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Chapter 1

Introduction

Distributed systems can be quite complicated, and it is therefore important to be

able to reason about a system at both the high level and the implementation level.

The I/O Automaton model [8, 9] encourages the programmer to practice a process

of successive refinement, describing a system first at a high level, and then at lower

levels, with increasing detail. The IOA language provides an expressive medium for

precise description of a system’s behavior, allows for descriptions at various levels of

abstraction, and provides a mechanism for relating those descriptions.

The IOA Simulator allows the programmer to view possible executions of systems

developed by this process, potentially detecting bugs or gaining confidence in the

algorithm. Additionally, it can act as an interface to the Daikon invariant-detection

system [4].

1.1 IOA tools

The IOA Toolkit includes several types of assistance for developing algorithms and

programs. They are grouped into front-end, which take IOA input, and back-end

tools, which take input in an intermediate language (IL). The first kind listed here

are the front-end tools:

• The IOA Front End reports syntactic and semantic errors in IOA input; if it
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finds no errors, it produces output in the intermediate language (IL) understood

by the back-end tools.

• The Composer, first described in Anna Chefter’s thesis [3], will take descriptions

of IOA automata that are designed to work together and combine them into

a single automaton. Steve Garland and Joshua Tauber are currently writing

a precise specification for the semantics of composition, and they will add the

Composer to the IOA Front End.

The toolkit also includes the following back-end tools:

• The IL parser, written by Antonio Ramı́rez, generates a parse tree from the IL.

It is used by all the other back-end tools.

• Translation tools provide interfaces to theorem provers and model checkers,

to enable computer-assisted verification of programs. Andrej Bogdanov has

created an IOA interface to the Larch Prover [7, 1]. Stanislav Funiak is working

on automated translation of IOA to the TLA+ specification language, which is

used by the TLC model checker [13].

• The Code Generator (CodeGen) will produce Java from IOA. This will allow a

programmer to develop an algorithm in IOA, perhaps using the other tools to

assist in verification, and then generate a distributed implementation directly.

Tauber and Michael J. Tsai are developing CodeGen.

• The Simulator interprets IOA programs, producing a trace of a possible sched-

ule of automaton transitions. This allows a programmer to observe possible

executions of a program for debugging and testing. The Simulator is the focus

of this thesis.

1.2 IOA and Simulator Background

The IOA Manual [6] begins with a tutorial on the IOA language; the tutorial includes

mathematical definitions for I/O automata and IOA.

14



The IOA Simulator was designed by Anna Chefter [3] and implemented by Antonio

Ramı́rez [11]. This section describes two problems — the nondeterminism of IOA and

paired simulation — and the Simulator’s approach to them.

1.2.1 The nondeterminism of IOA

IOA specifications are inherently nondeterministic. They do not provide an explicit

list of commands in order; instead, they define automata in terms of their state

variables and allowed transitions, and they define those transitions in terms of pre-

conditions and effects. (These definitions may constrain the order of the transitions,

of course.)

One source of nondeterminism in IOA specifications is that, in a given state,

multiple transitions might be enabled. For example, transitions t1 and t2 might both

be enabled, or transitions t1(5) and t1(10). Both examples are cases of scheduling

nondeterminism.

Another source of nondeterminism is IOA’s choose statement, e.g. choose i:

Nat where i<5, which indicates that i must be a natural number between 0 and 5.

This is referred to as choose nondeterminism.

1.2.2 The current approach to resolving nondeterminism

Since the Simulator’s job is to create an execution, it must resolve both choose and

scheduling nondeterminism.

In order to resolve scheduling nondeterminism, an automaton specification must

be accompanied by a schedule block, for all but the simplest automata. The precise

definition of “all but the simplest” appears in Section 2.4. The user must also pro-

vide explicit instructions for resolving choose nondeterminism. Sections 2.5 and 2.6

provide examples of these kinds of nondeterminism and how to resolve them.
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1.2.3 Paired simulation

When a low-level automaton is an acceptable implementation of a high-level goal, the

automata exhibit a property called trace inclusion: an automaton Impl implements

an automaton Spec if any possible trace of an execution of Impl is also a possible

trace of an execution of Spec. A trace of a transition or an execution is a sequence,

possibly empty, of its input and output transitions. Spec and Impl are referred to as

the specification automaton and the implementation automaton, respectively.

A simulation relation from Impl to Spec implies trace inclusion; this property

is what makes simulation relations important enough to be reflected in the IOA

language. If a simulation relation holds between the states of Impl and Spec, then

for any transition x of Impl, there is a sequence α of transitions of Spec such that:

• the traces of x and α are identical, and

• the simulation relation holds between the states of Impl and Spec after x and

α have occurred.

Section 2.7 includes examples of simulation relations in IOA and how the Simulator

can use them.

The following, more precise, definition is taken from Lynch [8]: A forward simula-

tion relation from automaton A to automaton B is a binary relation f ⊆ states(A)×

states(B) such that:

1. If s ∈ start(A), then f(s) ∩ start(B) 6= ∅;

2. if s is a reachable state of A, u ∈ f(s) is a reachable state of B, and (s, π, s′) is

a transition of A, with pre-state s and post-state s′, then there is an execution

fragment α of B starting with state u and ending with some state u′ ∈ f(s′),

such that trace(α) = trace(π),

where start(A) is the set of start states of A, and f(s) stands for {u : (s, u) ∈ f}.
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1.3 Daikon

Daikon is an invariant-detection tool developed by Michael Ernst and colleagues [4].

It deduces potential invariants based on information about given executions of a

program. It reports only facts that are true in every execution it sees; this does not

constitute proof of an invariant, but the information is often interesting and useful.

Daikon has interfaces for Java, C/C++, and now IOA. This thesis describes the

development of the Simulator’s ability to create output that Daikon can read; Toh

Ne Win is continuing work on this functionality.

1.4 Outline of this thesis

Chapter 2 is a user’s guide to the Simulator. It describes what the Simulator can

and cannot do, with IOA program examples to illustrate its capabilities. Most of the

features described in the guide were implemented by Ramı́rez, though some are new;

the new features are explicitly identified as such.

Chapter 3 describes the Simulator’s ability to produce output for Daikon.

Chapter 4 describes the current state of the syntax and semantics of Simulator-

related extensions to the IOA language. These extensions include nondeterminism

resolution mechanisms and “proof” blocks, which tell the Simulator how to run the

the specification automaton in a paired simulation.

Chapter 5 contains notes on the IOA intermediate language (IL). This chapter is

of interest to Simulator developers, but not to casual users.

Chapter 6 contains notes on the implementation of the Simulator. Like Chapter

5, it is aimed at Simulator developers.

Chapter 7, the final chapter, contains a conclusion and suggestions for future work.

1.5 Terminology

The word “specification” has two meanings in this thesis. As a noun, as in “this

IOA specification has correct syntax, but contains a semantic error,” it refers to IOA

17



code specifying an automaton. As an adjective, as in “the specification automaton is

named Fibonacci,” it refers to one of the automata in a paired simulation.

“IOA specification” also contrasts with “IOA program.” An IOA program includes

information on how the Simulator should resolve the automaton’s nondeterminism.

The distinction can be viewed as a subset relation, because every program is also a

specification; in this thesis, the word “program” will be used whenever it is applicable.

“Simulation” is another dual-use word. It can refer to the action the Simulator

performs on an automaton (simulating it), or it can refer to a simulation relation

between an implementation and a specification automaton.
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Chapter 2

User’s Guide

This chapter introduces the Simulator to a reader with some familiarity with I/O

automata and IOA. The first part of the IOA Manual [6] is a good source of the

required background. For those who prefer a less mathematical introduction, it may

be helpful to read the examples here first, or in parallel.

The chapter contains a brief introduction to the Simulator, a series of example

IOA programs, and additional details about programs the Simulator can and can-

not run. The series of examples begins with a simple deterministic automaton and

then proceeds to more complicated examples in order to demonstrate the Simulator’s

capabilities.

2.1 The purpose of the Simulator

As described in Section 1.2, the Simulator creates executions of IOA automata. This

capability makes it useful as a tool for testing automata, because each execution

either reveals bugs or increases confidence that an automaton works as expected, by

displaying values of state variables and verifying that invariants hold. Additionally,

the Simulator serves as an IOA interface to the Daikon invariant-discovery tool.
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2.2 A simple deterministic example

The Fibonacci specification in Listing 2-1 defines a simple deterministic automaton:

it has no choose statements, it has only one transition, and that transition has no

parameters. The effect of the compute transition is to compute the next Fibonacci

number and store it as c. At every step, the Simulator runs the compute transition,

since that is its only available option. It then checks that the stated invariant holds.

At the nth step, the state variable c holds the value of the nth Fibonacci number.

Listing 2-2 shows the Simulator’s output for sim 6 Fibonacci.ioa.

Listing 2-1: Fibonacci.ioa
automaton Fibonacci
signature

internal compute
states

a:Int := 1,
b:Int := 0,
c:Int := 1

transitions
internal compute
eff a := b;

b := c;
c := a + b

invariant A of Fibonacci:
a + b = c

Listing 2-2: Simulator output for sim 6 Fibonacci.ioa

[[[[ Begin initialization [[[[
%%%% Modified state variables:

a --> 1
b --> 0
c --> 1

]]]] End initialization ]]]]
[[[[ Begin step 1 [[[[

transition: internal compute in automaton Fibonacci
%%%% Modified state variables:

a --> 0
b --> 1
c --> 1

]]]] End step 1 ]]]]
[[[[ Begin step 2 [[[[

transition: internal compute in automaton Fibonacci
%%%% Modified state variables:

a --> 1
b --> 1
c --> 2

]]]] End step 2 ]]]]
[[[[ Begin step 3 [[[[

transition: internal compute in automaton Fibonacci
%%%% Modified state variables:

a --> 1
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b --> 2
c --> 3

]]]] End step 3 ]]]]
[[[[ Begin step 4 [[[[

transition: internal compute in automaton Fibonacci
%%%% Modified state variables:

a --> 2
b --> 3
c --> 5

]]]] End step 4 ]]]]
[[[[ Begin step 5 [[[[

transition: internal compute in automaton Fibonacci
%%%% Modified state variables:

a --> 3
b --> 5
c --> 8

]]]] End step 5 ]]]]
[[[[ Begin step 6 [[[[

transition: internal compute in automaton Fibonacci
%%%% Modified state variables:

a --> 5
b --> 8
c --> 13

]]]] End step 6 ]]]]

2.3 How to run the Simulator

The IOA Toolkit distribution includes a jar file with all the necessary Java classes

for running the IOA tools. The toolkit’s bin directory includes several scripts for

running tools, including sim and psim, short for “simulator” and “paired simulator.”

Running these programs requires Java version 1.3 or later.

The toolkit also includes the source code for the tools, in its Code directory.

Running make there builds everything; running make in the bin directory rebuilds

the jar file and the scripts for running the programs. Our group compiles the toolkit

with JDK 1.3 and PolyJ 1.0.2; later versions of these compilers may work as well, but

earlier versions will not.

2.3.1 Command-line options

The simulator and the paired simulator are called as follows.

sim [flags] <numSteps> [<automaton name>] <filename>
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psim [flags] <numSteps> <implAut> <specAut> <filename>

The input file should be in IOA or in the intermediate language (IL). If that file

specifies only one automaton, then sim will deduce that it is the automaton to be

simulated; otherwise, it must be explicitly stated on the command line. The following

table lists the optional flags and describes them. Flags marked with an asterisk are

expected to be used only by Simulator developers and maintainers.

Flag Effect
-daikon Turn on Daikon instrumentation.
-dbg <string>+* Turn on debug information for the named Java classes or

packages.
-debug * Turn on debug information globally.
-ignoreFirst Do not print information to the dtrace file until the first

transition has occurred, during Daikon instrumentation.
(An example of using this option appears in Section 3.6.)

-noIl Do not send IL output to a file (if input is an IOA file).
-o <string> Set base name for output files to <string>.
-odecls <string> Set destination file for decls output.
-odtrace <string> Set destination file for dtrace output.
-oil <string> Set destination for IL output.
-rseed <number>* Set randomizer seed (for regression testing).
-state Show all state variables during execution.
-traces (or Show only traces (no state variables) during execution.
-tracesOnly) (By default, all modified state variables are shown.)

