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Abstract

Daikon is an implementation of dynamic detection of likely invariants; that is, the
Daikon invariant detector reports likely program invariants. An invariant is a prop-
erty that holds at a certain point or points in a program; these are often used
in assert statements, documentation, and formal specifications. Examples include
being constant (x = a), non-zero (x 6= 0), being in a range (a ≤ x ≤ b), linear
relationships (y = ax + b), ordering (x ≤ y), functions from a library (x = fn(y)),
containment (x ∈ y), sortedness (x is sorted), and many more. Users can extend
Daikon to check for additional invariants.

Dynamic invariant detection runs a program, observes the values that the program
computes, and then reports properties that were true over the observed executions.
Dynamic invariant detection is a machine learning technique that can be applied
to arbitrary data. Daikon can detect invariants in C, C++, Java, and Perl pro-
grams, and in record-structured data sources; it is easy to extend Daikon to other
applications.

Invariants can be useful in program understanding and a host of other applica-
tions. Daikon’s output has been used for generating test cases, predicting incompat-
ibilities in component integration, automating theorem-proving, repairing inconsis-
tent data structures, and checking the validity of data streams, among other tasks.

Daikon is freely available in source and binary form, along with extensive docu-
mentation, at http://pag.csail.mit.edu/daikon/.
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jhp@csail.mit.edu (Jeff H. Perkins).
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1 Introduction

This paper presents Daikon — a full-featured and robust implementation of
dynamic invariant detection. Invariants explicate data structures and algo-
rithms and are helpful for manual and automated programming tasks, from
design to maintenance. As one example, they identify program properties that
must be preserved when modifying code. Despite their advantages, invariants
are usually missing from programs. An alternative to expecting programmers
to fully annotate code with invariants is to automatically infer likely invariants
from program executions. For certain important tasks, dynamically-inferred
properties are preferable to a human-written specification.

Daikon’s output is a set of likely invariants that are statistically justified by
an execution trace. The result can be used as documentation, added to the
program source as assertions, or used as input to other tools (see section 4).

Daikon is freely available for download from http://pag.csail.mit.edu/daikon/.
The distribution includes both source code and documentation, and Daikon’s
license permits unrestricted use. This paper introduces Daikon, but its user
and developer manuals should be consulted to obtain the most complete in-
formation.

2 Example

As an example, consider a Java class StackAr that implements a stack with a
fixed maximum size. It has the following fields:

Object[] theArray; // Array that contains the stack elements.
int topOfStack; // Index of top element. -1 if stack is empty.

and implements the following methods:

void push(Object x) // Insert x
void pop() // Remove most recently inserted item
Object top() // Return most recently inserted item
Object topAndPop() // Remove and return most recently inserted item
boolean isEmpty() // Return true if empty; else false
boolean isFull() // Return true if full; else false
void makeEmpty() // Remove all items

StackAr can be exercised via the simple test class StackArTester. For example:

java DataStructures.StackArTester
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The following command instruments the same run of StackAr and pipes the
resulting execution trace to Daikon.

java daikon.Chicory --daikon DataStructures.StackArTester

(Chicory is Daikon’s instrumenter for Java.) The likely invariants are written
to standard output (i.e., the console) and also saved in a serialized file for later
processing.

C/C++ programs are handled in a similar fashion. If a C/C++ program is
normally run with the command

./program -f input

then the command

kvasir-dtrace --dtrace-file=- ./program -f input | java daikon.Daikon

will instrument the program using Kvasir (an instrumenter for C/C++) and
pipe the resulting execution trace to Daikon.

