verify everystep in the proofs of I 2a and I 2. More than half our time was spent trying toreason about simple steps in higher-level onepts like quanti�ation. Our seondapproah was to use ACL2 only where it might be suitable|loser to the leavesof a proof, where quanti�ation has been eliminated and all that remains arelarge but low-level formulas. Although low-level, these formulas are nontrivialand would be a hallenge for any theorem prover. Moreover, it is most oftenin these elaborate steps where errors are unovered. It is to ACL2's redit thatit did so muh work with little guidane. At the orret level of abstration,the prover not only helped us verify statements, but it also pointed the way toomissions and errors with remarkable preision.In further work, we would ontinue fousing ACL2's attention on low-levelsegments of TLA+ proofs, re�ning our tools and lemma libraries to inrease theprover's power in this restrited domain. For the remaining high-level steps ofTLA+ proofs, we might reruit a di�erent theorem prover with a logi moreexpressive than ACL2's. The framework for strutured proofs we have followedallows for ollaboration among multiple provers|eah with its own strengths|in attaking a veri�ation projet.

5 AknowledgmentsI would like to thank J Moore, Leslie Lamport and Yuan Yu for all their help.Referenes1. Eli Gafni and Leslie Lamport. Disk Synod. Tehnial Report 163, Compaq SystemsResearh Center, July 2000.2. Eli Gafni and Leslie Lamport. Disk Paxos. in Maurie Herlihy, editor, DistributedComputing: 14th International Conferene, DISC 2000 Leture Notes in ComputerSiene number 1914, pages 330-344, Springer-Verlag, 2000.3. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, Computer-AidedReasoning: An Approah, Kluwer Aademi Publishers, 2000.4. Leslie Lamport. How to Write a Proof. Amerian Mathematial Monthly 102, 7(August-September 1993) pages 600-608.5. Leslie Lamport. Speifying Conurrent Systems with TLA+. In M. Broy and R.Steinbr�uggen, editors, Calulational System Design.6. Leslie Lamport. The Temporal Logi of Ations. ACM Transations on Program-ming Languages and Systems, 16(3):872-923, May 1994.7. J Moore. Finite Set Theory in ACL2. TPHOLS '01, Edinburgh, September 2001.8. Carlos Paheo. Reasoning about TLA Ations. Undergraduate Honors Thesis.Tehnial Report TR01-16, Department of Computer Sienes, The University ofTexas at Austin, May 2001.A The Mehanial TranslatorThis appendix desribes the mehanial translator in more detail. Our startingpoint is the TLA+ Java front end developed at SRC. The front end takes asinput a TLA+ module, parses it, performs some semanti analysis, and returnsa set of semanti trees orresponding to the TLA+ de�nitions and delarationsappearing in the given module.Starting with the semanti trees generated by the Java front end, the trans-lation into ACL2 proeeds in two stages.A.1 Stage 1: Generating S-expressionsThe �rst part of our translation tool is a program written in Java, pass-one,that is responsible for alling the front end on a TLA+ �le spei�ed by theuser. If the front end suessfully proesses the �le, pass-one reates a new �le,intermediate.lisp, whih ontains basially the same semanti trees generated bythe front end, enoded as s-expressions. We now desribe the enoding proess.Assume a semanti tree S . In what follows, we identify S with the TLA+ ex-pression it represents, so instead of saying that S is a semanti node of typeStringKind that represents the string str , we say that S is the string str .