2.4 Simulator requirements

This section describes various aspects of what the Simulator requires in order to run

an IOA program.

2.4.1 Resolving nondeterminism

Fibonacci as shown in Listing 2-1 is a simple deterministic automaton. It defines

only one transition: compute, with no parameters. These properties make it easy for

the Simulator to know how to run it — at each step, the Simulator simply performs

the compute transition.

If an automaton has two or more transition definitions, but the transitions do

not take any parameters, then the Simulator can still run the automaton with no
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additional information. At each step, the Simulator executes one of the transitions, if

there is one whose precondition holds; if not, it halts. There are no guarantees about

randomness or completeness; in fact, the Simulator may choose the same transition

at every step, if its precondition continues to be true.

If any of the transitions have parameters, however, or if the user wants to spec-

ify the order of the transitions, then the IOA program should include a schedule

block, as described in Section 2.5. The Simulator follows this schedule, checking each

transition’s preconditions and then executing its effects. If the IOA program includes

invariants, then the Simulator checks that the invariants hold after each transition.

In addition to the nondeterminism of scheduling, IOA allows explicit nondeter-

minism in the form of choose statements. The user must tell the Simulator how to

resolve these choices; Section 2.6 describes how to do so.

2.4.2 Supported IOA sorts

The Simulator currently has implementations for several built-in primitive IOA types

(Boolean, Integer, Natural, Real, Char, and String), and it supports user-defined

types formed from the enumeration, tuple, and union shorthands, and those formed

from the Array (for one-dimensional arrays), Seq (sequence), Set, Mset (multiset),

and Map constructors. These types, shorthands, and constructors are described in the

IOA Manual [6].

There is currently no implementation for the two-dimensional use of Array. The

front end will accept it, but the Simulator cannot yet run it.

Additionally, LSL files and Java implementations are available for the parameter-

ized sorts Stack, Tree, and PQ (priority queue). These sorts are, unfortunately, not

yet included in the IOA Manual.

2.4.3 Adding new data types

It is possible to add new data types to the Simulator (and, simultaneously, the Code

Generator). Doing so requires writing an LSL specification and a Java implementa-
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tion of each data type. The writer must ensure that the Java class implements the

LSL specification; the Simulator makes no attempt to check. Instructions appear in

Michael J. Tsai’s paper on the design and implementation of the IOA shared data

types [12].

2.4.4 NonDet functions

Section 2.6 provides an example of using the randomInt function. NonDet.lsl in-

cludes two other functions, and the Simulator handles them both: randomNat and

randomBool. The randomNat function, like randomInt, takes 2 parameters, and re-

turns a number between them (inclusive); randomBool takes no parameters.

2.4.5 Shortcut operators

The Simulator shortcuts the ∧, ∨, and ⇒ operators, i.e., it evaluates the first ar-

gument before deciding whether to evaluate the second. This enables handling of

statements such as size(mySeq)>0 ∧ head(mySeq)=x, where x is some value. If the

order of the arguments to the ∧ were reversed, and the size of mySeq were zero, the

Simulator would report an error due to the attempt to take the head of an empty

sequence.

2.4.6 Existential and universal quantifiers

The Simulator has the ability to handle existential and universal quantifiers only

when the quantified variable is an enumeration. This feature should be extended in

the future to cover other, more useful cases.

To work around this limitation, an existential quantifier can often be replaced by

a choose statement with a suitable where clause [3, page 39].

2.4.7 for loops

The Simulator does not handle for loops in any automaton or schedule. It is often

possible to use a while loop instead. For example, for i:Nat where i<20 do ...

24



od can be replaced by while i<20 do i:=i+1; ... od. Note that while does not

include a mechanism for declaring a variable, and so the variable i must be declared

and initialized outside the loop.

2.5 Resolving scheduling nondeterminism

As mentioned above, automata are generally not deterministic. This section gives

examples of resolving an automaton’s scheduling nondeterminism.

Section 2.4.1 describes the conditions in which the Simulator requires a schedule

block. The schedule tells the Simulator how to determine, at every step, which

transition to execute. For a given transition definition, the schedule should specify

values for its parameters (if any). The full syntax for schedule blocks appears in

Section 4.3.

2.5.1 A simple example

The Fibonacci program in Listing 2-3 includes a simple example of an IOA schedule

block. At the nth step, the state variable c holds the value of the nth Fibonacci

number in the sequence starting with the integers given as actual parameters to

initialize. The first line, uses NonDet, allows the specification to refer to one of

the functions (in this case, randomInt) defined in NonDet.lsl.

Listing 2-3: Fibonacci with a schedule block
uses NonDet

automaton Fibonacci
signature
input initialize(x:Int, y:Int)
internal compute

states
initialized:Bool := false,
a : Int, b : Int, c : Int

transitions
input initialize(x, y)

eff if (initialized = false) then
a := y-x;
b := x;
c := y;
initialized := true

fi
internal compute
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pre initialized = true
eff a := b;

b := c;
c := a + b

schedule % The schedule block determines all the
do % transitions the Simulator will execute.
fire input initialize(randomInt(0,20), 16); % first, initialize
while true do fire internal compute od % then continue with compute

od

2.6 Resolving choose nondeterminism

IOA’s choose construct allows the user to specify that a variable takes one of several

values, without specifying which one it should take in any given case. This section

gives an example with choose and shows how to resolve it for the Simulator, using

det blocks. The full syntax for det blocks appears in Section 4.3.

2.6.1 A simple example

The program in Listing 2-5 gives a simple example of the use of det blocks, telling

the Simulator how to resolve the nondeterminism of the choose statements in the

Fibonacci specification in Listing 2-4, which the Simulator cannot run.

Listing 2-4: Fibonacci with a choose block
automaton FibonacciNDChoose % does not run in the Simulator
signature
internal initialize
internal compute

states
initialized:Bool := false,
a : Int, b : Int, c : Int

transitions
internal initialize

pre initialized = false
eff b := choose x:Int where 0 <= x /\ x <= 50; % The Simulator doesn’t know

c := choose y:Int where 0 <= x /\ x <= 50; % how to resolve a choose.
a := c - b;
initialized := true

internal compute
pre initialized
eff a := b;

b := c;
c := a + b
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Listing 2-5: Fibonacci with a choose block and a det block
uses NonDet

automaton Fibonacci
signature
internal initialize
internal compute

states
initialized:Bool := false,
a : Int, b : Int, c : Int

transitions
internal initialize

pre initialized = false
eff b := choose x:Int det do yield 5 od; %% always use 5

c := choose y:Int yield randomInt(0, 50); %% choose a random Int
a := c - b;
initialized := true

internal compute
pre initialized
eff a := b;

b := c;
c := a + b

In Listing 2-5, initialize has been re-written; the Simulator can resolve each

choose statement. yield 5 would be an acceptable synonym for det do yield 5

od; the surrounding det do ... od is required only when there are multiple state-

ments in the program.

2.7 Paired Simulation

IOA lets a user describe a simulation relation between two automata (Section 1.2.3).

The simulation relation asserts that one automaton, the implementation automaton,

implements another, the specification automaton or spec. The user may also specify

a correspondence between the transitions of the implementation automaton and that

of the spec. The part of the program that describes this correspondence is called a

proof block. It is called a proof block because it forms the outline of an induction

proof (on the number of steps in the execution of the implementation automaton) of

the simulation relation. The proof block itself is not technically a proof, because it

does not verify that the simulation relation is valid for every reachable state.

For every transition in the spec, the proof block defines a corresponding sequence

of statements in the implementation automaton. That program may execute, or fire,
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a transition in the implementation automaton. If the spec transition is external (input

or output), then the program for the implementation must include a transition with

the same trace as the spec transition. Section 4.4 gives the full syntax of proof blocks.

2.7.1 A simple example

Listing 2-6 specifies two automata and a simulation relation between them. The

first automaton, FiboSpec, describes an automaton for computing a Fibonacci-style

sequence, starting from some unspecified integers. Given this input, the Simulator

runs FiboImpl and, at every step, runs the corresponding transition in FiboSpec and

checks that the simulation relation holds.

Listing 2-6: Paired Fibonacci

automaton FiboSpec
signature
input compute

states
a:Int, b:Int, c:Int %% no initial values specified
so that a + b = c

transitions
input compute
eff a := b;

b := c;
c := a + b

automaton FiboImpl %% identical to the Fibonacci automaton
signature %% defined in Listing 2-1
input compute

states
a:Int := 1,
b:Int := 0,
c:Int := 1

transitions
input compute
eff a := b;

b := c;
c := a + b

forward simulation from FiboImpl to FiboSpec:
(FiboImpl.a = FiboSpec.a /\
FiboImpl.b = FiboSpec.b /\
FiboImpl.c = FiboSpec.c)

proof
initially
FiboSpec.a := FiboImpl.a; %% specifies initial values for
FiboSpec.b := FiboImpl.b; %% the state variables of FiboSpec
FiboSpec.c := FiboImpl.c

for input compute do %% "compute" in the implementation automaton
fire input compute %% corresponds to "compute" in the spec

od
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2.7.2 A simple example illustrating using values

Within a paired simulation, the fire statement has an additional capability not

revealed by the previous example: it can specify a value for choose variables in

the spec automaton, with a using clause. The FiboSpec automaton in Listing 2-7

is identical to the one in Listing 2-6, except that compute has been re-written to

use a choose statement. This change requires the proof block to specify a value

for the choose variable, sum. Listing 2-8 contains the output for psim 4 FiboImpl

FiboSpec fib-using.ioa.

Listing 2-7: Paired Fibonacci with using clause (fib-using.ioa)
automaton FiboSpec
signature

internal compute
states

a:Int, b:Int, c:Int %% no initial values specified
so that a + b = c

transitions
internal compute
eff a := b;

b := c;
c := choose sum where sum = a + b %% NEW CODE

automaton FiboImpl %% identical to the Fibonacci automaton
signature %% defined in Listing 2-1
internal compute

states
a:Int := 1,
b:Int := 0,
c:Int := 1

transitions
internal compute
eff a := b;

b := c;
c := a + b

forward simulation from FiboImpl to FiboSpec:
(FiboImpl.a = FiboSpec.a /\
FiboImpl.b = FiboSpec.b /\
FiboImpl.c = FiboSpec.c)

proof
initially
FiboSpec.a := FiboImpl.a; %% specifies initial values for
FiboSpec.b := FiboImpl.b; %% the state variables of FiboSpec
FiboSpec.c := FiboImpl.c

for internal compute do
fire internal compute using FiboImpl.a+FiboImpl.b for sum %% NEW CODE

od

Listing 2-8: Paired Fibonacci output
[[[[ Begin initialization [[[[
%%%% Modified state variables for impl automaton:
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a --> 1
b --> 0
c --> 1

%%%% Modified state variables for spec automaton:
a --> 1
b --> 0
c --> 1

]]]] End initialization ]]]]
[[[[ Begin step 1 [[[[

Executed impl transition: internal compute in automaton FiboImpl
%%%% Modified state variables for impl automaton:

a --> 0
b --> 1
c --> 1
Executed spec transition: internal compute in automaton FiboSpec using 1 for sum

%%%% Modified state variables for spec automaton:
a --> 0
b --> 1
c --> 1

]]]] End step 1 ]]]]
[[[[ Begin step 2 [[[[

Executed impl transition: internal compute in automaton FiboImpl
%%%% Modified state variables for impl automaton:

a --> 1
b --> 1
c --> 2
Executed spec transition: internal compute in automaton FiboSpec using 2 for sum

%%%% Modified state variables for spec automaton:
a --> 1
b --> 1
c --> 2

]]]] End step 2 ]]]]
[[[[ Begin step 3 [[[[

Executed impl transition: internal compute in automaton FiboImpl
%%%% Modified state variables for impl automaton:

a --> 1
b --> 2
c --> 3
Executed spec transition: internal compute in automaton FiboSpec using 3 for sum

%%%% Modified state variables for spec automaton:
a --> 1
b --> 2
c --> 3

]]]] End step 3 ]]]]
[[[[ Begin step 4 [[[[

Executed impl transition: internal compute in automaton FiboImpl
%%%% Modified state variables for impl automaton:

a --> 2
b --> 3
c --> 5
Executed spec transition: internal compute in automaton FiboSpec using 5 for sum

%%%% Modified state variables for spec automaton:
a --> 2
b --> 3
c --> 5

]]]] End step 4 ]]]]
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2.8 Additional example programs

This section includes a larger IOA program and describes others that are available in

the IOA Toolkit distribution.

