
Verifying TLA+ Invariants with ACL2Carlos Pa
he
o?Department of Computer S
ien
es,University of Texas at Austin,Austin, Texas 78712pa
he
o�
s.utexas.eduAbstra
t. We des
ribe the use of the ACL2 theorem prover to modeland verify properties of TLA+ spe
i�
ations. We have written a trans-lator whose input is a TLA+ spe
i�
ation along with
onje
tures andstru
tured proofs of properties of the spe
i�
ation. The translator's out-put is an ACL2 model of the spe
i�
ation, and a list of ACL2
onje
tures
orresponding to those se
tions of the proof outlines
agged for me
han-i
al veri�
ation. We have used our tools to translate the Disk Synodalgorithm, and to verify two invariants of the algorithm.1 Introdu
tionReasoning in TLA
onsists largely of reasoning about a
tions. By most a

ounts,90% of all reasoning in TLA+ spe
i�
ations 1 o

urs at the a
tion level, wheretemporal logi
 has been eliminated. A
tion reasoning alone, for example, is in-volved in all but the last step of establishing an invariant of a spe
i�
ation.Consider a system whose starting state satis�es the formula Init , and whosenext-state relation is des
ribed by Next . In order to prove an invariant Inv ofthe system, two lemmas are established:1. Init) Inv2. Inv ^ Next) Inv 0On
e we establish these two lemmas, one appli
ation of a TLA inferen
erule, along with simple temporal reasoning, lets us establish the invariant at thetemporal level (the formula 2Inv). In the Disk Synod algorithm [2℄, establishing2Inv from formulas like (1) and (2) above takes up one page, while the
reationof an invariant and its veri�
ation at the a
tion level spans 18 pages.This report summarizes our experien
es using a me
hani
al theorem proverto verify properties of TLA+ spe
i�
ations. Our goal is to provide me
hani
alsupport for proving TLA+ invariants at the a
tion level. A system that deals? This work was supported by an IBM Partnership Award to J Strother Moore, aUROP grant from the Edu
ational Advan
ement Foundation, and by Compaq'sSystems Resear
h Center.1 TLA is a �rst-order temporal logi
, while TLA+ is a spe
i�
ation language basedon TLA.

e�e
tively with a
tion-level formulas would take us a long way in me
hani
allyverifying the
orre
tness of spe
i�
ations.Our platform of
hoi
e for me
hani
al veri�
ation is ACL2 [3℄. The ACL2system is attra
tive for several reasons. It is among the most automated inthe spe
trum of theorem provers, it blends arithmeti
 de
ision pro
edures withrewriting te
hniques, and it is a stable and robust system, designed to ta
kleindustrial-sized veri�
ation proje
ts.There are two main drawba
ks to the use of ACL2 for verifying TLA+ spe
i-�
ations. One is that, to make e�e
tive use of the prover's strengths, our TLA+
onstru
ts must be �nite. Thus, in�nite sets are not allowed in our spe
i�
a-tions. The se
ond drawba
k to using ACL2 is the di�erent levels of abstra
tionat whi
h TLA+ and ACL2 users
ommonly operate. ACL2 theories are usuallyfairly low-level,
on
rete and
omputational. On the other hand, TLA+ spe
i�-
ations tend to be more des
riptive than
onstru
tive, and make liberal use ofhigher-level
on
epts whi
h are diÆ
ult to handle in ACL2's �rst-order, essen-tially quanti�er-free logi
. For example, in TLA+ we might write the maximalelement of a set of integers asMax �= CHOOSE x 2 S : 8 y 2 S : x � y .We
an faithfully translate Max into ACL2 as follows. First, we de�ne afun
tion (forall-1 S x) that
aptures the meaning of the universally quanti�edstatement 8 y 2 S : x � y . Forall-1 goes through every element y in S ,
he
kingwhether x � y , and returns t or nil a

ordingly. Next, we de�ne a fun
tion(filter-1 S) that �nds every element m in S su
h that (forall-1 S m) = t.Finally, we de�ne Max as follows.(defun Max (S) (
hoose (filter-1 S))).Without the restri
tion of a faithful translation, we may be in
lined to de�nethe same
on
ept|the maximal element of a set|in ACL2 with a single de�ni-tion, say, as (
hoose-max S), where
hoose-max is a re
ursive fun
tion that �ndsa maximal element in S by gradually working on a larger subset of S . (Ignorefor the moment the representation of sets as ACL2 lists):(defun
hoose-max (s)(
ond ((empty s) nil)((empty (
dr s)) (
ar s))((>= (
ar s)(
hoose-max (
dr s)))(
ar s))(t (
hoose-max (
dr s)))))Not surprisingly, properties of a maximal element are mu
h easier to derivein ACL2 under the se
ond representation.A way to re
on
ile the
on
i
t between a faithful translation and an e�e
tivetranslation is to do our proving using what
omes naturally in ACL2, and thenrelate our \natural"
onstru
ts to their
orresponding \spe
-faithful" versions.(Noti
e that \natural" de�nitions in ACL2 will usually be at a lower-level of