{ If S is a CONSTANT delaration of a onstant C with n arguments, it isenoded as the s-expression (C n). Pass-one atually obtains all onstantdelarations at the same time from the front end, enodes them as desribedabove, and wraps them into the following s-expression:(tla-onstants (C1 n1) ... (Ck nk)){ If S is an ASSUME delaration, it is not translated or appended to the listof s-expressions. (This has nothing to do with our ability to proess thesedelarations. A more developed translator would handle ASSUME delara-tions.){ If S is the number n, it is enoded as n.{ If S is the string s , it is enoded as "s ".{ If S is a de�nition f (x 1; : : : ; xn) �= exp, it is enoded as(definition (line ol) level f (x1 : : : xn) exp2)where line and ol are the line and olumn numbers where f 's de�nition ap-pears in the soure TLA+ �le, level equals onstant-level, variable-levelor ation-level, depending on the level of exp (dedued by the front end),and exp2 is the enoding of exp.{ If S has the formlet def 1 �= exp1: : :def n �= expnin exp ,it is enoded as (let-in (deist) exp2), where deist is the list obtained byenoding de�nitions def 1 through def n , and exp2 is the enoding of expres-sion exp.{ If S is the set of reords [h1 : S 1; : : : ; hn : Sn ℄, it is enoded as(set-of-reords (line ol) (h1 S1) : : : (hn Sn)).NOTE: For suessful translation into ACL2, a set of reords must be aonstant expression|it must not be de�ned in terms of any variables.{ The following onstruts are enoded as (set-omp type (line ol) ((x1 S1): : : (xn Sn)) �), where type orresponds to the kind of expression as follows.fx 1 2 S 1 : �g (type = subsetof)f� : x 1 2 S 1g (type = setofall)8 x 1 2 S 1; : : : ; xn 2 Sn : � (type = forall)9 x 1 2 S 1; : : : ; xn 2 Sn : � (type = exists)CHOOSE x 2 S : � (type = boundedhoose)[x 1 2 S 1 7! �℄ (type = funtion){ If S is the unprimed variable x , it is enoded as x .{ If S is the primed variable x 0, it is enoded as x -n.{ If S is f (x 1; : : : ; xn)0 for some user-de�ned operator f , it is enoded as (f -n x1: : : xn). NOTE: This enoding makes sense for user-de�ned state funtions,beause for state funtions, we will ultimately reate two ACL2 funtionalls, f and f -n, denoting f in its urrent and next state. The enodingmakes no sense for other primed expressions, like (x + y)0. We assume thatonly user-de�ned state funtions or variables are primed in the spei�ation.This limits the TLA+ expressions we an translate.

{ Any other operator appliation f (x 1; : : : ; xn) is enoded as (f2 x1 : : : xn),where f 2 equals f for user-de�ned operators, but may di�er from f for otheroperator names like in, whih is replaed by mem, the ACL2 set membershipfuntion name.NOTES:{ We do not add de�nitions of operators already built into ACL2, suh asboolean operators or set theory operators.{ There is no support for primed expressions other than the ones outlinedabove; other primed expressions will be translated inorretly.{ We do not expet to enounter unbound expressions like 8 x : p: If we doenounter them, the translation will ontinue, but the �nal translation willfail to be admitted by ACL2 (it's easy to see why it fails beause in plae ofthe unbounded expression, an error message is inserted.)A.2 Stage 2: Generating ACL2 EventsWe now desribe pass-two, the program that translates the �le intermediate.lispinto a �le of ACL2 events 2. This program is written in ACL2 itself, a subset ofCommon LISP.For an input TLA+ �le spe.tla, pass-two reates two �les, spe.lisp and spe-onstants.lisp. The �le spe-onstants.lisp ontains a list of ACL2 onstants (notto be onfused with TLA+ onstants) helpful to the developer of the TLA-ACL2 system. For instane, the onstant *all-defs* is a listing of the ontentsin intermediate.lisp. Sine this onstant will be loaded into the system along witha spei�ation, the intermediate translation will be available, and maros an bedeveloped that use *all-defs* to look for information about the spei�ation.Other onstants de�ned in spe-onstants.lisp are *final-defs*, a list of all the�nal events generated, and *variables*, a list of the system variables.The �le spe.lisp is the most important �le reated in the translation proess.It ontains the ACL2 events orresponding to the translation.Up to this point, we have just taken a list of semanti trees stored as Javadata strutures, and onverted them into s-expressions. Now, we detail how theses-expressions are translated into ACL2 events.For eah (non-theorem) de�nition, pass-two alls the funtion Translate. Foreah theorem, it alls the funtion CreateThms.How Translate Works Translate's job is to take an s-expression generatedby pass-one, and produe an ACL2 event, or list of events, orresponding to theexpression. It works as follows. (Our desription is intuitive, and not meant tobe formal. For more details, read the ommented ode.)2 An ACL2 event is a form submitted at the ACL2 prompt that auses ACL2 to takesome ation, like de�ne a new funtion or prove a theorem.