2.8.1 Replicated data

Shien Jin Ong wrote the following version of the specifications developed in [2]. This

program appears here for several reasons:

• It is a more realistic IOA example than Fibonacci is. It describes a distributed

system at a level of abstraction suitable for the Simulator; the Fibonacci exam-

ples are contrived to illustrate certain IOA and Simulator features.

• It is one of the largest examples that the IOA group has run in the Simulator.

• It contains examples of IOA enumerations and unions.

The program in Listing 2-9 contains five sections:

1. Declarations of Message and Invocation. An Invocation is either a value,

which is a Nat to be written to memory, or a Message: “read,” “OK,” or “nil.”

2. CentralMem, an automaton holding one value (a natural number) in memory.

Each action is parameterized by a Nat representing one of five clients using the

memory. The arrays req and resp hold requests and responses for each client.

3. StrongCache. It represents the same function, performed by a central memory

(represented by the state variable mem) and five caches, one for each client.

4. A forward simulation relation from StrongCache to CentralMem.

5. A forward simulation relation from CentralMem to StrongCache.

Ong has also written formal hand proofs of the two simulation relations [10].
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Listing 2-9: Strong cache and central memory
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Number of nodes limited to 5. %
% Write/Memory values = [1, 100] %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%--- 1. type declarations ---%
uses NonDet

type Message = enumeration of read, OK, nil
type Invocation = union of val: Nat, msg: Message

%--- 2. CentralMem ---%
automaton CentralMem
signature

input invoke(v: Invocation, n: Nat) % invocation from client n
output respond(r: Invocation, n: Nat) % response to client n
internal perform(n: Nat)

states
mem: Nat := 0,
req: Array[Nat, Invocation] := constant(msg(nil)),
resp: Array[Nat, Invocation] := constant(msg(nil))

transitions
input invoke(v, n)
eff req[n] := v

output respond(r, n)
pre resp[n] = r /\ resp[n] ~= msg(nil)
eff req[n] := msg(nil);

resp[n] := msg(nil)
internal perform(n)
pre req[n] ~= msg(nil) /\ resp[n] = msg(nil)
eff if req[n] = msg(read) then resp[n] := val(mem)

else mem := req[n].val;
resp[n] := msg(OK)

fi
schedule
states
die: Nat,
Node: Nat, % represents a client
read_write: Bool, % whether to read or to write
value: Nat % the value to write

do
while true do
die := randomNat(1,2);
Node := randomNat(1,5);
read_write := randomBool;
value := randomNat(1,100);
if die = 1 /\ req[Node] = msg(nil) then
if read_write then fire input invoke(msg(read), Node)
else fire input invoke(val(value), Node)
fi

elseif die = 2 /\ resp[Node] ~= msg(nil) then
fire output respond(resp[Node], Node)

elseif req[Node] ~= msg(nil) /\ resp[Node] = msg(nil) then
fire internal perform(Node)

fi
od

od
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%--- 3. StrongCache ---%
automaton StrongCache
signature

input invoke(v: Invocation, n: Nat)
output respond(r: Invocation, n: Nat)
internal perform(n: Nat), copy(n: Nat), drop(n: Nat)

states
mem: Nat := 0,
cache: Array[Nat, Invocation] := constant(msg(nil)),
req: Array[Nat, Invocation] := constant(msg(nil)),
resp: Array[Nat, Invocation] := constant(msg(nil))

transitions
input invoke(v, n)
eff req[n] := v

output respond(r, n)
pre resp[n] = r /\ resp[n] ~= msg(nil)
eff req[n] := msg(nil);

resp[n] := msg(nil)
internal copy(n)
eff cache[n] := val(mem)

internal drop(n)
eff cache[n] := msg(nil)

internal perform(n)
pre req[n] ~= msg(nil) /\ resp[n] = msg(nil)

/\ (req[n] ~= msg(read) \/ cache[n] ~= msg(nil))
eff if req[n] = msg(read) then resp[n] := cache[n]

else mem := req[n].val;
resp[n] := msg(OK);
cache := constant(msg(nil))

fi
schedule
states
die: Nat,
Node: Nat, % represents a client
read_write: Bool, % whether to read or to write
value: Nat % the value to write

do
while true do

die := randomNat(1,4);
Node := randomNat(1,5);
read_write := randomBool;
value := randomNat(1,100);
if die = 1 /\ req[Node] = msg(nil) then

if read_write then fire input invoke(msg(read), Node)
else fire input invoke(val(value), Node)
fi

elseif die = 2 /\ resp[Node] ~= msg(nil) then
fire output respond(resp[Node], Node)

elseif req[Node] ~= msg(nil) /\ resp[Node] = msg(nil)
/\ (req[Node] ~= msg(read) \/ cache[Node] ~= msg(nil))

then fire internal perform(Node)
elseif die = 3 then

fire internal copy(Node)
elseif die = 4 then

fire internal drop(Node)
fi

od
od
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%--- 4. simulation relation, with proof block ---%
forward simulation from StrongCache to CentralMem:

StrongCache.mem = CentralMem.mem
/\ StrongCache.resp = CentralMem.resp
/\ StrongCache.req = CentralMem.req
/\ (StrongCache.cache[1] = msg(nil) \/ StrongCache.cache[1].val = CentralMem.mem)
/\ (StrongCache.cache[2] = msg(nil) \/ StrongCache.cache[2].val = CentralMem.mem)
/\ (StrongCache.cache[3] = msg(nil) \/ StrongCache.cache[3].val = CentralMem.mem)
/\ (StrongCache.cache[4] = msg(nil) \/ StrongCache.cache[4].val = CentralMem.mem)
/\ (StrongCache.cache[5] = msg(nil) \/ StrongCache.cache[5].val = CentralMem.mem)
% \A n: Nat (StrongCache.cache[n] = msg(nil) \/ StrongCache.cache[n] = CentralMem.mem)

proof
initially

CentralMem.mem := 0;
CentralMem.req := constant(msg(nil));
CentralMem.resp := constant(msg(nil))

for input invoke(v: Invocation, n: Nat)
do fire input invoke(v, n) od

for output respond(r: Invocation, n: Nat)
do fire output respond(r, n) od

for internal copy(n: Nat) ignore
for internal drop(n: Nat) ignore
for internal perform(n: Nat)

do fire internal perform(n) od

%--- 5. simulation relation, with proof block ---%
forward simulation from CentralMem to StrongCache:

StrongCache.mem = CentralMem.mem
/\ StrongCache.resp = CentralMem.resp
/\ StrongCache.req = CentralMem.req
/\ (StrongCache.cache[1] = msg(nil) \/ StrongCache.cache[1].val = CentralMem.mem)
/\ (StrongCache.cache[2] = msg(nil) \/ StrongCache.cache[2].val = CentralMem.mem)
/\ (StrongCache.cache[3] = msg(nil) \/ StrongCache.cache[3].val = CentralMem.mem)
/\ (StrongCache.cache[4] = msg(nil) \/ StrongCache.cache[4].val = CentralMem.mem)
/\ (StrongCache.cache[5] = msg(nil) \/ StrongCache.cache[5].val = CentralMem.mem)
% ideally, \A n: Nat (StrongCache.cache[n] = msg(nil) \/
% StrongCache.cache[n] = CentralMem.mem)

proof
initially

StrongCache.mem := 0;
StrongCache.req := constant(msg(nil));
StrongCache.resp := constant(msg(nil));
StrongCache.cache := constant(msg(nil))

for input invoke(v: Invocation, n: Nat)
do fire input invoke(v, n) od

for output respond(r: Invocation, n: Nat)
do fire output respond(r, n) od

for internal perform(n: Nat)
do fire internal copy(n);

fire internal perform(n);
fire internal drop(n)

od
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2.8.2 Pointers to other examples

The IOA Toolkit distribution contains a Test directory, which includes many IOA

examples. Many of them are simple, designed to test implementations of specific IOA

sorts; these examples are usually named for the sorts in question. Other tests, such as

Toh Ne Win’s Banking01 and Banking02 and Ramı́rez’ MutEx01, are better examples

of IOA programs.

Char01, Int01, Nat01, Real01, and String01 test operations on characters, in-

tegers, natural numbers, real numbers, and strings, respectively.

Array01 tests one- and two-dimensional arrays. Array04 includes an array in-

dexed by an enumeration. Array02, Array03, and Array05 also test the various

operations on arrays. Map01 tests operations on a map. Mset01 and Mset02 test

operations on multisets. Set01 tests operations on a set of integers. Set02 tests op-

erations on a set of tuples; it is intended to check whether the Simulator is producing

output in a format useful to Daikon. Seq01 tests operations on a sequence.

Enum01, Tuple01, Tuple02, and Union01 are simple tests of enumerations, tuples,

and unions. Tuple03 and Union02 test tuples and unions that use a parameterized

sort (Set[Int], a set of integers).

ShortcutAnd02, ShortcutImplies02, and ShortcutOr02 test that ∧, ⇒, and ∨

shortcut in the Simulator. PQ01, PQ02, Stack01, and Tree01 test the newest sorts

available for the Simulator and CodeGen: a priority queue, a stack, and a tree.

http://theory.lcs.mit.edu/tds/papers/Dean/thesis.html contains links to

all IOA files used in this thesis.
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Chapter 3

An IOA interface for Daikon

This chapter describes the connection between the IOA Simulator and Daikon, an

invariant-discovery tool [4]. This connection has two main uses:

• Daikon can detect invariants that turn out to be verifiable; these invariants can

lead to proof of an algorithm’s correctness.

• Daikon can find invariants that the programmer knows should not always be

true; these invariants can point to holes in a schedule block’s coverage of possible

cases. Both an automaton’s schedule block and a traditional program’s test suite

determine executions and check that their targets work as expected.

This chapter gives a brief description of Daikon, describes the IOA interface to Daikon,

and then gives three examples of that interface in action.

3.1 Daikon background

Daikon is a tool for detecting invariants, properties that always hold at given points in

a program. It is a dynamic tool, extracting information from executions of a program

rather than relying only on static information about the code itself.

Like the Simulator, Daikon is a heuristic tool rather than a rigorous proof gen-

erator: it returns invariants that are true for every execution it has ever seen, but

there is no guarantee that these invariants hold in all possible executions. Daikon’s
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purpose, however, is different from the Simulator’s: it seeks to detect potential in-

variants by inspecting given executions of code. In contrast, the Simulator creates a

possible execution, and then checks any invariants provided by the programmer.

Daikon is meant to be used on already-written code, to reveal invariants that may

be vital to the code’s correctness, and thus useful for maintainers to know. In the

Fibonacci automaton, for example, it detects the following invariant: Fibonacci.c ==

Fibonacci.a + Fibonacci.b. In a Banking automaton developed by Toh Ne Win,

Daikon detects the following invariant: size(Bank.actives) = size(Bank.bals)

+ size(Bank.pending ops), which indicates that every active request is either a

request for a balance (a read) or a request to perform an operation (a write).

In the IOA paradigm, a programmer first models an algorithm with IOA, then

verifies its correctness, and finally creates a distributed implementation,1 possibly

using IOA’s CodeGen tool. For IOA, Daikon can be used to detect invariants that

might be helpful in proving an automaton’s correctness.

3.1.1 Daikon’s input format

Daikon examines information about given executions of a program. As its input, it

requires two kinds of information: declarations and data traces. The two kinds of

information are usually recorded in two separate files, but this is not required. The

Simulator always records two separate files.

Declaration files contain lists of program points considered interesting to the user,

with a list of variables in scope at each program point. Data trace files contain

information about runtime values of variables: for each execution of a program point,

the trace file contains the name of the point and the values of the variables at that

point.

Daikon recognizes some program point names as having special meaning. Program

points Foo:::ENTER and Foo:::EXIT are interpreted as entry and exit points of a

method (or function, or transition, depending on the programming language) named

1An IOA program itself is arguably an implementation, if it runs in the Simulator, but it is not
a distributed implementation.
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Foo; Daikon attempts to find invariants relating the pre- and post-states of that

method.