abstra
tion than their \spe
-faithful"
ounterparts). In our above example, we
ould prove a theorem stating the relationship between
hoose-max and Max.Then, theorems about
hoose-max
ould be transferred to Max under appropri-ate hypotheses. This solution requires a greater degree of intera
tion with thetheorem prover, but its lets us use ACL2 e�e
tively and at the same time relatesour work to to the original spe
i�
ation.A �rst experiment at the University of Texas at Austin [8℄
onsisted in man-ually translating the Disk Synod algorithm into ACL2 and verifying two invari-ants of the algorithm. The next step, performed at Compaq's Systems Resear
hCenter, was to automate the translation. Our tool not only translates TLA+spe
i�
ations, but also stru
tured proofs [4℄ of
onje
tures about the spe
i�
a-tions. In writing a stru
tured proof, we mark some reasoning steps as \
he
kedby ACL2" and leave others unmarked. The translator
reates a list of ACL2defthm forms
orresponding to the stru
tured proof, and gives spe
ial names tothose
orresponding to the \proof by ACL2" steps in the stru
tured proof. Weuse ACL2 to verify only su
h defthm forms. The idea is that, short of me
hani-
ally verifying every step of a proof, a user might �rst want to explore pie
es ofa proof that are not entirely
lear or where he la
ks
on�den
e. Also, we wantto use ACL2 only on those steps where it is appropriate to use ACL2 (low-level,quanti�er-free formulas). A future proof
he
ker for TLA+ might, in addition tosteps labeled \
he
ked by ACL2," also have steps labeled \
he
ked by X " whereX is a di�erent theorem prover.In Se
tion 2 we lay out the translation pro
ess from TLA+ to ACL2. Se
tion3 dis
usses brie
y the framework used to verify properties of translated spe
i�-
ations, and dis
usses some aspe
ts of the Disk Synods spe
i�
ation where ourveri�
ation e�ort shed light. Se
tion 4 summarizes what we learned. Appendix Ades
ribes the me
hani
al translator in more detail.2 TranslationTLA+ is based in set theory, so we need an e�e
tive framework to reason aboutsets in ACL2. Our translation s
heme builds upon the �nite set theory workdeveloped by Moore [7℄; we will assume familiarity with it. (We also assumefamiliarity with ACL2 [3℄ and with TLA+ [5℄.) Moore's theory allows us toexpress in a natural way basi
 set
on
epts like membership, set equality, orderedpairs, fun
tions and sequen
es.We use re
ursive fun
tions on sets to de�ne several
on
epts. Quanti�
ationis represented as a re
ursive fun
tion that tests a set's elements for the desiredproperty. Set
onstru
tors, like fx 2 S : p(x)g and ff (x) : x 2 Sg, are alsode�ned as re
ursive fun
tions that transform or �lter elements of a set. Throughthe use of ACL2 ma
ros, we provide for a
onvenient notation to express quan-ti�
ation or set
omprehension. For example, the ACL2 ma
ro(defall name (s) :forall x :in s :holds (p x))
reates a fun
tion (name s) that returns t if every element x in s satis�es(p x), and returns nil otherwise. Examples of other frequently used ma
ros are:

{ (defexists name (s) :exists x :in s :su
h-that (p x))
reates a fun
tion(name s) that returns t if some element x in s has property (p x), andreturns nil otherwise.{ (defmap name (s) :for x :in s :su
h-that (p x))
reates a fun
tion(name s) that returns the set of elements x in s with property (p x).{ (defmap name (s) :for x :in s :map (f x))
reates a fun
tion (name s)that maps ea
h element x in s into (f x), and returns the set of mappedelements.{ (defmap-fn name (s) :for x :in s :map (f x))
reates a fun
tion (name s)that maps ea
h element x in s into (f x) and returns the set of orderedpairs h x , (f x) i.Figure 1 presents our translation s
heme for some TLA+ expressions. Wedo not provide entries for
on
epts that translate dire
tly into ACL2's built-inde�nitions (e.g. ^, _,)) or into Moore's �nite set theory de�nitions (e.g. 2,�, [, \). Every set appearing in Figure 1 is assumed to be �nite. Note thatthe
onstru
ts we
annot dire
tly translate deal with quanti�
ation over the(in�nite) universe of TLA+ obje
ts.2.1 Naming ConventionAs we mention above, an expression like fx 2 S : p(x)g is translated using thedefmapma
ro, whi
h de�nes a fun
tion that
onstru
ts the given set. As an ACL2fun
tion, this set
onstru
tor needs a name. We name su
h expressions by
on-
atenating the name of the top-level de�nition in whi
h the expression appearswith forall, exists, subsetof or setofall, depending on the expression.Finally, we append a number to the name to disambiguate similar expressionsappearing in the same top-level de�nition. For example, if the TLA+ expressionfx 2 S : p(x)g is the �rst \set �ltering" expression to o

ur as part of thede�nition of a
tion A, it gets translated into something like (A-subsetof-1 s),where A-subsetof-1 is de�ned using the defmap ma
ro:(defmap A-subsetof-1 (s) :for x :in s :su
h-that (p x)).Other TLA+
onstru
ts requiring a name in ACL2 are sets of re
ords andquanti�ed expressions. Their naming
onventions are similar to the above exam-ple.2.2 System VariablesWe represent TLA+ variables as ACL2 variables. We write the variable x as x,and the primed variable x 0 as x-n.In TLA+, state variables are global. TLA+ de�nitions usually do not pass asparameters state variables involved in the de�nitions. Sin
e ACL2 is appli
ative,we must in
lude as arguments any variables used, in
luding state variables. Forexample, the a
tion Next(a) �= x 0 = x + a translates into the ACL2 event(defun next (a x x-n) (= x-n (+ x a))).