Daikon’s output consists of procedure pre- and post-conditions and also object
invariants which hold at every public method entry and exit. Figure 1 shows a
portion of Daikon’s output, including the object invariants and the procedure
invariants for the constructor and the method isFull. The output is described
below.

this.theArray != null

The reference theArray was never observed to be null after it was set in the
constructor. Methods can thus safely reference it without checking for null.

this.theArray.getClass() == java.lang.Object[].class

The runtime class of theArray is Object[]. Java permits the runtime type
to be a subclass of the declared type, but that never happened in StackAr.

this.topOfStack >= -1

this.topOfStack <= this.theArray.length - 1

topOfStack is between -1 and the maximum array index, inclusive. Thus, it
indicates the last filled array element, not the next one to be filled.

this.theArray[0..this.topOfStack] elements != null

All of the stack elements are non-null. This turns out to be a result of the
test suite (which never pushes null on the stack) and not a requirement of
StackAr itself. It is still valuable to draw a programmer’s attention to this
fact, as it points out a deficiency in the test suite.

this.theArray[this.topOfStack+1..] elements == null

All of the elements in the array that are not currently in the stack are null.
We can infer that the pop method nulls out the entry after returning it,
which is good practice as it permits those elements to be garbage collected.
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Object invariants for StackAr
this.theArray != null
this.theArray.getClass() == java.lang.Object[].class
this.topOfStack >= -1
this.topOfStack <= this.theArray.length - 1
this.theArray[0..this.topOfStack] elements != null
this.theArray[this.topOfStack+1..] elements == null

Pre-conditions for the StackAr constructor
capacity >= 0

Post-conditions for the StackAr constructor
orig(capacity) == this.theArray.length
this.topOfStack == -1
this.theArray[] elements == null

Post-conditions for the isFull method
this.theArray == orig(this.theArray)
this.theArray[] == orig(this.theArray[])
this.topOfStack == orig(this.topOfStack)
(return == false) <==> (this.topOfStack < this.theArray.length - 1)
(return == true) <==> (this.topOfStack == this.theArray.length - 1)

Fig. 1. Daikon output for the StackAr program. The figure shows likely object
invariants and the pre- and post-conditions for the constructor and isFull method.
There are no pre-conditions for isFull.

Likely invariants are also found at each method entry and exit. These cor-
respond to the pre- and post-conditions for the method. There is one pre-
condition for the StackAr constructor:

capacity >= 0

StackAr was never created with a negative capacity. (This particular con-
structor implementation would fail if supplied a negative capacity.)

The post-conditions for the StackAr constructor are:

orig(capacity) == this.theArray.length

The size of the array that will contain the stack is equal to the specified
capacity.

this.topOfStack == -1

this.theArray[] elements == null

Initially the stack is empty and all of its elements are null.

There are no pre-conditions for the isFull method other than the object
invariants. The post-conditions are:

this.topOfStack == orig(this.topOfStack)

this.theArray == orig(this.theArray)
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this.theArray[] == orig(this.theArray[])

Neither the topOfStack index, nor the reference to the theArray array, nor
the contents of the array are modified by the method. In other words, the
method is pure (an observer method).

(return == true) <==> (this.topOfStack == this.theArray.length - 1)

When isFull returns true, topOfStack indexes the last element of theArray.
(return == false) <==> (this.topOfStack < this.theArray.length - 1)

When isFull returns false, topOfStack indexes an element prior to the last
element of theArray.

3 Key features of Daikon

The following subsections detail Daikon’s key features, which allow it to be
used in a wide variety of contexts.

3.1 Input from many programming languages and other data formats

Daikon can compute likely invariants for programs written in C, C++, Java,
and Perl (see section 5.1). Daikon can also process data from spreadsheets
such as Excel using CSV (comma separated value) format; this is convenient
when running Daikon on data that was not generated by a program. It is
relatively easy to support new programming languages and data formats, as
several users have done (see section 5.3).

3.2 Rich output

Daikon’s primary goal is to report expressive and useful output. Which invari-
ants are reported depends on the grammar of invariants that are expressible
by the invariant detector, the variables over which the invariants are checked,
and the program points at which the invariants are checked. We discuss each
of these factors below.