3.2 Motivation for using the Simulator for Daikon

Daikon already has a Java front end, and CodeGen will eventually produce output in

Java. Thus the IOA→Java→Daikon route could suffice as an IOA-Daikon interface.

This route has an obvious advantage: completion of the IOA code generator implies

completion of an interface to Daikon, with no extra work. The disadvantage of this

approach, however, lies in the addition of an extra layer. Daikon (and the program-

mer) would be reasoning about the intermediate Java code, rather than the original

IOA program. Additionally, the Java code would include low-level networking and

I/O details, which are presumably not the “interesting” part of the program. This

inclusion would increase the size of the space searched by Daikon, with little benefit

to the programmer.

For those reasons, it is cleaner for the Simulator to produce the input for Daikon

to examine. In addition to the gains in elegance, using the Simulator has a practical

advantage: because of the simplicity of the required modifications, the Daikon-output

prototype did not take long to produce, in contrast to the more complex Java code

generator, which is not yet available.

3.3 Implementation of the Daikon interface

The implementation began as a simple prototype, which declared a program point

for the end of every transition, and declared all of the automaton’s state variables to

be in scope at every program point. Even at that stage, it was able to find several

invariants in the Fibonacci example (discussed below).

Since then, Toh Ne Win has added the following capabilities:

• The trace file now declares a program point for the entry and the exit of every

transition; this gives Daikon information about how a transition’s pre-state
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relates to its post-state, enabling it to detect relations that always hold between

the two, as mentioned in Section 3.1.1.

• The trace file also declares an automatonName:::OBJECT program point, per-

mitting Daikon to detect invariants that hold at all times, not just at certain

points. This point is called “object” by analogy to object invariants, which are

also known as representation invariants.

• The Simulator now uses a separate Listener for Daikon output, improving the

modularity of the program. This detail is not interesting to the user, but it

should be helpful to future maintainers. For information on the Simulator’s use

of Events and Listeners, see Section 6.6 of Ramı́rez’ thesis [11].

The output given in this thesis is generated by this new version of the IOA-Daikon

interface.

3.4 Fibonacci example

The Fibonacci automaton from Listing 2-1 is reproduced for convenience here in

Listing 3-1. This automaton is simple (no schedule block is required) and has an

easily-understood invariant: a+b=c. For these reasons, it is an excellent first example,

and it was a good first test case for the IOA connection to Daikon. The declarations

and data trace files appear in Appendix B.1.

Listing 3-1: Fibonacci.ioa
automaton Fibonacci
signature

internal compute
states

a:Int := 1,
b:Int := 0,
c:Int := 1

transitions
internal compute
eff a := b;

b := c;
c := a + b

invariant A of Fibonacci:
a + b = c
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Even on this simple example, Daikon produced invariants that the programmer

hadn’t thought to write down, such as a <= c and b <= c. Indeed, this points

to one of the strengths of Daikon: its ability to point out invariants that the pro-

grammer thought were obvious, but that a later maintainer might not know were

important. Daikon’s output for the Fibonacci example follows, with comments (in-

dicated by “%”) added. This output was produced by running java daikon.Daikon

Fibonacci.decls Fibonacci.dtrace, where the .decls and .dtrace files were gener-

ated by a Simulator run of ten steps (as given in Appendix B.1); the output does not

change if the Daikon input files are instead generated by Simulator runs of 20, 30, or

40 steps.

Listing 3-2: Daikon output for Fibonacci
Fibonacci:::OBJECT
Fibonacci.a <= Fibonacci.c
Fibonacci.b <= Fibonacci.c
Fibonacci.c == Fibonacci.a + Fibonacci.b
===========================================================================
Fibonacci.compute():::ENTER
===========================================================================
Fibonacci.compute():::EXIT
Fibonacci.a == orig(Fibonacci.b)
Fibonacci.b == orig(Fibonacci.c)
Fibonacci.a <= Fibonacci.b
Fibonacci.a < Fibonacci.c
Fibonacci.b >= orig(Fibonacci.a)
Fibonacci.c >= orig(Fibonacci.a)
orig(Fibonacci.a) == - Fibonacci.a + Fibonacci.b
orig(Fibonacci.a) == - 2 * Fibonacci.a + Fibonacci.c
orig(Fibonacci.a) == 2 * Fibonacci.b - Fibonacci.c

3.5 Parameterized Fibonacci example

The IOA program in Listing 3-3 runs Fibonacci on two integers x and y determined

by the automaton’s schedule block: 0 ≤ x ≤ 30 and −20 ≤ y ≤ 20. As in Section 3.4,

a+b=c is an expected invariant. Since the state variables are initialized to different

values in different test runs, some of the invariants in Listing 3-2, such as b < c, are

expected to disappear.

Listing 3-3: Fibonacci with unspecified parameters
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uses NonDet

automaton Fibonacci
signature

input initialize(x:Int, y:Int)
internal compute

states
initialized:Bool := false,
a : Int, b : Int, c : Int
so that a + b = c

transitions
input initialize(x, y)
eff if (initialized = false) then

a := y - x;
b := x;
c := y;
initialized := true

fi
internal compute
pre initialized = true
eff a := b; b := c; c := a + b

schedule
do
fire input initialize(randomInt(0,30), randomInt(-20, 20));
while true do fire internal compute od

od

This program was run ten times, producing ten .dtrace files. Each run con-

sisted of 35 steps: the data trace file for the nth run was generated by sim -daikon

-ignoreFirst -odtrace fibn.dtrace 35 fib-param.ioa. -ignoreFirst means

that no values are printed for the OBJECT program point until the first transition:

in this case, initialize. This flag was used because the Simulator initializes the

state variables a, b, and c to values that do not satisfy the desired invariant: a+b=c.

It would be nice to have the Simulator initialize a and b to unspecified values, and

then initialize c to a+b, but IOA does not allow a given state variable’s initialization

value to refer to values of other state variables. In addition, the Simulator currently

ignores the so that a+b=c clause; this is an oversight in the implementation of the

Simulator, and Section 7.2.3 discusses possible solutions.

The Daikon results were generated by java daikon.Daikon fib-paired.decls

fib*.dtrace. These results appear in Listing 3-4.

Listing 3-4: Daikon output for parameterized Fibonacci

Fibonacci:::OBJECT
Fibonacci.initialized == true
Fibonacci.c == Fibonacci.a + Fibonacci.b
===========================================================================
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Fibonacci.compute:::ENTER
Fibonacci.initialized == true
Fibonacci.c == Fibonacci.a + Fibonacci.b
===========================================================================
Fibonacci.compute:::EXIT
Fibonacci.initialized == orig(Fibonacci.initialized)
Fibonacci.a == orig(Fibonacci.b)
Fibonacci.b == orig(Fibonacci.c)
Fibonacci.c == Fibonacci.a + Fibonacci.b
orig(Fibonacci.a) == - Fibonacci.a + Fibonacci.b
orig(Fibonacci.a) == - 2 * Fibonacci.a + Fibonacci.c
orig(Fibonacci.a) == 2 * Fibonacci.b - Fibonacci.c
===========================================================================
Fibonacci.initialize:::ENTER
Fibonacci.a == Fibonacci.b == Fibonacci.c
Fibonacci.initialized == false
Fibonacci.a == 87
===========================================================================
Fibonacci.initialize:::EXIT
orig(Fibonacci.a) == orig(Fibonacci.b) == orig(Fibonacci.c)
Fibonacci.initialized == true
Fibonacci.a <= Fibonacci.c
Fibonacci.c == Fibonacci.a + Fibonacci.b

Sometimes Daikon produces invariants that the writer of the automaton would

expect not to be true all the time. For example, Fibonacci.a <= Fibonacci.c at

the exit point of initialize indicates that b was always initialized to a positive

value; this could be construed as an omission in the test suite (schedule). In this

case, the source of the omission is fairly clear from inspection of the schedule block,

but one could imagine a more complicated schedule block. Similarly, a == 87 at

the entry point of initialize is an artifact of the ADT implementation of Int,

ioa.runtime.IntSort, which initializes all integers to 87 by default. 87 is a rather

non-traditional initialization value, but its use is not a bad thing. A reader who sees

a == 87 will probably not simply accept it as an invariant, without thinking, but will

instead notice that the invariant is an artifact of the implementation.

3.6 Hanoi example

Listing 3-5 contains the Hanoi automaton, an IOA implementation of the Towers of

Hanoi problem for three poles and five discs. The automaton’s schedule block solves

the problem, moving the discs from stack A to stack C in 31 steps. This Hanoi

program illustrates one of the limitations of IOA: the lack of a convenient way to
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define functions. It is possible to define functions, but it requires writing both LSL

and Java. The schedule includes substantial repetition, and the putOn transitions are

all quite similar.

Listing 3-5: Hanoi.ioa
uses Stack(Int)

automaton Hanoi
signature

internal putOnA(d: Int), putOnB(d: Int), putOnC(d: Int)
internal start

states
stackA : Stack[Int] := empty,
stackB : Stack[Int] := empty,
stackC : Stack[Int] := empty

transitions
internal start % initialize: 5 discs on stack A
pre
stackA = empty /\ stackB = empty /\ stackC = empty

eff
stackA := push(1, push(2, push (3, push (4, push(5, empty)))))

internal putOnA(d: Int) % put disc d onto stack A
pre (stackA = empty \/ top(stackA) > d) /\

((stackB ~= empty /\ d = top(stackB)) \/ (stackC ~= empty /\ d = top(stackC)))
eff
stackA := push(d, stackA);
if (stackB ~= empty /\ d = top(stackB)) then stackB := pop(stackB)
else stackC := pop(stackC)
fi

internal putOnB(d: Int) % put disc d onto stack B
pre (stackB = empty \/ top(stackB) > d) /\

((stackA ~= empty /\ d = top(stackA)) \/ (stackC ~= empty /\ d = top(stackC)))
eff
stackB := push(d, stackB);
if (stackA ~= empty /\ d = top(stackA)) then stackA := pop(stackA)
else stackC := pop(stackC)
fi

internal putOnC(d: Int) % put disc d onto stack C
pre (stackC = empty \/ top(stackC) > d) /\

((stackA ~= empty /\ d = top(stackA)) \/ (stackB ~= empty /\ d = top(stackB)))
eff
stackC := push(d, stackC);
if (stackA ~= empty /\ d = top(stackA)) then stackA := pop(stackA)
else stackB := pop(stackB)
fi

schedule % move 5 discs to stack C
do
fire internal start;
fire internal putOnC(1); fire internal putOnB(2); fire internal putOnB(1);
fire internal putOnC(3);
fire internal putOnA(1); fire internal putOnC(2); fire internal putOnC(1);
fire internal putOnB(4);
fire internal putOnB(1); fire internal putOnA(2); fire internal putOnA(1);
fire internal putOnB(3);
fire internal putOnC(1); fire internal putOnB(2); fire internal putOnB(1);
fire internal putOnC(5);
fire internal putOnA(1); fire internal putOnC(2); fire internal putOnC(1);
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fire internal putOnA(3);
fire internal putOnB(1); fire internal putOnA(2); fire internal putOnA(1);
fire internal putOnC(4);
fire internal putOnC(1); fire internal putOnB(2); fire internal putOnB(1);
fire internal putOnC(3);
fire internal putOnA(1); fire internal putOnC(2); fire internal putOnC(1)

od

invariant Size of Hanoi: % should be false until "start" transition
size(stackA) + size(stackB) + size(stackC) = 5

The command sim -daikon 100 Hanoi.ioa produces .decls and .dtrace files.

java daikon.Daikon -o hanoi.inv Hanoi.decls Hanoi.dtrace finds 100 poten-

tial invariants and stores its results in a file called hanoi.inv. The command java

daikon.PrintInvariants --suppress post hanoi.inv turns on Daikon’s option

to “suppress display of obvious postconditions on prestate,” resulting in the 83 in-

variants shown in the Appendix, in Listing B-3.

It is rather difficult to wade through 83 invariants, many of which are uninteresting

or not true in general. For example, the invariants at the exit point of putOnA include

size(stackC) == 1 (mod 2), which is a result of the fact that the schedule block

plays the game well and that the game has an odd number of discs, moving from stack

A to stack C. The size of the list makes it difficult to notice interesting invariants,

such as the subsequence relations at the exit point of putOnA.