Logi
BOOLEAN (bra
e t nil)8x : p no translation9x : p no translation8x 2 S : p (f S v1 : : : vk), where f adheres to the naming
onvention, and isde�ned by(deftla-forall f (dom v1 : : : vk) :forall x :in dom :holds p).9x 2 S : p (f S v1 : : : vk), where f adheres to the naming
onvention, and isde�ned by(deftla-exists f (dom v1 : : : vk) :exists x :in dom:su
h-that p).CHOOSE x : p no translationCHOOSE x 2 S : p (
hoose (f S v1 : : : vk)), where f adheres to the naming
onvention,and is de�ned by(deftla-map f (dom v1 : : : vk) :for x :in dom :su
h-that p).SetsSUBSET S (powerset S)UNION S (union* S)Fun
tionsf [e℄ (apply f e)DOMAIN f (domain f)[x 2 S 7! e℄ (f S v1 : : : vk), where f adheres to the naming
onvention, and isde�ned by(deftla-map-fn f (dom v1 : : : vk) :for x :in dom :map e).[S ! T ℄ (all-fns S T)[f EXCEPT ![e1℄ = e2℄ (ex
ept f e1 e2)Re
ords[h1 7! e1; : : : ; hn 7! en ℄ (fun
 (h1 e1) : : : (hn en))[h1 : S 1; : : : ; hn : Sn ℄ (name), where name adheres to the naming
onvention and is de�nedby(defre
 name (h1 S1) : : : (hn Sn)).Fig. 1. TLA{ACL2 translations.

We have
reated a series of ma
ros that let us de�ne and use state fun
-tions and a
tions without expli
it referen
e to the variables involved. The ma
ro(defa
tion next (a) (= x-n (+ x a))) expands into the following events.(defun next (a x x-n) (= x-n (+ x a)))(defma
ro next (a) (next a x x-n))Now, we
an write (next a) when referring to a
tion Next(a), without writ-ing down the state variables involved. Similar ma
ros used to hide variable ar-guments are:{ defstate : for de�ning state fun
tions with variable hiding. The ma
ro(defstate name (x1 : : : xn) �)
reates in turn two ma
ros, (name x1 : : : xn)and (name-n x1 : : : xn), referring to the state fun
tion in the
urrent and nextstate, respe
tively.{ deftla-exists : same as defexists, with variable hiding.{ deftla-forall : same as defall, with variable hiding.{ deftla-map : same as defmap, with variable hiding.{ deftla-map-fn : same as defmap-fn, with variable hiding.ACL2 expands away all ma
ro
alls in its output, so we will see the systemvariables as arguments to fun
tions in ACL2's output. We have not found it amajor distra
tion.3 Proving Conje
turesDisk Synod is a distributed
onsensus algorithm in whi
h a group of pro
essors
ommuni
ate through disks. In the paper introdu
ing Disk Synod [1℄, Gafni andLamport establish six invarian
e
onje
tures of Disk Synod. These invariantsare used to prove
onsisten
y of the algorithm. Using our tools, we translateda TLA+ spe
i�
ation of Disk Synod, as well as stru
tured proofs of three ofGafni and Lamport's invariants. Of the three stru
tured proofs we translated,we
he
ked most of the proof steps in two of them with ACL2. We will notdis
uss the Disk Synod algorithm or its proof of
orre
tness here; for su
h adis
ussion refer to [1℄. The Disk Synod spe
i�
ation, the stru
tured proofs andtheir translation
an all be found under the sr
/paxos/ dire
tory (where sr
/is the dire
tory where this report is lo
ated).Figures 2 and 3 show the proof outlines for lemmas I 2a and I 2
. These proofoutlines (
ast in a spe
ial syntax{see Appendix A) are the input to our tool,whi
h translates them into ACL2 defthm events. In designing the translator, wewant to ensure that someone looking at the stru
tured proof of a
onje
ture
antell easily whi
h steps are
laimed to be me
hani
ally
he
ked. We also want toensure that someone looking at the �le of ACL2 defthm events
orresponding toa stru
tured proof
an tell easily whi
h events to prove in order to be
onsistentwith any
laims made in the stru
tured proof. It is obvious from looking at thestru
tured proofs in Figures 2 and 3 whi
h steps are
laimed to be me
hani
ally
he
ked. As for the list of defthm events
orresponding to the stru
tured proofs,

our translator appends the suÆx \-ACL2" to those events that must be me
han-i
ally
he
ked. Other events are named a

ording to their step number in thestru
tured proof.We write stru
tured proofs using a spe
ial syntax (see Appendix A). Weuse the TLA+ front end (in development at SRC) to parse the proof outlines.However, the front end has no notion of stru
tured proofs; it only parses TLA+expressions and modules. Using TLA+ syntax that the front end
an handle,we en
ode stru
tured proofs as TLA+ expressions. After the front end parsesthem, we dete
t them as stru
tured proofs and handle them a