Grammar of properties. Daikon checks for 75 different invariants includ-
ing those mentioned in the abstract, and users can easily extend this list (see
section 5.3). Checking a large number of invariants makes it more likely that
the output will contain the facts that are needed by a human or a tool; how-
ever, it also increases the run time of the invariant detector. Daikon includes
optimizations that allow it to support a large number of possible invariants
(see section 5.2).
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Daikon also can report conditional invariants or implications, such as this .left 6=
null ⇒ this .left .value ≤ this .value. Daikon has certain built-in predicates that
it uses for finding implications; examples are which return statement was ex-
ecuted in a procedure and whether a boolean procedure returns true or false.
Additionally, Daikon can read predicates from a file and find implications
based on those predicates [1]. The predicates can be produced manually or
automatically using tools distributed with Daikon, such as by static analysis
of the program or by cluster analysis of the values in the execution trace.

Grammar of variables. The invariants that an invariant detector can express
must be instantiated over particular variables or other values. For example, x ∈
y is instantiated over two variables, of which the second must be a collection.
Daikon can produce invariants over

• procedure parameters and return values
• pre-state values (expressed as orig in figure 1), which permits reports of

procedure side effects and input–output relationships
• global variables
• fields (given an object a, useful additional information appears in a.f, a.f.g,

etc.)
• results of calls to side-effect-free (pure, observer) methods, such as size()

• additional expressions called derived variables (25 in all). For example, given
array a and integer lasti, then invariants over a[lasti] may be of interest,
even though it is not a variable and may not even appear in the program.

These variable types can be combined; for example, a.b[myObject.getX()]. A
Daikon switch controls whether only public fields/methods are considered (giv-
ing an external, client view of the data structure), or private fields/methods
are included (giving an internal, implementation view of the data structure).
Another switch controls the depth for examining fields and pure method calls.

Program points. Daikon checks for invariants at procedure entries and exits,
resulting in likely invariants that correspond to pre- and post-conditions. It
computes likely invariants at each procedure exit (i.e., return statement) and
also at an aggregate exit point (as viewed by a client) by generalizing over the
individual exit points. Likely object or class invariants are also computed at
an aggregate program point (object point). The object point generalizes over
all objects that are observed at entry to and exit from public methods of a
class, that are passed into or returned from methods of other classes, or that
are stored in object fields.
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3.3 Scalable

Despite the rich output described in section 3.2, Daikon is scalable to non-
trivial programs. For example, Daikon was used to generate partial consistency
specifications (see section 4.6) for the Center-TRACON Automation System
(CTAS) developed at the NASA Ames research center [2]. CTAS is a set of
air-traffic control tools that contains over 1 million lines of C and C++ code.
Applying Daikon to large programs often requires focusing Daikon on a subset
of the program, or reducing the number of derived variables or even invariants
that Daikon considers. All of these can be done via command-line arguments.

3.4 Invariant filtering

Dynamic invariant detection tests potential invariants against observed run-
time values. As with any dynamic analysis or machine learning technique,
there is a possibility of overfitting (overgeneralizing) by reporting properties
that are true of the training runs but are not true in general. For example,
if there are an inadequate number of observations of a particular variable,
patterns observed over it may be mere coincidence. Daikon mitigates such
problems by computing a null hypothesis test (the probability that a property
would appear by chance in a random input), then reporting the property only
if its probability is smaller than a user-defined confidence parameter.

Redundant invariants. Any invariant that is logically implied by other in-
variants can be removed from the output with no loss of information. For exam-
ple, consider the object invariant this.topOfStack <= this.theArray.length-1

from figure 1. The invariant this.topOfStack < this.theArray.length is also
true but is not reported. As much as possible, Daikon does not even compute
redundant invariants. This both removes them from the output and improves
Daikon’s performance (see section 5.2). Some redundancies that cannot be
handled by the optimizations are removed from the output by post-processing.

Abstract types. Many variables in a program are not related to one another.
For example, variable temp may contain the current temperature while time

contains the number of seconds since 1970. Even though invariants may exist
over these variables (e.g., temp < time), those invariants are not interesting.
Daikon can use abstract type information [3] to restrict invariants to related
variables. The Daikon distribution includes tools that compute abstract types.
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3.5 Output formats

Daikon supports a wide variety of output formats. It is also easy to add addi-
tional formats (see section 5.3).