The list becomes much shorter when it is the result of more than one test run.

Listing 3-6 is the result of running and analyzing six different programs, moving the

five discs from A to B, A to C, B to A, B to C, C to A, and C to B. With Daikon’s

“suppress post” option, 40 invariants are printed. Some of these invariants result

from the fact that the test cases all use exactly five discs; it would be possible to add

cases with different numbers of discs.

Listing 3-6: Daikon output for Hanoi
% java daikon.Daikon -o hanoi.inv Hanoi.dtrace Hanoi.*.decls
% java daikon.PrintInvariants --suppress_post hanoi.inv
===========================================================================
Hanoi:::OBJECT
Hanoi.stackA[] contains no duplicates
Hanoi.stackA[] elements != null
Hanoi.stackB[] contains no duplicates
Hanoi.stackB[] elements != null
Hanoi.stackC[] contains no duplicates
Hanoi.stackC[] elements != null
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size(Hanoi.stackC[]) == - size(Hanoi.stackA[]) - size(Hanoi.stackB[]) + 5
===========================================================================
Hanoi.putOnA():::ENTER
===========================================================================
Hanoi.putOnA():::EXIT
size(Hanoi.stackA[])-1 == orig(size(Hanoi.stackA[]))
size(Hanoi.stackA[]) >= 1
orig(Hanoi.stackA[]) is a subsequence of Hanoi.stackA[]
Hanoi.stackB[] is a subsequence of orig(Hanoi.stackB[])
Hanoi.stackC[] is a subsequence of orig(Hanoi.stackC[])
size(Hanoi.stackB[]) <= orig(size(Hanoi.stackB[]))
size(Hanoi.stackC[]) <= orig(size(Hanoi.stackC[]))
orig(size(Hanoi.stackC[])) == - size(Hanoi.stackA[]) - orig(size(Hanoi.stackB[])) + 6
===========================================================================
Hanoi.putOnB():::ENTER
===========================================================================
Hanoi.putOnB():::EXIT
size(Hanoi.stackB[])-1 == orig(size(Hanoi.stackB[]))
size(Hanoi.stackB[]) >= 1
Hanoi.stackA[] is a subsequence of orig(Hanoi.stackA[])
orig(Hanoi.stackB[]) is a subsequence of Hanoi.stackB[]
Hanoi.stackC[] is a subsequence of orig(Hanoi.stackC[])
size(Hanoi.stackA[]) <= orig(size(Hanoi.stackA[]))
size(Hanoi.stackC[]) <= orig(size(Hanoi.stackC[]))
orig(size(Hanoi.stackC[])) == - size(Hanoi.stackB[]) - orig(size(Hanoi.stackA[])) + 6
===========================================================================
Hanoi.putOnC():::ENTER
===========================================================================
Hanoi.putOnC():::EXIT
size(Hanoi.stackC[])-1 == orig(size(Hanoi.stackC[]))
size(Hanoi.stackC[]) >= 1
Hanoi.stackA[] is a subsequence of orig(Hanoi.stackA[])
Hanoi.stackB[] is a subsequence of orig(Hanoi.stackB[])
orig(Hanoi.stackC[]) is a subsequence of Hanoi.stackC[]
size(Hanoi.stackA[]) <= orig(size(Hanoi.stackA[]))
size(Hanoi.stackB[]) <= orig(size(Hanoi.stackB[]))
orig(size(Hanoi.stackB[])) == - size(Hanoi.stackC[]) - orig(size(Hanoi.stackA[])) + 6
===========================================================================
Hanoi.start():::ENTER
size(Hanoi.stackA[]) == size(Hanoi.stackB[]) == size(Hanoi.stackC[])
Hanoi.stackA[] == []
Hanoi.stackB[] == []
Hanoi.stackC[] == []
size(Hanoi.stackA[]) == 0
===========================================================================
Hanoi.start():::EXIT
orig(size(Hanoi.stackA[])) == orig(size(Hanoi.stackB[])) == orig(size(Hanoi.stackC[]))
size(Hanoi.stackA[]) one of { 0, 5 }
size(Hanoi.stackB[]) one of { 0, 5 }
size(Hanoi.stackC[]) one of { 0, 5 }
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Chapter 4

IOA Syntax Extensions

The IOA Simulator, as described in Ramı́rez’ thesis [11], worked with an old version

of the IOA front end. His thesis gives an excellent description of the changes he

made to the grammar of that front end. The new front end, however, has a slightly

different grammar, and this chapter describes the Simulator-related changes to it.

Additionally, it describes the semantic constraints on these extensions to the IOA

language.

In this chapter, Sections 4.1 and 4.2 describe syntax extensions that were incor-

porated into the new front end’s grammar with no changes from Ramı́rez’ version.

They appear here for two reasons: to clarify the semantic constraints, or lack thereof,

on labels for invariants and transition cases, and to create a self-contained description

of this part of the language. Sections 4.3 and 4.4 describe syntax extensions that are

slightly different from Ramı́rez’ version.

4.1 Labeling invariants

At every step of execution, the Simulator checks any invariants associated with each

automaton. When an invariant fails, it issues an error message. If there is more than

one invariant, however, an “invariant failed” message is not helpful unless there is

some way to specify which invariant has failed.

To solve this problem, Ramı́rez introduced a way for the user to name invariants.
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For the new IOA front end, this change is identical to the one described in Section

5.3 of Ramı́rez’ thesis:

invariant ::= ’invariant’ idOrNumeral? ’of’ automatonName ’:’ predicate

Because invariant labels exist only for the user’s convenience in reading the Simu-

lator’s output, the user is free to choose any (alphanumeric) name desired; no semantic

checks are performed. For example, the user may give all invariants of an automaton

the same name — this approach is not terribly useful, but it is perfectly legal.

4.2 Labeling transition definitions

It is possible for a user to define two transition definitions with identical names and

parameters. Ramı́rez introduced the case keyword to allow the user to label such

transitions and to refer to them unambiguously in a schedule block.

As with invariant names, the user is free to define, for a given action, two tran-

sitions with the same parameters and case name. The checker does not issue an

error message unless a schedule block for the automaton refers to such a duplicate

transition; in this case, it indicates that more than one transition matches the given

description, just as it would if there were no case names given.

Listing 4-1: BoolToggler.ioa, legal
automaton BoolToggler
signature

internal action1
states

alpha: Bool := false
transitions

internal action1 case X
pre alpha
eff alpha := false

internal action1 case X
pre ~alpha
eff alpha := true

%% no schedule block,
%% and no error

%% (also runs in the Simulator)

Listing 4-2: BoolToggler.ioa, illegal
automaton BoolToggler
signature
internal action1

states
alpha: Bool := false

transitions
internal action1 case X
pre alpha
eff alpha := false

internal action1 case X
pre ~alpha
eff alpha := true

schedule do
while true do
fire internal action1 case X

od
od

48



This change is identical to the one described in Ramı́rez’ thesis:

transition ::= actionHead chooseFormals? precondition? effect?
actionHead ::= actionType actionName (actionActuals where?)? transCase?
transCase ::= ’case’ idOrNumeral

In the BoolToggler automaton of Listing 4-2, the error occurs when the checker

tries to match the transition in the fire statement with one of those defined in the

automaton. Thus the front end prevents the introduction of ambiguity in a block

whose purpose is to resolve nondeterminism.

4.3 Resolving nondeterminism

Consider the automaton defined in Listing 4-3, which illustrates both choose and

scheduling nondeterminism. At a given step, the Simulator must decide between

action1 and action2 (with an appropriate value for n). In addition, if action1 is

performed, then the Simulator must choose a value for x.

Listing 4-3: Chooser.ioa, nondeterministic
automaton Chooser
signature
output action1, action2(n:Int)

states
chosen: Int % initially arbitrary

transitions
output action1

eff chosen := choose x where 1 <= x /\ x <= 30
output action2(n)

pre n = chosen

Now consider the IOA program in Listing 4-4, the ResolvedChooser automaton with

a schedule block, which resolves the nondeterminism of Chooser.

Listing 4-4: ResolvedChooser.ioa, deterministic
automaton ResolvedChooser
signature

output action1, action2(n:Int)
states

chosen: Int := 22
transitions

output action1
eff chosen := choose x where 1 <= x /\ x <= 30
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det do
yield 1; yield 2; yield 3

od
output action2(n)
pre n = chosen

schedule do
while true do
fire output action1;
fire output action2(chosen)

od
od

This example, taken from Ramı́rez’ thesis [11], illustrates his approach to resolving

nondeterminism. The Chooser automaton is pure IOA, simply defining two kinds of

transitions with their preconditions and effects. The ResolvedChooser contains the

same code with det and schedule blocks added to produce a deterministic schedule

for execution. Incidentally, the Simulator also supports a method for picking a random

integer within a given range. In the example above, yield 1; yield 2; yield 3

could be replaced by yield randomInt(1,30). See the User’s Guide (Chapter 2 of

this thesis) for more information on its usage.

Ramı́rez describes these IOA language extensions in Section 5.4.2 of his thesis [11].

The following sections give the current specifications for the Simulator extensions to

the grammar.

4.3.1 Scheduling transitions

These rules define the syntax of schedule blocks. The grammar and the implemen-

tation are both quite similar, but not identical, to Ramı́rez’.

Original:

basicAutomaton ::= ’signature’ formalActions+ states transitions tasks?

Modified:

basicAutomaton ::= ’signature’ formalActions+ states transitions tasks? schedule?
schedule ::= ’schedule’ states? ’do’ NDRProgram ’od’
NDRProgram ::= NDRStatement;*
NDRStatement ::= assignment

| NDRConditional
| NDRWhile
| NDRFire

NDRConditional ::= ’if’ predicate ’then’ NDRProgram
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(’elseif’ predicate ’then’ NDRProgram)*
(’else’ NDRProgram)? ’fi’

NDRWhile ::= ’while’ predicate ’do’ NDRProgram ’od’
NDRFire ::= ’fire’ actionType actionName actionActuals? transCase?

| ’fire’

An assignment in a schedule block may assign a value to any of the schedule’s

state variables, but it may not assign values to variables inside the automaton. This

constraint is verified during static checking. (It was not checked in Ramı́rez’ version of

the front end; this addition should be considered a bug-fix. Discussion with Ramı́rez

confirms that the omission was unintentional.) The other change, which is discussed

below, is a change in the implementation rather than the resulting language.

4.3.2 Determining values within a choose

This extension is similar to the one made by Ramı́rez. The only difference is that,

now, an NDRProgramY appears in place of an NDRProgram. This means that the only

statements appearing in a yield context are those that return values; specifically,

fire statements are disallowed. In Ramı́rez’ implementation, this constraint was

present, but it was enforced as a static semantic check.

Original:

choice ::= ’choose’ (variable ’where’ predicate)?

Modified:

choice ::= ’choose’ (variable (’where’ predicate)?)? choiceNDR?
choiceNDR ::= ’det’ ’do’ NDRProgramY ’od’

| NDRYield
NDRProgramY ::= NDRStatementY;*
NDRStatementY ::= assignment

| NDRConditionalY
| NDRWhileY
| NDRYield

NDRConditionalY ::= ’if’ predicate ’then’ NDRProgramY
(’elseif’ predicate ’then’ NDRProgramY)*
(’else’ NDRProgramY)? ’fi’

NDRWhileY ::= ’while’ predicate ’do’ NDRProgramY ’od’
NDRYield ::= ’yield’ term
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4.4 Support for paired simulation

This extension is similar to Ramı́rez’ version. Section 2.7 of this thesis contains

examples of using the proof block to specify relations between two automata.

As in Ramı́rez’ version, a proof is allowed only in a forward simulation context.

In his version, this constraint was enforced during static semantic checking; in the

new front end, however, it is part of the grammar itself.

Another, more substantial change is that an assignment in a simProofInit block

may now assign to an lvalue rather than only a variable. As in the old version,

the left-hand side of the assignment must refer to a state variable of the specification

automaton, of course. And, as before, the user assumes the burden of ensuring that

the initially assignments result in a reachable state of the specification automaton.