ordingly. Formore details on how stru
tured proofs are handled and translated into ACL2defthm events, see Appendix A.We dis
uss lemmas I 2a and I 2
 and their proofs at length in [8℄. Here, wegive some highlights.In addition to spotting a number of typographi
 errors in Gafni and Lam-port's written proofs, we dis
overed a nontrivial error in the statement of the-orem I 2
: an invariant (HInv2) was omitted as a hypothesis. Our proof e�orthas yielded a
orre
tion to the statement of Lemma I 2
.Our goal of me
hani
al veri�
ation also for
ed us to think about subtle andimportant details that should be mentioned in the original stru
tured proofs ofLamport and Gafni. We now dis
uss two examples.The next-state a
tion. Disk Synod's next-state a
tion is existentially quan-ti�ed on the outside:Next �= 9 p 2 Pro
 : _ StartBallot(p)_ 9 d 2 Disk : _ Phase0Read(p; d)_ Phase1or2Write(p; d)_ 9 q 2 Pro
 p : Phase1or2Read(p; d ; q)_ EndPhase1or2(p)_ Fail(p)_ EndPhase0(p)The next-state a
tion is typi
ally a hypothesis in an invariant
onje
ture. Insu
h a proof, we might want to show that every pro
essor in the system has someproperty � whi
h is preserved a
ross steps. We do this by assuming a
onstantpro
ess p with property �(p), and showing that �0(p) holds with respe
t to thenext-state a
tion. Noti
e that we have mentioned the variable p twi
e|on
e inthe de�nition of Next above, and on
e in mentioning a parti
ular pro
essor p forwhi
h � holds. However, these two mentions of p are not ne
essarily mentionsof the same pro
essor.What does it mean to assume Next? It means that for some pro
essor |
allit p2|Next holds, or intuitively, an a
tion of Next is \exe
uted." Does it followthat p2 is the same as the
onstant p for whi
h �(p) holds? Not ne
essarily. Yet,in their proof of lemma I 2
, Gafni and Lamport make no distin
tion betweenp2 and p. In our veri�
ation e�ort, we were required to make su
h distin
tions,and to establish invariants for both
ases.

HInv1 ^HNext) HInv10Assume: 1.
onstant p 2 Pro
2.
onstant q 2 Pro
 n fPg3.
onstant d 2 Disk4. HInv15. _ StartBallot(p)_ Phase0Read(p; d)_ Phase1or2Write(p; d)_ Phase1or2Read(p; d; q)_ EndPhase1or2(p)_ Fail(p)_ EndPhase0(p)6. ChosenAllinputA
tionProve: HInv10h1i1.
ase: StartBallot(p)Assume: 1.
onstant b 2 Ballot(p)2. ^ b > dblo
k[p℄:mbal^ dblo
k0[dblo
k ex
ept ![p℄:mbal = b℄Prove: HInv10Proof: By ACL2.h1i2.
ase: Phase1or2Write(p,d)Proof: By ACL2.h1i3.
ase: Phase1or2Read(p,d,q)Proof: By ACL2.h1i4.
ase: Phase0Read(p,d)Proof: By ACL2.h1i5.
ase: Fail(p)Proof: By ACL2.h1i6.
ase: EndPhase0(p)Assume: 1.
onstant b 2 Ballot(p)2. ^ 8 r 2 allBlo
ksRead(P) : B > r:mbal^ dblo
k0 = [dblo
k ex
ept ![P ℄ = [r ex
ept !:mbal = B℄℄iProve: HInv10Proof: By ACL2.h1i7.
ase: EndPhase1or2(p)Proof: By ACL2.h1i8. Q.E.D.Proof: Cases are exhaustive. Fig. 2. Lemma I2a.