Daikon. Default output format, with quantifiers and other features.
DBC. Design by contract format for Parasoft’s Jtest tool [4].
ESC. Extended static checker format for use by the ESC/Java tool [5].
IOA. IOA language for modelling input/output automata, which can also
be converted into the language of the Isabelle theorem prover.

Java. Java expressions usable in a Java program, for instance as assertions.
JML. Java Modeling Language [6] format, used by many tools [7].
Repair. Format used by automated data structure repair tools [2].
Simplify. Format of the Simplify automated theorem prover [8].

The annotate tool included with Daikon inserts likely invariants into source
code as annotations.

3.6 Portable

Daikon is portable to a wide variety of platforms. The Daikon inference engine
and the Java instrumenter are written in Java, and the Perl instrumenter is
written in Perl, languages which are highly portable. One C instrumenter is
specific to Linux/x86, while a second is portable to any platform for which
Purify is available, including Windows, Linux, and several commercial Unix
variants.

4 Uses

The likely invariants produced by Daikon are a dynamically-generated ana-
logue of a program specification. Specifications are widely acknowledged as
being valuable in many aspects of program development, including design,
coding, verification, testing, optimization, and maintenance. They also en-
hance programmers’ understanding of data structures, algorithms, and pro-
gram operation. In practice, however, formal specifications are rarely available,
because they are tedious and difficult to write, and when available they may
fail to capture all of the properties on which program correctness depends.

A dynamically generated specification may be different from an ideal static
specification. The dynamic specification will reveal information not only about
the goal behavior, but also about the particular implementation and about
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the environment (inputs) under which the program was run. For many tasks
(such as improving a test suite and certain debugging tasks), the dynamic
information can be even more helpful than the static.

4.1 Documentation

Invariants characterize certain aspects of program execution and provide docu-
mentation of a program’s operation, algorithms, and data structures. As such,
they assist program understanding, some level of which is a prerequisite to
every programming-related task. Information that is automatically extracted
from the implementation is guaranteed to be up-to-date.

Automatically inferred invariants are useful even for code that is already doc-
umented with comments, assert statements, or specifications. The inferred
invariants can check or refine programmer-supplied invariants; program self-
checks are often out-of-date, ineffective, or incorrect [9].

4.2 Avoiding bugs

Invariants can protect a programmer from making changes that inadvertently
violate assumptions upon which the program’s correct behavior depends. If
the original invariant is not documented, much less the dependence, then it is
all too easy for a programmer to violate it, introducing a bug in a distant part
of the program. Program maintenance introduces errors [10,11] and many of
these are due to violating invariants. When presented with Daikon’s output,
programmers are able to avoid breaking such invariants [12].

4.3 Debugging

Although it is better to avoid errors in the first place, invariants can also
assist with debugging. Raz used Daikon to check for consistent inputs in data
streams [13]. Many authors have used inconsistencies in inferred invariants
between training runs and actual runs as an indicator of program bugs that
should be brought to the attention of humans [14–16].

Dynamically detected invariants can also help in understanding or localizing
errors. Groce uses differences between succeeding and failing runs to give a
concise explanation of test failures [17]. Xie compares behaviors of internal
components to localize differences between program versions and isolate er-
rors [18]. Liblit gives a light-weight methodology for determining which prop-
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erties are indicative of an error [19]. Brun uses machine learning over correct
and faulty programs to predict what properties in a different program are most
likely to indicate latent errors [20].

4.4 Testing

Dynamically detected invariants can reveal as much about a test suite as about
the program itself, because the properties reflect the program’s execution over
the test suite. This information is useful in testing. Insufficient coverage of
program values is a deficiency in the test suite, even if the test suite covers
every statement or path of the program. For example, “x > 0” can indicate
that zero and negative values were never tried, and “x < 10” that large values
were never tried. Furthermore, these properties indicate exactly what inputs
are needed to improve the test suite. The inferred invariants can also be used
as a type of coverage metric such as for test selection and prioritization; more
coverage yields a better test suite [21,22]. Dynamically detected invariants can
also assist in throwing out meaningless tests (that violate pre-conditions) and
inferring when a test has failed (by violating post-conditions) [23].