{ The expression (tla-onstants (C1 n1) ... (Ck nk)) beomes the list ofevents(defstub C 1 (x 1 : : : xn1) t)...(defstub C k (x 1 : : : xnk) t){ The expression (tla-variables (v1 : : : vn)) beomes the event(defonst *variables* '(v1 : : : vn)).{ The expression(definition (line ol) level f (x1 : : : xn) expr)an our in two ontexts: as a top-level de�nition, or as a de�nition in aLET-IN form. Both instanes are handled the same way. The following ACL2event is reated:(event f (x1 : : : xn) body)where event is deftla-fun, defstate, or defation, depending on level be-ing onstant-level, variable-level, or ation-level (respetively), andbody is the result of alling Translate on expr .{ The expression (set-of-reords (line ol) (h1 S1) : : : (hn Sn)) beomes theACL2 event(defre name (h1 S1) : : : (hn Sn))where name is obtained by onatenating the identi�ers h1 : : : hn . The o-urrene of the set of reords within an expression is replaed by the funtionall (name).{ The expression (set-omp type (line ol) ((x1 S1) : : : (xn Sn)) �) is trans-lated as follows.1. If n = 1 (there is only one bound pair (x1 S1)), then� (set-omp setofall (line ol) ((x1 S1)) �) beomes(deftla-map name (dom a1 : : : an) :for x1 :in dom :map �2)� (set-omp subsetof (line ol) ((x1 S1)) �) beomes(deftla-map name (dom a1 : : : an) :for x1 :in dom :suh-that �2)� (set-omp funtion (line ol) ((x1 S1)) �) beomes(deftla-map-fn name (dom a1 : : : an) :for x1 :in dom :map �2)� (set-omp exists (line ol) ((x1 S1)) �) beomes(deftla-exists name (dom a1 : : : an) :exists x1 :in dom:suh-that �2)� (set-omp forall (line ol) ((x1 S1)) �) beomes(deftla-forall name (dom a1 : : : an) :forall x1 :in dom:holds �2)Where� a1 : : : an are the ontext parameters appearing in �. We illustrate themeaning of ontext parameters with an example: given the TLA+ def-inition f (a; b;) �= a 2 fx 2 b : x = g, the ontext parametersof the expression fx 2 b : x = g are b and .� �2 is the translation of �.� name is determined by the naming onvention (see Setion 2).

The ourrene of the quanti�ed expression is replaed by the all (nameS1 a1 : : : an).2. if n > 1 (there are several bound pairs (xi Si)), we �rst translate theexpressionexp2 =(set-omp type (line ol) ((x2 S2) : : : (xn Sn)) �), and then wetranslate the expression (set-omp type (line ol) ((x1 S1)) �2), where�2 is a all of the funtion resulting from exp2.{ Any other expression translates into itself.How CreateThms Works Ideally, the front end would be able to parse stru-tured proofs. Sine it does not, we have developed an ad-ho enoding for proofs,using expressions (suh as tuples and sets of reords) that the front end handles.This way, we an write proofs inside a module, and have them parsed by thefront end. To the front end (and to pass-one) proofs are just TLA+ expressions;they aren't handled in any speial way. It is during the seond stage of trans-lation that we reognize proofs and generate the appropriate ACL2 events forthem.We de�ne proofs and assertions in a mutually reursive fashion.Proof. The proof of a statement P is a sequene of steps:[step1 : Assertion1;: : :stepn : Assertionn;stepn+1 : QEDStep ℄Where{ stepi is a reord �eld identi�er of the form s i j , where i and j are integersdenoting level and step numbers of the proof (see [4℄).{ Assertioni is an assertion as de�ned below.{ QEDStep is a string ontaining an explanation of the proof of P. The stringmust begin with \Q.E.D.". Examples are \Q.E.D. By propositional logi"or \Q.E.D. ACL2". The latter example is important | this is how we letthe translator know that a proof is expeted to be mehanially heked byACL2.Writing a QEDStep where a level-i proof is expeted is shorthand for[step i 1 : QEDStep ℄:Assertion. An assertion an have two forms:{ [assume : Assumptions; prove : Goal; proof : Proof ℄{ [ase : Case; proof : Proof ℄Where