Original:

simulation ::= (’forward’ | ’backward’) ’simulation’ ’from’
automatonName ’to’ automatonName ’:’ predicate

Modified:

simulation ::= ’forward’ ’simulation’ ’from’ automatonName
’to’ automatonName ’:’ predicate simProof?
| ’backward’ ’simulation’ ’from’ automatonName
’to’ automatonName ’:’ predicate

simProof ::= ’proof’ states? simProofInit? simProofEntry+
simProofInit ::= ’initially’ (lvalue ’:=’ term);+
simProofEntry ::= ’for’ actionType actionName

actionFormals? transCase?
((’do’ proofProgram ’od’) | ’ignore’)

proofProgram ::= proofStatement;+
proofStatement ::= assignment

| proofConditional
| proofWhile
| proofFire

proofConditional ::= ’if’ predicate ’then’ proofProgram
(’elseif’ predicate ’then’ proofProgram)*
(’else’ proofProgram)? ’fi’

proofWhile ::= ’while’ predicate ’do’ proofProgram ’od’
proofFire ::= ’fire’ actionType actionName

actionActuals? transCase?
(’using’ ( term ’for’ variable ),+)?
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Chapter 5

The intermediate language (IL)

IOA back-end tools (such as the Simulator) rely on an intermediate language (IL)

produced by the front end. This language, based on the S-expressions of Lisp, is

described only briefly in Ramı́rez’ thesis [11]. It is based on Anna Chefter’s design

[3], but has changed significantly since then. Once the design of the Composer (and

the related IL) has been finalized, the IOA manual should be updated to include a

complete description of the IL.

5.1 Simulator-related IL extensions

The following extensions to the IL reflect the IOA language extensions described in

Chapter 4.

5.1.1 det blocks

<yieldprogram> ::= (det <yieldstatement>*)
<yieldstatement> ::= <conditional> | <ndrwhile> | <ndryield>
<ndryield> ::= (yield <term>)

Any conditional or ndrwhile within a yieldprogram should represent a tree

whose leaves are all ndryield; assignments and fire-type statements are not allowed.

(This is a reflection of the similar constraint on the IOA language, as described in

Section 4.3.)
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5.1.2 schedule blocks

<schedule> ::= (schedule (states <state>*) <ndrprogram>)
<ndrprogram> ::= ({<assignment> | <conditional> |

<ndrfire> | <ndrwhile>}*)

<ndrfire> ::= (fire {<transitionId> <actionActuals>?}?)
<ndrwhile> ::= (while <predicate> <program>)

The transition ID for an ndrfire must match the ID of a transition definition

with compatible parameters.

5.1.3 Paired simulation

<simulation> ::= (sim forward <automatonName> <automatonName>
<predicate> <proof>?)

| (sim backward <automatonName> <automatonName>
<predicate>)

<simfire> ::= (sim_fire <transitionId> <actionActuals>?
(using (<variable> <term>)+)?)

<proof> ::= (proof (states <state>*) ((<term> <value>)*)
(<simcorresp>*))

<simcorresp> ::= (sim_entry <transitionId> (formals <formal>*)
<program>)

The term, value pairs in the proof definition correspond to the pairs appearing

in the initially block of the proof.

5.1.4 Invariant names

<invariant> ::= (invariant <invariantName> <automatonName> <predicate>)

5.2 Simulator IL Requirements

State variable names should appear in the IL in the same order as in their declaration

in the IOA program. This constraint allows the Simulator to display them in the

order the user expects.
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As described in the user’s guide (Section 2.4.5 of this thesis), the simulator short-

cuts ∧ and ∨, so it is important that the arguments to these operators appear (in

the IL) in the same order as they do in the IOA. For the Simulator’s purposes, these

operators are not commutative.

5.3 Enumerations, tuples, and unions

These notes, though far from complete, form the beginning of a sections of a general

IL specification. Developers of IOA back-end tools would appreciate such a document.

<enumeration> ::= (enum <sortId> <succOp> <enumItem>+)
<enumItem> ::= (<enumItemName> <enumItemOp>)
<tuple> ::= (tuple <sortId> <opId> <field>+)
<field> ::= (<id> <sortId> <opId> <opId>)
<union> ::= (union <sortId> <sortId> <opId> <field>+)

The first sortId is the sort of the union. A union named “foo” must have an

associated enumeration named “foo tag” whose items are the names of the union’s

tags; the second sortId is the sort of that enumeration.

For example, the IOA code type Request = union of a:Bool, b:Nat results

in the IL code in Listing 5-1.

Listing 5-1: union.il
(ioa
((sorts
(s0 "Bool" () (scope 0))
(s1 "type" () (scope 0))
(s20 "Request" () (scope 2))
(s21 "Request_tag" () (scope 2)))

(ops
...
(op313 (select "a") ((s20) s0) (scope 2))
(op314 (id "a") ((s0) s20) (scope 2))
(op315 (select "b") ((s20) s0) (scope 2))
(op316 (id "b") ((s0) s20) (scope 2))
...
(op321 (id "a") (() s21) (scope 2))
(op322 (id "b") (() s21) (scope 2))
(op323 (id "succ") ((s21) s21) (scope 2))
(op324 (id "tag") ((s20) s21) (scope 2)))

(vars))
(union s20 s21 op324 ("a" s0 op314 op313) ("b" s0 op316 op315))
(enum s21 op323 ("a" op321) ("b" op322)))
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One recent change to the IL is that automata appear as variables, not constants.

That is, for an automaton Fibo, the IL will declare a sort (also named Fibo) associated

with that automaton, and there will be a variable Fibo (of that sort) respresenting

the automaton’s state variables. The sort is a tuple whose fields have the names and

sorts of the state variables.
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Chapter 6

Notes for the Simulator developer

This chapter gives information on modifying the Simulator. Some of this information

appears in Ramı́rez’ thesis [11] and is replicated here for completeness; the rest is

either documentation of new features or new documentation of old features.

6.1 Interaction with the IL parser

As mentioned in section 1.1, the back-end IOA tools share an IL parser. Ramı́rez’

thesis [11] includes some discussion of how the other tools can use this parser. This

section covers some additional details of the interactions between it and the Simulator.

His thesis and this section should, together, provide a basis for a complete document

about the IL parser. (See Section 7.2.6 of this thesis for details.)

6.1.1 Adding new Simulator-aware IL elements

In the course of improving the Simulator, a developer may wish to add specialized

versions of IL parse tree elements, to give those objects simulator-specific abilities.

This task is not complicated, thanks to Ramı́rez’ use of factories [5] in the design of

the IL parser.

To add such an object, subclass the appropriate IL Element, and implement the

appropriate Simulator interface: Evaluable, Compilable, or Assignable. Then add
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an appropriate method to SimILFactory, overriding the one in ioa.il.BasicILFactory.

This process is described (from a less Simulator-centric point of view) in section 6.5

of Ramı́rez’ thesis.

6.1.2 Extending the IL parser to handle new structures

Additions to IOA syntax often require additions to IL syntax. To handle a new kind

of structure in the IL, the specialized ILElement (as described above) should have its

own specialized parseExtension() method.

6.2 ADTs shared by the Simulator and CodeGen

The Simulator has been developed separately from CodeGen, but they share many

common features, as they both solve the problem of taking an IOA program and

producing Java code for execution. (The Simulator then uses that code right away;

CodeGen emits it as a program to be run later.) For this reason, we now share the

Java abstract data types (ADTs) representing IOA sorts.

Michael J. Tsai has written a document [12] describing these ADTs and the reg-

istry used as an interface to them. This document supersedes section 6.4 of Ramı́rez’

thesis [11].

6.3 The IL variables representing automata

As mentioned in section 5.3, the IL now refers to an automaton using a variable rather

than a constant.

The Simulator was changed quickly to adapt to this change, using a special case

in the evalVector() method of Simulator: if evaluation of an object returns null,

then check to see whether its name matches that of an automaton, and if so, return

that automaton instead of null.

This implementation is a hack. Intuition suggests that this lookup should be

done in the registry, not buried inside the evalVector() method. The registry was
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avoided, in the quick fix, because of naming issues. For example, it is perfectly legal

to have an automaton named Int, leading to having two different sorts named Int:

one for integers, and one for the automaton. Since the registry currently works based

only on the names of sorts, and not their identifiers in the IL, a lookup for the sort

named “Int” would be ambiguous in such a case.

The previous paragraph justifies the decision to “fix” the Simulator as described,

but it is not a good reason for letting that fix remain in place. Indeed, the lookup

should be done in the Simulator’s registry; there’s no reason the registry shouldn’t

know the names of the automata it’s working for. Adding an addAutomaton() method

to the Simulator’s registry (impl.BasicImplRegistry) would give it the necessary

information about mapping from a sort’s identifier (not just its name, since that would

be ambiguous) to an automaton. Then it can use that information when looking up

a sort, and, where appropriate, return an Automaton object.
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Chapter 7

Conclusion

This chapter summarizes the work of the thesis and then enumerates ideas for future

work to improve the Simulator.

7.1 Summary of work

This thesis has described several improvements to the Simulator:

• providing a user’s guide to the Simulator, with clear explanations of the IOA

programs it can and cannot run,

• extending the Simulator to serve as an IOA interface to Daikon,

• updating the Simulator to use the new shared ADTs (working with Michael

J. Tsai and Toh Ne Win), thus increasing its capabilities and improving its

maintainability,

• modifying the IOA front end to include Simulator-related extensions to the IOA

language, and

• beginning the work of documenting the IL.
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7.2 Future work

Section 6.3 suggests a Simulator improvement that would help future maintainers but

would not be user-visible. The following sections suggest additions to increase the

Simulator’s capabilities.

7.2.1 Resolution of nondeterminism

Ramı́rez suggests several extensions to make schedules smaller and less repetitious

[11, Section 2.6]. In particular, he suggests providing a library of non-determinism

resolution (NDR) programs for given types of variables and for given forms of where

predicates, and providing default schedules. Default NDR programs for choosing

random Booleans and for choosing random Integers and Naturals within specified

ranges would be particularly helpful, since those cases are common.

Additionally, he outlines the need for articulating “simulability conditions” for

IOA programs. This definition would delineate the set of automata that the Simu-

lator could run without explicit schedule blocks. He lists four possible sets of such

conditions, in increasing order of expressiveness:

1. Disallow all quantifiers, choose and for statements, and actions with formal

parameters.

2. Allow actions to have formal parameters, but require them to appear as con-

stants in each transition definition.

3. Allow formal parameters, but restrict transition definitions to the following

form:

actionType actionName(var1 : sort1, var2 : sort2, . . . , varn : sortn)
pre var1 = term1 ∧

var2 = term2 ∧
...

varn = termn ∧
restPred

eff . . .
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where

• each term i is an IOA term which depends only on the state variables of

the automaton, and not on any of the variables var i, and

• restPred is an IOA predicate (without quantifiers).

This constraint has the result that at most one set of values of the variables

satisfies the precondition in a given state, and that each variable’s appropriate

value can be found by evaluating the corresponding term i.

4. Relax the restriction on transition definitions to the following form:

actionType actionName(var1 : sort1, var2 : sort2, . . . , varn : sortn)
pre term ′1 = term1 ∧

term ′2 = term2 ∧
...

term ′n = termn ∧
restPred

eff . . .

where

• each term ′i is of the form opi(var i, ti,1, . . . , ti,ri), where opi is an operator

and the ti,j are terms involving only the state variables of the automaton,

• each term i is an IOA term involving only the state variables of the au-

tomaton, and

• restPred is an IOA predicate (without quantifiers).

The third option would be a particularly approachable, yet highly useful, way to

reduce the burden of writing schedule blocks for the Simulator.

7.2.2 Handling existential and universal quantifiers

Universal and existential quantifiers are quite useful in IOA programs, particularly

in invariants and simulation relations. Clearly, it is not possible for the Simulator

63



to handle arbitrary expressions involving these quantifiers — for example, ∀ n:Int

(pred(n)) is impossible (in general) to verify in finite time. It would be helpful,

however, for the Simulator to be able to handle some useful subset of expressions

involving these quantifiers.

One approach is to program the Simulator to cover the following cases:

• ∀ n:Type (pred(n)), where Type has a finite number of members. Of course,

this raises the question of how the Simulator can know whether Type has this

property. One option is to program the Simulator to deal with some set of IOA

sorts, and hope that nobody wants to use the quantifiers with anything else.