4.5 Verification

Dynamic invariant detection proposes likely invariants based on program ex-
ecutions, but the resulting properties are not guaranteed to be true over all
possible executions. Static verification checks that properties are always true,
but it can be difficult and tedious to select a goal and to annotate programs
for input to a static checker. Combining these techniques overcomes the weak-
nesses of each: dynamically detected invariants can annotate a program or
provide goals for static verification, and static verification can confirm prop-
erties proposed by a dynamic tool.

We have experimented with several program verifiers. With Java programs and
ESC/Java [5], Daikon’s precision (percentage of properties provable) was over
95%, of which the unprovable ones were generally due to prover incomplete-
ness, and its recall (percentage of properties needed for program verification
found) was over 90% [24]. Furthermore, users who were given the Daikon out-
put did statistically significantly better on a program verification task [25].
With proof assistant tools, about 90% of lemmas and tactics were generated
automatically [26], for proofs of three distributed algorithms.
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4.6 Data structure and control structure repair

Corrupt data structures cause incorrect or unpredictable program execution.
Data structure repair updates corrupt data structures, enabling the program
to continue to execute acceptably. However, it requires user-provided specifica-
tions. Daikon’s output has permitted the entire process to be automated while
permitting human review. The result was more robust versions of programs,
at reduced cost compared to manual generation [2].

A related use is in programs that dynamically choose modalities in response to
environmental inputs. Dynamically detected invariants from training runs can
indicate which modalities are correlated with which external conditions. At run
time, occasionally overriding the program’s (inconsistent) actions improved
the performance of programs in a real-world competition by over 50% [27].

5 Architecture

Daikon discovers likely invariants from program executions by instrument-
ing the target program to trace certain variables, running the instrumented
program, and inferring invariants over both the instrumented variables and
derived variables not manifest in the program. All of the steps are fully au-
tomatic (except for requirements of running the target program, such as its
inputs), and in fact the user issues only a single command that is much like
running the original program (see section 2).

5.1 Instrumenters

Instrumenters are language-specific. Currently Daikon has instrumenters for
C/C++, Java, and Perl programs. Some of the instrumenters are source-based:
they create a new version of the source that is then compiled, linked, and run.
Other, binary-based instrumenters operate directly upon the executable: they
are easier to use but are more likely (at least in the case of compiled languages)
to be platform-specific.

The basic task of the instrumenter is to add instructions to the target program
so that it will output the values of variables (section 3.2). The traces are
piped directly to the inference engine, avoiding the necessity of disk storage.
Alternately, the traces can be output to a file, permitting repeated processing
or combined processing of multiple runs. In order to obtain good coverage, a
target program sometimes needs to be run multiple times over separate inputs.
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In languages such as C/C++, it is not possible to determine if a pointer or
array index is valid simply by examining it. In this case, the instrumenter
must augment the target program to determine whether each pointer refers
to valid memory and the extent of each array.

5.2 Inference Engine

The inference engine reads the trace data produced by an instrumenter and
produces likely invariants. Separating the language-specific instrumenters from
the inference engine allows it to be portable and also makes it easier to extend
Daikon to new sources of data. Note that while Daikon is the name of the
entire system, it is also used to refer specifically to the inference engine.

The essential idea is to use a generate-and-check algorithm to test a set of
potential invariants against the traces. Daikon reports those invariants that
are tested to a sufficient degree without falsification. As with other dynamic
approaches such as profiling, the accuracy of the results depends in part on the
quality and completeness of the test cases. Even modest test suites produce
good results in practice [25,24], and techniques exist for creating good test
suites for invariant detection [21,28,22].