HInv1 ^HInv2 ^ HInv3 ^HNext) HInv30Assume: 1.
onstants p; p2 2 Pro
2.
onstant q 2 Pro
3.
onstant q2 2 Pro
 n fPg4.
onstants d ; d2 2 Disk5. HInv1 ^HInv2 ^HInv36. _ StartBallot(p2)Phase0Read(p2; d2)_ Phase1or2Write(p2; d2)Phase1or2Read(p2; d2; q2)_ EndPhase1or2(p2)Fail(p2)EndPhase0(p2)7. ChosenAllinputA
tion8. phase 0[p℄ 2 1; 2 ^ phase 0[q ℄ 2 1; 2 ^ hasRead(p; d ; q)0 ^ hasRead(q ; d ; p)0Prove: _ [blo
k 7! dblo
k0[q℄; pro
 7! q℄ 2 blo
ksRead0[p℄[d℄_ [blo
k 7! dblo
k0[p℄; pro
 7! p℄ 2 blo
ksRead0[q℄[d℄h1i1.
ase: StartBallot(p)Assume: 1.
onstant b 2 Ballot(p)2. ^ b > dblo
k[p℄:mbal^ dblo
k0[dblo
k ex
ept ![p℄:mbal = b℄Prove: _ [blo
k 7! dblo
k0[q℄; pro
 7! q℄ 2 blo
ksRead0[p℄[d℄_ [blo
k 7! dblo
k0[p℄; pro
 7! p℄ 2 blo
ksRead0[q℄[d℄Proof: By ACL2.h1i2.
ase: Phase1or2Write(p,d)Proof: By ACL2.h1i3.
ase: Phase1or2Read(p,d,q)h2i1.
ase: d2 6= dProof: By ACL2.h2i2.
ase: d2 = dh3i1.
ase: p2 6= p ^p2 6= qProof: By ACL2.h3i2.
ase: p2 = ph4i1.
ase: q26=qProof: By ACL2.h4i2.
ase: q2=qProof: By ACL2.h4i3. Q.E.D.Proof: Cases h4i1 and h4i2 are exhaustive.h3i3.
ase: p2=qh4i1.
ase: q26=qProof: By ACL2.h4i2.
ase: q2=qProof: By ACL2.h4i3. Q.E.D.Proof: Cases h4i1 and h4i2 are exhaustive.h3i4. Q.E.D.Proof: Cases h3i1, h3i2 and h3i3 are exhaustive.h2i3. Q.E.D.Proof: Cases h2i1 and h2i2 are exhaustive.h1i4.
ase: Phase0Read(p,d)Proof: By ACL2.h1i5.
ase: Fail(p)Proof: By ACL2.h1i6.
ase: EndPhase0(p)Proof: By ACL2.h1i7.
ase: EndPhase1or2(p)Proof: By ACL2.h1i8. Q.E.D.Proof: Cases are exhaustive. Fig. 3. Lemma I2
.

An unmentioned invariant. For our veri�
ation to su

eed, we had toestablish an unmentioned invariant of Disk Synod, whi
h we
all the well-behavedinvariant. In Disk Synod, if every pro
essor has a lo
al
opy of a variable namedx , the set of these lo
al variables is modeled as one shared variable x , whi
h isa fun
tion mapping ea
h pro
essor p to its
orresponding value x [p℄. The well-behaved invariant says that when a pro
essor p
hanges the value of a sharedvariable like x , it
hanges only its own slot in the variable. Figure 4 shows thewell-behaved invariant. This invariant is
ru
ial in
he
king most steps of LemmaI 2
.HNext(p2) ^ (p2 6= p)) _ input 0[p℄ = input [p℄_ output 0[p℄ = output [p℄_ disk 0[p℄ = disk [p℄_ phase 0[p℄ = phase[p℄_ dblo
k 0[p℄ = dblo
k [p℄_ diskswritten 0[p℄ = diskswritten[p℄_ blo
ksread 0 [p℄ = blo
ksread [p℄Fig. 4. The \well-behaved" invariant.4 Con
lusionAn important lesson we learned is perhaps an obvious one: use a tool only whereits strengths will shine. ACL2 is a general-purpose theorem prover, and one
anuse it to verify every step of a proof in any mathemati
al domain, from realanalysis to
ir
uit design. In our �rst experiments, we used ACL2 to verify everystep in the proofs of I 2a and I 2
. More than half our time was spent trying toreason about simple steps in higher-level
on
epts like quanti�
ation. Our se
ondapproa
h was to use ACL2 only where it might be suitable|
loser to the leavesof a proof, where quanti�
ation has been eliminated and all that remains arelarge but low-level formulas. Although low-level, these formulas are nontrivialand would be a
hallenge for any theorem prover. Moreover, it is most oftenin these elaborate steps where errors are un
overed. It is to ACL2's
redit thatit did so mu
h work with little guidan
e. At the
orre
t level of abstra
tion,the prover not only helped us verify statements, but it also pointed the way toomissions and errors with remarkable pre
ision.In further work, we would
ontinue fo
using ACL2's attention on low-levelsegments of TLA+ proofs, re�ning our tools and lemma libraries to in
rease theprover's power in this restri
ted domain. For the remaining high-level steps ofTLA+ proofs, we might re
ruit a di�erent theorem prover with a logi
 moreexpressive than ACL2's. The framework for stru
tured proofs we have followedallows for
ollaboration among multiple provers|ea
h with its own strengths|in atta
king a veri�
ation proje
t.

5 A
knowledgmentsI would like to thank J Moore, Leslie Lamport and Yuan Yu for all their help.Referen
es1. Eli Gafni and Leslie Lamport. Disk Synod. Te
hni
al Report 163, Compaq SystemsResear
h Center, July 2000.2. Eli Gafni and Leslie Lamport. Disk Paxos. in Mauri
e Herlihy, editor, DistributedComputing: 14th International Conferen
e, DISC 2000 Le
ture Notes in ComputerS
ien
e number 1914, pages 330-344, Springer-Verlag, 2000.3. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, Computer-AidedReasoning: An Approa
h, Kluwer A
ademi
 Publishers, 2000.4. Leslie Lamport. How to Write a Proof. Ameri
an Mathemati
al Monthly 102, 7(August-September 1993) pages 600-608.5. Leslie Lamport. Spe
ifying Con
urrent Systems with TLA+. In M. Broy and R.Steinbr�uggen, editors, Cal
ulational System Design.6. Leslie Lamport. The Temporal Logi
 of A
tions. ACM Transa
tions on Program-ming Languages and Systems, 16(3):872-923, May 1994.7. J Moore. Finite Set Theory in ACL2. TPHOLS '01, Edinburgh, September 2001.8. Carlos Pa
he
o. Reasoning about TLA A
tions. Undergraduate Honors Thesis.Te
hni
al Report TR01-16, Department of Computer S
ien
es, The University ofTexas at Austin, May 2001.A The Me
hani
al TranslatorThis appendix des
ribes the me
hani
al translator in more detail. Our startingpoint is the TLA+ Java front end developed at SRC. The front end takes asinput a TLA+ module, parses it, performs some semanti
 analysis, and returnsa set of semanti
 trees
orresponding to the TLA+ de�nitions and de
larationsappearing in the given module.Starting with the semanti
 trees generated by the Java front end, the trans-lation into ACL2 pro
eeds in two stages.A.1 Stage 1: Generating S-expressionsThe �rst part of our translation tool is a program written in Java, pass-one,that is responsible for
alling the front end on a TLA+ �le spe
i�ed by theuser. If the front end su