Another is to define an EnumerableADT interface (similar to the Compara-

bleADT interface [12]) and handle only enumerable types. (This option allows

the Simulator to enter infinite loops over countably infinite sets, but since the

Simulator already handles while loops, it isn’t really a new ability.)

There are now Simulator-aware versions of ForAllTerm and ExistsTerm, and

they can check that a predicate holds for all elements in an enumeration. These

classes are currently hard-coded to call Sort.isEnum() to determine whether a

given type is finite; this is not intended to be a permanent solution.

• ∀ n:Type (P(n) ⇒ Q(n)), where P(n) fits a pattern that the Simulator knows

how to handle. In particular, x < n < y (with x < y) would be a useful pattern.

Again, Type would need to be known to be enumerable.

The ideas above parallel those presented in Sections 2.6.1 and 2.6.2, respectively,

of Ramı́rez’ thesis: per-sort and per-predicate default choose NDR programs. Indeed,

they would depend on similar, but not identical, functionality. Where the extensions

here require the Simulator to be able to enumerate all elements of a set, Ramı́rez’

proposed extensions require it to be able to pick an element of that set.

Shien Jin Ong has suggested an alternate approach: allowing the user to add

det blocks to these predicates. A user could then write a while loop (or any other

program) to look at “interesting” values of the quantified variable. Because one of

my original goals was to reduce the amount of additional code required to make the
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Simulator do “obvious” work, I do not like this suggestion as a substitute for the

proposal outlined above.

A combined approach is possible: First, implement the suggestions made in the

two bullet points above. Second, implement the det block extension to the syntax,

thus allowing users to take control in the following situations:

1. The Simulator does not know that Type is finite; the user writes a det block to

iterate through all possible assignments of values to the quantified variable.

2. Type is known by the Simulator to be finite, but is known by the user to be

large (and thus time-consuming to check).

3. The predicate P(n) is satisfied by a finite number of elements, but it does not

follow a pattern known to the Simulator.

4. The predicate P(n) follows one of the known patterns, but the user believes it

will take too long to check. (This case is analogous to case 2.)

Some might argue that using det in case (2) or case (4) is not an appropriate

way to treat an invariant. Perhaps so, but it’s also worth noting that the Simulator

cannot be used to prove that an invariant is always true. So, as long as the user

realizes the implications of using the det block there, it is a reasonable way to save

running time.

The appearance of quantifiers in preconditions (as opposed to in invariants) raises

more serious concerns. The Simulator currently claims that all its executions are

valid; if the user were allowed to add the proposed det blocks, that would no longer

be the case. (This issue is relevant not only in (2) and (4), but in all the cases listed

above.) For this reason, the implementor should consider disallowing det blocks in

transition preconditions.

7.2.3 Checking so that clauses for state variables

As shown in Section 3.5, the Simulator does not check the so that clause in an

automaton’s states block. Ideally, it would be able to generate values that satisfy
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certain classes of so that clauses; in the short term, it should at least report an error

if state variables are initialized to values that do not satisfy the clause associated with

them.

7.2.4 The Daikon interface

The Simulator has some limitations as an interface to Daikon:

• When a new data type is introduced, how does the Simulator know whether

to declare it as an array, a String, or an integer? The current method is to

modify the Simulator’s code. The Hanoi case, for example, required telling the

Simulator that a Stack should be printed as an array for Daikon. This approach

increases the work of adding new data types; it would be helpful for the required

work to be isolated to the ioa.runtime and ioa.registry packages.

• Transition definitions sometimes have parameters; such parameters should ap-

pear as variables in scope at the ENTER and EXIT points of their transitions.

7.2.5 The IOA front end

Chapter 4 describes the current state of the front end; this section suggests future

improvements.

• Once the Composer actually exists, check that the current syntax for schedule

and proof blocks will work with composite automata. There may be no addi-

tional work necessary, but it is impossible to tell until the syntax and semantics

of composition are finalized.

• The user has an obligation to ensure that a paired simulation’s proof begins

from a reachable state of the specification automaton. This task is simple be-

cause, before execution begins, no transitions have occurred. The front end

should therefore be able to perform this check by making sure that variables

initialized in an initially block are not also initialized at the time of declara-

tion in the specification automaton.
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7.2.6 Documentation

Chapter 2 of this thesis provides the basis for a Simulator user’s guide, and Chapter

4 provides Simulator-related IOA syntax information to be added to the IOA man-

ual. Several other parts of the IOA Toolkit, however, need substantial additional

documentation work:

• IL syntax (formatting): Before this thesis, the IL syntax was documented only

as Javadoc-style comments in the code, and extracted into a single file (seen

in the appendix to this thesis) by a sed script. Unfortunately, the IL syntax

comments use angle brackets around the names of non-terminals, and Javadoc’s

output is HTML. This problem could be solved with a doclet to translate angle

brackets to &langle and &rangle within IL syntax comments.

• IL syntax and semantics (content): Once the Composer is complete and the IL

for composed automata has been determined, its developers should document

the syntax and semantics of the IL.

• The IL parser: Ramı́rez’ thesis and the documentation produced by Javadoc

are the only sources of information on how to use the IL parser. Section 6.3

of Ramı́rez’ thesis includes a nice example of using the parser. Section 6.5

describes how to add specialized IL elements and asserts that it is possible for

a back-end tool to recognize customized IL statements, but refers the reader to

the IOA Toolkit documentation (which covers quite a few classes) rather than

giving a description of how to do so. A unified description of the IL parser,

including both how to use and how to extend it, would be useful for future

back-end developers. This thesis does not include such a description because

Toh Ne Win is currently re-writing parts of the IL parser.

7.2.7 IOA language wish list

Simulator users have requested the following features:
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• String literals would be convenient. Sometimes enumerations provide an ac-

ceptable substitute, but sometimes they do not.

• Functions would increase readability (and ease of writing) of IOA programs.

Schedules, preconditions, and effects all tend to involve too much repetition.

Even the ability to write simple macros would be helpful, and seems like a more

likely extension to IOA.

• One contributor to the ugliness of schedule blocks is that they must check a

transition’s precondition before firing it. The following addition would make

schedules shorter and easier to read and to write: a new command, called

conditional fire (or some shorter name), that checks a transition’s precon-

dition and executes the transition only if its precondition is satisfied.

• Automata sometimes have transitions meant to be run only once and as the

first transition that occurs; for this reason, it would be good to allow initially

blocks of paired simulation “proofs” to contain general programs, not just as-

signments. (These programs should, of course, fire only internal transitions.)

Conversation with Ramı́rez has confirmed this opinion.
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Appendix A

Intermediate Language Grammar

<START> ::= (ioa <decls> <spec>*)

<spec> ::= <automatonDef> | <typedef> | <invariant> | <simulation>
| <trait>

<decls> ::= (<sorts> <ops> <vars>)
<sorts> ::= (sorts <sort>*)
<sort> ::= (<sortId> <name> (<sortId>*) lit?)
<ops> ::= (ops <op>*)
<op> ::= (<opId> <opName> <signature>)
<vars> ::= (vars <var>*)
<var> ::= (<varId> <name> <sortId>)

<converts> ::= (converts (<opId>+) {(exempting <term>+)}?)

<genPartyBy> ::= (<genPartKind> <sortId> <opId>+)
<genPartKind> ::= generated | generatedFreely | partitioned

<operator> ::= <constant> | <numeral> | <plainOp> | <ifOp>
| <infixOp> | <mixfixOp>
| <prefixOp> | <postfixOp>
| <selectOp>

<constant> ::= (id <name>)
<numeral> ::= (const <name>)
<plainOp> ::= (id <name>)
<ifOp> ::= (if)
<infixOp> ::= (infix <name>)
<mixfixOp> ::= (mixfix NUMBER <trueFalse> <trueFalse>

<name> <name>)
<postfixOp> ::= (postfix <name>)
<prefixOp> ::= (prefix <name>)
<selectOp> ::= (select <name>)
<trueFalse> ::= true | false
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<opId> ::= <id> ;;; lexical op[0-9]+

<operator> ::= <literal> | <opId>
<literal> ::= (lit <sortId> <number>)

<prop> ::= <term> | <genPartBy> | <traitRef> | <converts>

<quantifier> ::= {all | exists} <varId>

<extension> ::= <scope> | <subscope>
<scope> ::= (scope NUMBER)
<subscope> ::= (subscope NUMBER NUMBER?)

<signature> ::= (<sortId>*) sortId

<sortId> ::= <id> ;;; lexical s[0-9]+
<sortConstructor> ::= <sortId>

<typedef> ::= <enumeration> | <tuple> | <union>

<enumeration> ::= (enum <sortId> <succOp> <enumItem>+)
<enumItem> ::= (<enumItemName> <enumItemOp>)

<tuple> ::= (tuple <sortId> <opId> <field>+)
<field> ::= (<id> <sortId> <opId> <opId>)
<union> ::= (union <sortId> <sortId> <opId> <field>+)

<predicate> ::= <term>
<term> ::= <applicationTerm> | <quantifiedTerm>

| <referenceTerm> | <literal>
<applicationTerm> ::= (apply <opId> <term>+)
<quantifiedTerm> ::= (<quantifier> <term>)
<referenceTerm> ::= <varId> | <opId> | <sortId>

<trait> ::= (trait <traitName> <traitFormals>?
{<shorthand> | <external>}* <opDcls>?
{(asserts <varDcls>? <prop>+ <extension>)}?
{(implies <varDcls>? <prop>+ <extension>)}?)

<traitName> ::= <name>

<traitParam> ::= <sortId> | <opId> | <sortConstructor>

<traitRef> ::= (uses (traitref "<traitName>" (<traitParamActual>))

<varId> ::= <id> ;;; lexical v[0-9]+

<renaming> ::= (rename <replace>+)
<replace> ::= (<traitParam> <traitParam>)

<renamingMap> ::= <replace>*
<replace> ::= (<traitParam> <traitParam>)

<action> ::= (<actionId> <actionType> <name>
{<formals> <where>?}? <extension>)
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<actionType> ::= input | output | internal

<actionId> ::= <id> ;;; lexical a[0-9]+

<assignment> ::= (assign <lvalue> <value>)
<lvalue> ::= <varId> | (apply <opId> <lvalue> <term>+)

<automaton> ::= (automaton <automatonName> <formals>? <automatonDef>)
<automatonName> ::= <name>
<formals> ::= (formals <formal>+)
<automatonDef> ::= <primitive> | <composition> | <hiding>
<primitive> ::= ( (actions <action>+)

<states>
{(transitions <transition>+)}?
{(tasks <task>+)}?
<schedule>? )

<states> ::= (states <soThat>? <varId>*)
<soThat> ::= (sothat <term>)

<component> ::= (<id> <automatonActuals>? <term>)
<automatonActuals> ::= (actuals <term>+)

<composition> ::= (compose <component>+)

<conditional> ::= (if ( {(<predicate> <program>)}+ ) <program>)

<simcorresp> ::= (sim_entry <transitionId> (formals <formal>*) <program>)

<formal> ::= <term>

<invariant> ::= (invariant <invariantName> <automatonName> <predicate>)

<loop> ::= (for <varId> <term> <program>)

<ndrfire> ::= (fire {<transitionId> <actionActuals>?}?)

<ndrwhile> ::= (while <predicate> <program>)

<ndryield> ::= (yield <term>)

<program> ::= (<statement>*)

<schedule> ::= (schedule (states <state>*) <ndrprogram>)
<ndrprogram> ::= ({<assignment> | <conditional> |

<ndrfire> | <ndrwhile>}*)

<simfire> ::= (sim_fire <transitionId> <actionActuals>?
(using (<variable> <term>)+)?)

<proof> ::= (proof (states <state>*) ((<term> <value>)*)
(<simcorresp>*))

<simulation> ::= (sim <direct> <automatonName> <automatonName>
<predicate> <proof>?)
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<direct> ::= {forward | backward}

<state> ::= (<varId> <value>?)

<statement> ::= <assignment> | <conditional> | <loop> | <simfire>
| <ndrfire> | <ndrwhile>

<task> ::= (task <actionSet> <forClause>? <extension>)

<transition> ::= (<transitionId> <caseName> <actionId>
{<actionActuals> <where>?}?
<chooseFormals>? <precondition>? <effect>?)