A simple algorithm for dynamic invariant detection represents each invari-
ant in the invariant grammar explicitly: it initially assumes that all potential
invariants are true and tests each one against each sample. Any invariant con-
tradicted by a sample is discarded. Any invariants remaining at the end of
processing are reported. Unfortunately, this algorithm does not scale well.

Daikon is enhanced with a number of optimizations that allow it to scale
to both large numbers of invariants and programs of non-trivial size. These
optimizations are based on the fact that the simple algorithm checks and
reports more invariants than necessary. Many invariants are redundant and
do not need to be checked. Together the optimizations reduce the number of
invariants that need to be checked by 99% [29].

There are four major optimizations.

• Equal variables. If two or more variables are always equal, then any in-
variant that is true for one of the variables is true for each of the variables.
For example, if x = y, then for any invariant f , f(x) implies f(y).

• Dynamically constant variables. A dynamically constant variable has
the same value at each observed sample. The invariant x = a (for constant
a) makes any other invariant over (only) x redundant. For example, x = 5
implies odd(x) and x ≥ 5. Likewise for combinations of variables: x = 5 and
y = 6 implies both x < y and x = y − 1.
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• Variable Hierarchy. Some variable values contribute to invariants at mul-
tiple program points. For example, values observed at (public) method exits
affect not only method post-conditions but also object invariants. For two
program points A and B, if all samples for B also appear at A, then any
invariant true at A is necessarily true at B and is redundant at B.

• Suppression of weaker invariants. An invariant is suppressed if it is log-
ically implied by some set of other invariants. (The previous three examples
of redundancy are special cases of this one.) For example, x > y implies
x ≥ y, and 0 < x < y and z = 0 imply x div y = z.

5.3 Extensibility

A primary design goal for Daikon is extensibility, since dynamic invariant
detection is a new and active field. Daikon is directly extensible in these ways:

• Instrumenters. An instrumenter for a new language or for other data
merely needs to output files in Daikon’s input format. For example, instru-
menters have been added for spreadsheet data, calls to Linux library rou-
tines [30], the Java PathFinder model checker [17], and online data feeds [13].

• Invariants. Each property in Daikon’s invariant grammar is implemented
as a subclass of the abstract base class Invariant, with further subclasses
grouping similar invariants. These classes provide most of the necessary
code for an invariant. A new invariant must provide basic functionality
such as the check modified method, which checks whether a tuple of values
is consistent with the invariant.

• Derived variables. A derived variable is an expression that Daikon treats
as a variable (see section 3.2). As with invariants, the class structure makes
it easy to add new derived variables by defining a few methods.

• Output formats. New output formats (see section 3.5) require only adding
a new format method to each invariant.

• Suppressions. As noted in section 5.2, an invariant is suppressed if it
is logically implied by some set of other invariants. Each type of invari-
ant can specify a set of possible suppressions. Each suppression is a set
of antecedent invariants that together imply the invariant. For example,
{{x=y, z=1}, {x=z, y=1}} is a set of two suppressions for the invariant
x = y · z. An invariant is suppressed if all of the antecedents in any suppres-
sion hold. A new suppression is added by listing the antecedent invariants
that make up the suppression.

• Modular. Daikon is designed to make it easy to use as part of another
tool. Its entry points all have a corresponding mainHelper method that can
be called programmatically and that never calls System.exit(). Likely in-
variants are written to a serialized file, for convenient programmatic use.
More than 100 configuration options (documented in the user manual) con-
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trol Daikon’s behavior. Daikon is open source, permitting users to make
changes (and to contribute them to the project).

6 Development process

Daikon is intended as a long term, full featured, robust research tool. Its devel-
opment process is designed to ensure that this is possible despite the challenges
of the academic research environment (e.g., many short-term developers, each
with a very specific focus). The keys to the process are:

• Monthly releases. A new version of Daikon is released every month. This
ensures that the build process is clean and that the documentation is up to
date. It also serves as an incentive to address problems in a timely fashion.