essfully pro
esses the �le, pass-one
reates a new �le,intermediate.lisp, whi
h
ontains basi
ally the same semanti
 trees generated bythe front end, en
oded as s-expressions. We now des
ribe the en
oding pro
ess.Assume a semanti
 tree S . In what follows, we identify S with the TLA+ ex-pression it represents, so instead of saying that S is a semanti
 node of typeStringKind that represents the string str , we say that S is the string str .

{ If S is a CONSTANT de
laration of a
onstant C with n arguments, it isen
oded as the s-expression (C n). Pass-one a
tually obtains all
onstantde
larations at the same time from the front end, en
odes them as des
ribedabove, and wraps them into the following s-expression:(tla-
onstants (C1 n1) ... (Ck nk)){ If S is an ASSUME de
laration, it is not translated or appended to the listof s-expressions. (This has nothing to do with our ability to pro
ess thesede
larations. A more developed translator would handle ASSUME de
lara-tions.){ If S is the number n, it is en
oded as n.{ If S is the string s , it is en
oded as "s ".{ If S is a de�nition f (x 1; : : : ; xn) �= exp, it is en
oded as(definition (line
ol) level f (x1 : : : xn) exp2)where line and
ol are the line and
olumn numbers where f 's de�nition ap-pears in the sour
e TLA+ �le, level equals
onstant-level, variable-levelor a
tion-level, depending on the level of exp (dedu
ed by the front end),and exp2 is the en
oding of exp.{ If S has the formlet def 1 �= exp1: : :def n �= expnin exp ,it is en
oded as (let-in (de
ist) exp2), where de
ist is the list obtained byen
oding de�nitions def 1 through def n , and exp2 is the en
oding of expres-sion exp.{ If S is the set of re
ords [h1 : S 1; : : : ; hn : Sn ℄, it is en
oded as(set-of-re
ords (line
ol) (h1 S1) : : : (hn Sn)).NOTE: For su

essful translation into ACL2, a set of re
ords must be a
onstant expression|it must not be de�ned in terms of any variables.{ The following
onstru
ts are en
oded as (set-
omp type (line
ol) ((x1 S1): : : (xn Sn)) �), where type
orresponds to the kind of expression as follows.fx 1 2 S 1 : �g (type = subsetof)f� : x 1 2 S 1g (type = setofall)8 x 1 2 S 1; : : : ; xn 2 Sn : � (type = forall)9 x 1 2 S 1; : : : ; xn 2 Sn : � (type = exists)CHOOSE x 2 S : � (type = bounded
hoose)[x 1 2 S 1 7! �℄ (type = fun
tion){ If S is the unprimed variable x , it is en
oded as x .{ If S is the primed variable x 0, it is en
oded as x -n.{ If S is f (x 1; : : : ; xn)0 for some user-de�ned operator f , it is en
oded as (f -n x1: : : xn). NOTE: This en
oding makes sense for user-de�ned state fun
tions,be
ause for state fun
tions, we will ultimately
reate two ACL2 fun
tion
alls, f and f -n, denoting f in its
urrent and next state. The en
odingmakes no sense for other primed expressions, like (x + y)0. We assume thatonly user-de�ned state fun
tions or variables are primed in the spe
i�
ation.This limits the TLA+ expressions we
an translate.