<caseName> ::= "<id>"?
<chooseFormals> ::= (choose <varId>+)
<precondition> ::= (pre <predicate>)
<transitionId> ::= <id> ;;; lexical t[0-9]+

<value> ::= <term> | <choice>
<choice> ::= (choose {(<varId> <term>?) (<yieldprogram>)?}?)

<yieldprogram> ::= (det <yieldstatement>*)
<yieldstatement> ::= <conditional> | <ndrwhile> | <ndryield>

72



Appendix B

Files produced for and by Daikon

B.1 Fibonacci

Listing B-1: Fibonacci.decls

DECLARE
Fibonacci:::OBJECT
Fibonacci.a
int
int

Fibonacci.b
int
int

Fibonacci.c
int
int

DECLARE
Fibonacci.compute():::ENTER
Fibonacci.a
int
int

Fibonacci.b
int
int

Fibonacci.c
int
int

DECLARE
Fibonacci.compute():::EXIT
Fibonacci.a
int
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int

Fibonacci.b
int
int

Fibonacci.c
int
int

Listing B-2: Fibonacci.dtrace, for sim 10 -daikon Fibonacci.ioa

Fibonacci:::OBJECT
Fibonacci.a
1
1
Fibonacci.b
0
1
Fibonacci.c
1
1

Fibonacci.compute():::ENTER
Fibonacci.a
1
1
Fibonacci.b
0
1
Fibonacci.c
1
1

Fibonacci.compute():::EXIT
Fibonacci.a
0
1
Fibonacci.b
1
1
Fibonacci.c
1
1

Fibonacci:::OBJECT
Fibonacci.a
0
1
Fibonacci.b
1
1
Fibonacci.c
1
1

Fibonacci.compute():::ENTER
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Fibonacci.a
0
1
Fibonacci.b
1
1
Fibonacci.c
1
1

Fibonacci.compute():::EXIT
Fibonacci.a
1
1
Fibonacci.b
1
1
Fibonacci.c
2
1

Fibonacci:::OBJECT
Fibonacci.a
1
1
Fibonacci.b
1
1
Fibonacci.c
2
1

Fibonacci.compute():::ENTER
Fibonacci.a
1
1
Fibonacci.b
1
1
Fibonacci.c
2
1

Fibonacci.compute():::EXIT
Fibonacci.a
1
1
Fibonacci.b
2
1
Fibonacci.c
3
1

Fibonacci:::OBJECT
Fibonacci.a
1
1
Fibonacci.b
2
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1
Fibonacci.c
3
1

Fibonacci.compute():::ENTER
Fibonacci.a
1
1
Fibonacci.b
2
1
Fibonacci.c
3
1

Fibonacci.compute():::EXIT
Fibonacci.a
2
1
Fibonacci.b
3
1
Fibonacci.c
5
1

Fibonacci:::OBJECT
Fibonacci.a
2
1
Fibonacci.b
3
1
Fibonacci.c
5
1

Fibonacci.compute():::ENTER
Fibonacci.a
2
1
Fibonacci.b
3
1
Fibonacci.c
5
1

Fibonacci.compute():::EXIT
Fibonacci.a
3
1
Fibonacci.b
5
1
Fibonacci.c
8
1
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Fibonacci:::OBJECT
Fibonacci.a
3
1
Fibonacci.b
5
1
Fibonacci.c
8
1

Fibonacci.compute():::ENTER
Fibonacci.a
3
1
Fibonacci.b
5
1
Fibonacci.c
8
1

Fibonacci.compute():::EXIT
Fibonacci.a
5
1
Fibonacci.b
8
1
Fibonacci.c
13
1

Fibonacci:::OBJECT
Fibonacci.a
5
1
Fibonacci.b
8
1
Fibonacci.c
13
1

Fibonacci.compute():::ENTER
Fibonacci.a
5
1
Fibonacci.b
8
1
Fibonacci.c
13
1

Fibonacci.compute():::EXIT
Fibonacci.a
8
1
Fibonacci.b
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13
1
Fibonacci.c
21
1

Fibonacci:::OBJECT
Fibonacci.a
8
1
Fibonacci.b
13
1
Fibonacci.c
21
1

Fibonacci.compute():::ENTER
Fibonacci.a
8
1
Fibonacci.b
13
1
Fibonacci.c
21
1

Fibonacci.compute():::EXIT
Fibonacci.a
13
1
Fibonacci.b
21
1
Fibonacci.c
34
1

Fibonacci:::OBJECT
Fibonacci.a
13
1
Fibonacci.b
21
1
Fibonacci.c
34
1

Fibonacci.compute():::ENTER
Fibonacci.a
13
1
Fibonacci.b
21
1
Fibonacci.c
34
1
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Fibonacci.compute():::EXIT
Fibonacci.a
21
1
Fibonacci.b
34
1
Fibonacci.c
55
1

Fibonacci:::OBJECT
Fibonacci.a
21
1
Fibonacci.b
34
1
Fibonacci.c
55
1

Fibonacci.compute():::ENTER
Fibonacci.a
21
1
Fibonacci.b
34
1
Fibonacci.c
55
1

Fibonacci.compute():::EXIT
Fibonacci.a
34
1
Fibonacci.b
55
1
Fibonacci.c
89
1

Fibonacci:::OBJECT
Fibonacci.a
34
1
Fibonacci.b
55
1
Fibonacci.c
89
1
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B.2 Hanoi

Listing B-3: Daikon output for a single Hanoi test case
Hanoi:::OBJECT
Hanoi.stackA[] elements != null
Hanoi.stackB[] elements != null
Hanoi.stackC[] elements != null
size(Hanoi.stackC[]) == - size(Hanoi.stackA[]) - size(Hanoi.stackB[]) + 5
===========================================================================
Hanoi.putOnA():::ENTER
size(Hanoi.stackA[]) <= 2
size(Hanoi.stackA[]) one of { 0, 1, 2 }
size(Hanoi.stackB[]) == 0 (mod 2)
size(Hanoi.stackB[]) one of { 2, 4 }
size(Hanoi.stackC[]) >= 1
size(Hanoi.stackC[]) one of { 1, 2, 3 }
size(Hanoi.stackA[]) != size(Hanoi.stackC[])
size(Hanoi.stackA[])-1 != size(Hanoi.stackC[])-1
===========================================================================
Hanoi.putOnA():::EXIT
size(Hanoi.stackA[])-1 == orig(size(Hanoi.stackA[]))
size(Hanoi.stackA[]) >= 1
size(Hanoi.stackA[]) one of { 1, 2, 3 }
size(Hanoi.stackB[]) one of { 1, 2, 3 }
size(Hanoi.stackC[]) == 1 (mod 2)
size(Hanoi.stackC[]) one of { 1, 3 }
orig(Hanoi.stackA[]) is a subsequence of Hanoi.stackA[]
Hanoi.stackB[] is a subsequence of orig(Hanoi.stackB[])
Hanoi.stackC[] is a subsequence of orig(Hanoi.stackC[])
size(Hanoi.stackA[]) != size(Hanoi.stackB[])-1
size(Hanoi.stackA[]) != size(Hanoi.stackC[])-1
size(Hanoi.stackA[]) != orig(size(Hanoi.stackC[]))-1
size(Hanoi.stackA[])-1 != size(Hanoi.stackB[])
size(Hanoi.stackB[]) != size(Hanoi.stackC[])-1
size(Hanoi.stackB[]) != orig(size(Hanoi.stackC[]))-1
size(Hanoi.stackB[])-1 != orig(size(Hanoi.stackA[]))-1
size(Hanoi.stackB[])-1 != orig(size(Hanoi.stackC[]))
size(Hanoi.stackC[]) != orig(size(Hanoi.stackB[]))
size(Hanoi.stackC[])-1 != orig(size(Hanoi.stackB[]))-1
orig(size(Hanoi.stackA[]))-1 != orig(size(Hanoi.stackC[]))-1
===========================================================================
Hanoi.putOnB():::ENTER
size(Hanoi.stackA[]) >= 1
size(Hanoi.stackC[]) == 1 (mod 2)
size(Hanoi.stackC[]) one of { 1, 3 }
size(Hanoi.stackA[])-1 != size(Hanoi.stackB[])
===========================================================================
Hanoi.putOnB():::EXIT
size(Hanoi.stackB[])-1 == orig(size(Hanoi.stackB[]))
size(Hanoi.stackA[]) == 1 (mod 2)
size(Hanoi.stackA[]) one of { 1, 3 }
Hanoi.stackA[] is a subsequence of orig(Hanoi.stackA[])
orig(Hanoi.stackB[]) is a subsequence of Hanoi.stackB[]
Hanoi.stackC[] is a subsequence of orig(Hanoi.stackC[])
size(Hanoi.stackA[]) != orig(size(Hanoi.stackC[]))-1
size(Hanoi.stackA[])-1 != orig(size(Hanoi.stackC[]))
size(Hanoi.stackB[]) != orig(size(Hanoi.stackA[]))
size(Hanoi.stackB[])-1 != size(Hanoi.stackC[])
size(Hanoi.stackB[])-1 != orig(size(Hanoi.stackA[]))-1
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size(Hanoi.stackC[]) != orig(size(Hanoi.stackA[]))
size(Hanoi.stackC[])-1 != orig(size(Hanoi.stackA[]))-1
size(Hanoi.stackC[])-1 != orig(size(Hanoi.stackB[]))-1
orig(size(Hanoi.stackC[])) == - size(Hanoi.stackB[]) - orig(size(Hanoi.stackA[])) + 6
===========================================================================
Hanoi.putOnC():::ENTER
size(Hanoi.stackA[]) == 1 (mod 2)
size(Hanoi.stackA[]) one of { 1, 3, 5 }
size(Hanoi.stackB[]) != size(Hanoi.stackC[])-1
size(Hanoi.stackB[])-1 != size(Hanoi.stackC[])
===========================================================================
Hanoi.putOnC():::EXIT
size(Hanoi.stackC[])-1 == orig(size(Hanoi.stackC[]))
size(Hanoi.stackB[]) == 0 (mod 2)
size(Hanoi.stackB[]) one of { 0, 2, 4 }
size(Hanoi.stackC[]) >= 1
Hanoi.stackA[] is a subsequence of orig(Hanoi.stackA[])
Hanoi.stackB[] is a subsequence of orig(Hanoi.stackB[])
orig(Hanoi.stackC[]) is a subsequence of Hanoi.stackC[]
size(Hanoi.stackA[]) != size(Hanoi.stackC[])
size(Hanoi.stackA[]) != orig(size(Hanoi.stackB[]))-1
size(Hanoi.stackA[]) != orig(size(Hanoi.stackC[]))-1
size(Hanoi.stackA[])-1 != size(Hanoi.stackC[])-1
size(Hanoi.stackA[])-1 != orig(size(Hanoi.stackB[]))
size(Hanoi.stackB[]) != orig(size(Hanoi.stackA[]))
size(Hanoi.stackB[])-1 != orig(size(Hanoi.stackA[]))-1
size(Hanoi.stackC[]) != orig(size(Hanoi.stackB[]))
size(Hanoi.stackC[])-1 != orig(size(Hanoi.stackB[]))-1
orig(size(Hanoi.stackB[])) != orig(size(Hanoi.stackC[]))-1
orig(size(Hanoi.stackB[])) == - size(Hanoi.stackC[]) - orig(size(Hanoi.stackA[])) + 6
===========================================================================
Hanoi.start():::ENTER
size(Hanoi.stackA[]) == size(Hanoi.stackB[]) == size(Hanoi.stackC[])
Hanoi.stackA[] == []
Hanoi.stackB[] == []
Hanoi.stackC[] == []
size(Hanoi.stackA[]) == 0
===========================================================================
Hanoi.start():::EXIT
size(Hanoi.stackB[]) == size(Hanoi.stackC[]) == orig(size(Hanoi.stackA[]))

== orig(size(Hanoi.stackB[])) == orig(size(Hanoi.stackC[]))
Hanoi.stackA[] contains no nulls and has only one value, of length 5
Hanoi.stackB[] == []
Hanoi.stackC[] == []
size(Hanoi.stackA[]) == 5
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