• Documentation. Daikon has extensive, and frequently updated, user (156
pages) and developer (129 pages) manuals in addition to the technical papers
that describe its algorithms and uses. Portions of the manual are automat-
ically created from source code documentation to ensure accuracy.

• Support. Several moderated mailing lists exist for users to obtain help.
Most problems are attended to within a few days. If a change is required,
that change is normally made available immediately and is also included in
the next release.

• Regression tests. Significant regression tests for both the inference engine
and the instrumenters are run nightly, and by the developers before com-
mitting code changes. Daikon has been used as a test subject in over half a
dozen published papers because of its CVS history and its regression tests.

7 Comparison to related tools

This section describes the most closely related other implementations of dy-
namic invariant detection. We regret that space constraints prevent discussion
of every related tool. While the other implementations use the simple algo-
rithm described in section 5.2 without Daikon’s optimizations, some of them
run faster than Daikon, primarily because Daikon checks many more invariants
(for example, millions of times more, on flex [29]).

The Agitator product developed by Agitar was inspired by Daikon [31]. Agi-
tar performs dynamic invariant detection in order to inform users about tests,
and to improve those tests. The results are called “observations”, they in-
clude equality (x = y), range (−10 ≤ x ≤ 10), non-null (x 6= null), equality
(.equals), and properties gleaned from the user’s source code. Agitar won the
Wall Street Journal’s 2005 Software Technology Innovation Award.
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The DIDUCE tool [14] for Java programs checks one unary invariant, which
indicates all previously seen values of every bit of the value. At each program
point (a field or array reference, or a procedure call), that invariant is checked
for three values: a variable’s current and previous values and their difference.
As an invariant is weakened (new values are observed in a given bit), a message
is printed. A user can look for weakenings that are printed on erroneous runs
or just before an error occurs, to find rare corner cases. The tool was used to
help explain several known errors and to reveal two new errors.

The IODINE tool [32] extracts likely design properties from hardware designs
using dynamic analysis. It looks for such properties as state machine protocols,
request-acknowledge pairs, and mutual exclusion between signals. IODINE
was used to find dynamic invariants for one block of a dual-core SPARCTM

processor design.

Remote program sampling [19] is a light-weight mechanism that evaluates two
properties (one unary and one binary, but instantiated for a linear rather than
quadratic number of variable pairs) at assignments in C programs (plus the
predicate at each branch), counting the number of times that each property
is satisfied. The properties are checked probabilistically: on most executions
of a program point, property checking is skipped. Any of the other implemen-
tations could be so extended, sacrificing soundness (over the test suite) but
gaining performance. The results are processed statistically to indicate which
properties are best correlated with faults and thus most likely to be indicative
of faults. The tool can provide early warning of errors, if one of the relatively
simple properties indicates a bug. In an experiment, the tool rediscovered 7
known errors and found one new one.

Henkel and Diwan [33,34] have built a tool that discovers algebraic speci-
fications, which relate the meaning of sequences of code operations, such as
“pop(push(x,stack))=stack”. The tool generates many terms (test cases) from
the signature of a Java class and proposes equations based on the results of
the tests. The tool also proposes and tests generalizations.

The SPIN model checker has been extended to check whether two variables
are related by =, <, >,≤, or ≥ [35]. The output is a graph with variables at
the nodes and edges labeled by the comparison relations.

Several researchers have inferred, from program or system traces, finite state
automata that represent the permitted transitions [36–39]. Specifications writ-
ten in the form of automata are complementary to the formula-based program
properties that are generated by a dynamic invariant detector. Perracotta [40]
is similar except that it looks for a set of extensions to the response property
pattern rather than an automaton.
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8 Conclusion

Daikon is a full-featured, scalable, robust tool for dynamic invariant detection.
It supports multiple programming languages and is readily extensible to other
languages and sources of data. The likely invariants that it produces have been
used in a contexts ranging from refactoring to testing to data structure repair,
and many more.

Daikon is freely available for download from http://pag.csail.mit.edu/daikon/.
The distribution includes both source code and extensive documentation, and
Daikon’s license permits unrestricted use.
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