{ Any other operator appli
ation f (x 1; : : : ; xn) is en
oded as (f2 x1 : : : xn),where f 2 equals f for user-de�ned operators, but may di�er from f for otheroperator names like in, whi
h is repla
ed by mem, the ACL2 set membershipfun
tion name.NOTES:{ We do not add de�nitions of operators already built into ACL2, su
h asboolean operators or set theory operators.{ There is no support for primed expressions other than the ones outlinedabove; other primed expressions will be translated in
orre
tly.{ We do not expe
t to en
ounter unbound expressions like 8 x : p: If we doen
ounter them, the translation will
ontinue, but the �nal translation willfail to be admitted by ACL2 (it's easy to see why it fails be
ause in pla
e ofthe unbounded expression, an error message is inserted.)A.2 Stage 2: Generating ACL2 EventsWe now des
ribe pass-two, the program that translates the �le intermediate.lispinto a �le of ACL2 events 2. This program is written in ACL2 itself, a subset ofCommon LISP.For an input TLA+ �le spe
.tla, pass-two
reates two �les, spe
.lisp and spe
-
onstants.lisp. The �le spe
-
onstants.lisp
ontains a list of ACL2
onstants (notto be
onfused with TLA+
onstants) helpful to the developer of the TLA-ACL2 system. For instan
e, the
onstant *all-defs* is a listing of the
ontentsin intermediate.lisp. Sin
e this
onstant will be loaded into the system along witha spe
i�
ation, the intermediate translation will be available, and ma
ros
an bedeveloped that use *all-defs* to look for information about the spe
i�
ation.Other
onstants de�ned in spe
-
onstants.lisp are *final-defs*, a list of all the�nal events generated, and *variables*, a list of the system variables.The �le spe
.lisp is the most important �le
reated in the translation pro
ess.It
ontains the ACL2 events
orresponding to the translation.Up to this point, we have just taken a list of semanti
 trees stored as Javadata stru
tures, and
onverted them into s-expressions. Now, we detail how theses-expressions are translated into ACL2 events.For ea
h (non-theorem) de�nition, pass-two
alls the fun
tion Translate. Forea
h theorem, it
alls the fun
tion CreateThms.How Translate Works Translate's job is to take an s-expression generatedby pass-one, and produ
e an ACL2 event, or list of events,
orresponding to theexpression. It works as follows. (Our des
ription is intuitive, and not meant tobe formal. For more details, read the
ommented
ode.)2 An ACL2 event is a form submitted at the ACL2 prompt that
auses ACL2 to takesome a
tion, like de�ne a new fun
tion or prove a theorem.

{ The expression (tla-
onstants (C1 n1) ... (Ck nk)) be
omes the list ofevents(defstub C 1 (x 1 : : : xn1) t)...(defstub C k (x 1 : : : xnk) t){ The expression (tla-variables (v1 : : : vn)) be
omes the event(def
onst *variables* '(v1 : : : vn)).{ The expression(definition (line
ol) level f (x1 : : : xn) expr)
an o

ur in two
ontexts: as a top-level de�nition, or as a de�nition in aLET-IN form. Both instan
es are handled the same way. The following ACL2event is
reated:(event f (x1 : : : xn) body)where event is deftla-fun, defstate, or defa
tion, depending on level be-ing
onstant-level, variable-level, or a
tion-level (respe
tively), andbody is the result of
alling Translate on expr .{ The expression (set-of-re
ords (line
ol) (h1 S1) : : : (hn Sn)) be
omes theACL2 event(defre
 name (h1 S1) : : : (hn Sn))where name is obtained by
on
atenating the identi�ers h1 : : : hn . The o
-
urren
e of the set of re
ords within an expression is repla
ed by the fun
tion
all (name).{ The expression (set-
omp type (line
ol) ((x1 S1) : : : (xn Sn)) �) is trans-lated as follows.1. If n = 1 (there is only one bound pair (x1 S1)), then� (set-
omp setofall (line
ol) ((x1 S1)) �) be
omes(deftla-map name (dom a1 : : : an) :for x1 :in dom :map �2)� (set-
omp subsetof (line
ol) ((x1 S1)) �) be
omes(deftla-map name (dom a1 : : : an) :for x1 :in dom :su
h-that �2)� (set-
omp fun
tion (line
ol) ((x1 S1)) �) be
omes(deftla-map-fn name (dom a1 : : : an) :for x1 :in dom :map �2)� (set-
omp exists (line
ol) ((x1 S1)) �) be
omes(deftla-exists name (dom a1 : : : an) :exists x1 :in dom:su
h-that �2)� (set-
omp forall (line
ol) ((x1 S1)) �) be
omes(deftla-forall name (dom a1 : : : an) :forall x1 :in dom:holds �2)Where� a1 : : : an are the
ontext parameters appearing in �. We illustrate themeaning of
ontext parameters with an example: given the TLA+ def-inition f (a; b;
) �= a 2 fx 2 b : x =
g, the
ontext parametersof the expression fx 2 b : x =
g are b and
.� �2 is the translation of �.� name is determined by the naming
onvention (see Se
tion 2).

The o

urren
e of the quanti�ed expression is repla
ed by the
all (nameS1 a1 : : : an).2. if n > 1 (there are several bound pairs (xi Si)), we �rst translate theexpressionexp2 =(set-
omp type (line
ol) ((x2 S2) : : : (xn Sn)) �), and then wetranslate the expression (set-
omp type (line
ol) ((x1 S1)) �2), where�2 is a
all of the fun
tion resulting from exp2.{ Any other expression translates into itself.How CreateThms Works Ideally, the front end would be able to parse stru
-tured proofs. Sin
e it does not, we have developed an ad-ho
 en
oding for proofs,using expressions (su
h as tuples and sets of re
ords) that the front end handles.This way, we
an write proofs inside a module, and have them parsed by thefront end. To the front end (and to pass-one) proofs are just TLA+ expressions;they aren't handled in any spe
ial way. It is during the se
ond stage of trans-lation that we re
ognize proofs and generate the appropriate ACL2 events forthem.We de�ne proofs and assertions in a mutually re
ursive fashion.Proof. The proof of a statement P is a sequen
e of steps:[step1 : Assertion1;: : :stepn : Assertionn;stepn+1 : QEDStep ℄Where{ stepi is a re
ord �eld identi�er of the form s i j , where i and j are integersdenoting level and step numbers of the proof (see [4℄).{ Assertioni is an assertion as de�ned below.{ QEDStep is a string
ontaining an explanation of the proof of P. The stringmust begin with \Q.E.D.". Examples are \Q.E.D. By propositional logi
"or \Q.E.D. ACL2". The latter example is important | this is how we letthe translator know that a proof is expe
ted to be me
hani
ally
he
ked byACL2.Writing a QEDStep where a level-i proof is expe
ted is shorthand for[step i 1 : QEDStep ℄:Assertion. An assertion
an have two forms:{ [assume : Assumptions; prove : Goal; proof : Proof ℄{ [
ase : Case; proof : Proof ℄Where