{ Assumptions an be a single TLA+ expression, a sequene of TLA+ expres-sions hAssm1; : : : ; Assmn i, or a reord [a1 : Assm1; : : : ; an : Assmn ℄.The last option is intended to let the user name assumptions and refer tothem by name at a later stage in a proof, but this funtionality has not beenimplemented.{ Proof is a proof as de�ned above.{ Goal is a TLA+ expression, denoting the statement to be proved.{ Case is a TLA+ expression, denoting the ase to onsider.NOTE. An assertion [ase : Case; proof : Proof ℄ is equivalent to[assume : Case; prove : P; proof : Proof ℄where P is the statement whose proof ontains the assertion. To illustrate,the following two assertions are equivalent.[assume : << >>, [assume : << >>,prove : P, prove : P,proof : proof :[s_1_1 : [assume : x = 1, [s_1_1 : [ase : x = 1,prove : P, proof : "Q.E.D." ℄,proof : "Q.E.D." ℄, s_1_2 : [ase : x # 1,s_1_2 : [assume : x # 1, proof : "Q.E.D." ℄℄℄prove : P,proof : "Q.E.D." ℄℄℄Introduing new identi�ers. Sometimes we need to introdue new identi�ersin a proof. For example, when proving (9 x 2 S)) P , we might assume theexistene of a onstant belonging to S , and use to establish P . We introduenew names in proofs using the LET-IN onstrut. In our example, we would write[assume : << >>,prove : P,proof :LET == "new"IN[s_1_1 : [assume : \in S,prove : P,Proof :℄℄℄The value "new" assigned to is only a plaeholder|in order for the abovestruture to be parsed needs a de�nition. In ACL2, we de�ne to be anonstant with no properties.Steps that hoose a value. A proof step may involve hoosing a value withertain properties from a set. Suh a step is aompanied with a proof of thevalue's existene. Here is an example. (For a riher example, see [4℄ p.7)< 3 > 1: Choose x 2 S suh that p(x)PROOF: Let x be 2. Then p(2).

< 3 > 2::::< 3 > 3::::We translate the above example as follows. Notie that we add a step orre-sponding to the proof obligation arising from our hoie of x.LET x == CHOOSE SIN[s_3_1 : p(x),s_3_2 : ...s_3_3 : ...℄Generating Theorems. We now desribe how a list of ACL2 defthm eventsis generated from a strutured proof. We start with the s-expression represen-tation of a strutured proof (i.e. a set of reords denoting a strutured proof).Seond-pass reognizes de�nitions whose name ontains the substring theorem.In the soure TLA+ �le, a theorem P looks like this.TheoremName ==[assume : << >>,prove : P,proof : �℄For this desription, we assume that CreateThms takes three arguments: alist of assumptions, a goal, and a proof. The top-level all to CreateThms isCreateThms(nil ;P ; �).Now, onsider a general instane CreateThms(assumptions ; goal ; proof) of aall to CreateThms .{ If proof is a Q.E.D. step, reate the ACL2 event(defthm name (implies (and assumptions) goal))where name is the name of theorem, onatenated with the step name, on-atenated with the string \ -ACL2" if the proof is \Q.E.D. ACL2".{ Otherwise, proof is a sequene of steps. For eah step s in the proof, generatea list of events as follows.� If s is of the form[assume : newAssumptions ; prove : newGoal ; proof : newProof ℄,generate a list onsisting of the ACL2 events returned by the allCreateThms(assumptions + newAssumptions ;newGoal ;newProof)and the event(defthm name (implies (and assumptions) goal)),where name is the name of the theorem, onatenated with the stepname.

� If s is of the form[ase : newCase; proof : newProof ℄,generate a list onsisting of the ACL2 events returned by the allCreateThms(newCase + assumptions ; goal ;newProof)and the event(defthm name (implies (and assumptions) goal)).where name is the name of the theorem, onatenated with the stepname.Conatenate all the lists of events resulting from proessing the steps, andreturn the onatenated list.