{ Assumptions
an be a single TLA+ expression, a sequen
e of TLA+ expres-sions hAssm1; : : : ; Assmn i, or a re
ord [a1 : Assm1; : : : ; an : Assmn ℄.The last option is intended to let the user name assumptions and refer tothem by name at a later stage in a proof, but this fun
tionality has not beenimplemented.{ Proof is a proof as de�ned above.{ Goal is a TLA+ expression, denoting the statement to be proved.{ Case is a TLA+ expression, denoting the
ase to
onsider.NOTE. An assertion [
ase : Case; proof : Proof ℄ is equivalent to[assume : Case; prove : P; proof : Proof ℄where P is the statement whose proof
ontains the assertion. To illustrate,the following two assertions are equivalent.[assume : << >>, [assume : << >>,prove : P, prove : P,proof : proof :[s_1_1 : [assume : x = 1, [s_1_1 : [
ase : x = 1,prove : P, proof : "Q.E.D." ℄,proof : "Q.E.D." ℄, s_1_2 : [
ase : x # 1,s_1_2 : [assume : x # 1, proof : "Q.E.D." ℄℄℄prove : P,proof : "Q.E.D." ℄℄℄Introdu
ing new identi�ers. Sometimes we need to introdu
e new identi�ersin a proof. For example, when proving (9 x 2 S)) P , we might assume theexisten
e of a
onstant
 belonging to S , and use
 to establish P . We introdu
enew names in proofs using the LET-IN
onstru
t. In our example, we would write[assume : << >>,prove : P,proof :LET
 == "new"IN[s_1_1 : [assume :
 \in S,prove : P,Proof :℄℄℄The value "new" assigned to
 is only a pla
eholder|in order for the abovestru
ture to be parsed
 needs a de�nition. In ACL2, we de�ne
 to be an
onstant with no properties.Steps that
hoose a value. A proof step may involve
hoosing a value with
ertain properties from a set. Su
h a step is a

ompanied with a proof of thevalue's existen
e. Here is an example. (For a ri
her example, see [4℄ p.7)< 3 > 1: Choose x 2 S su
h that p(x)PROOF: Let x be 2. Then p(2).

< 3 > 2::::< 3 > 3::::We translate the above example as follows. Noti
e that we add a step
orre-sponding to the proof obligation arising from our
hoi
e of x.LET x == CHOOSE SIN[s_3_1 : p(x),s_3_2 : ...s_3_3 : ...℄Generating Theorems. We now des
ribe how a list of ACL2 defthm eventsis generated from a stru
tured proof. We start with the s-expression represen-tation of a stru
tured proof (i.e. a set of re
ords denoting a stru
tured proof).Se
ond-pass re
ognizes de�nitions whose name
ontains the substring theorem.In the sour
e TLA+ �le, a theorem P looks like this.TheoremName ==[assume : << >>,prove : P,proof : �℄For this des
ription, we assume that CreateThms takes three arguments: alist of assumptions, a goal, and a proof. The top-level
all to CreateThms isCreateThms(nil ;P ; �).Now,
onsider a general instan
e CreateThms(assumptions ; goal ; proof) of a
all to CreateThms .{ If proof is a Q.E.D. step,
reate the ACL2 event(defthm name (implies (and assumptions) goal))where name is the name of theorem,
on
atenated with the step name,
on-
atenated with the string \ -ACL2" if the proof is \Q.E.D. ACL2".{ Otherwise, proof is a sequen
e of steps. For ea
h step s in the proof, generatea list of events as follows.� If s is of the form[assume : newAssumptions ; prove : newGoal ; proof : newProof ℄,generate a list
onsisting of the ACL2 events returned by the
allCreateThms(assumptions + newAssumptions ;newGoal ;newProof)and the event(defthm name (implies (and assumptions) goal)),where name is the name of the theorem,
on
atenated with the stepname.

� If s is of the form[
ase : newCase; proof : newProof ℄,generate a list
onsisting of the ACL2 events returned by the
allCreateThms(newCase + assumptions ; goal ;newProof)and the event(defthm name (implies (and assumptions) goal)).where name is the name of the theorem,
on
atenated with the stepname.Con
atenate all the lists of events resulting from pro
essing the steps, andreturn the
on
atenated list.

