Representation-Independent
Program Analysis

Michelle Mills Strout
John Mellor-Crummey rice)
Paul Hovland (Argonne and University of Chicago)

PASTE 2005
Jorado September 6, 2005

Stae
Univeraity®
ie to (s

C

~
-
:
2 20
3
=

ﬂ

A\ , |
Cis OpenAnalysis Cis

O
e Problem: Insufficient analysis support in existing

compiler infrastructures due to non-transferability of
analysis implementations

e Decouples analysis algorithms from intermediate
representations (IRs) by developing analysis-specific
interfaces

« Analysis reuse across compiler infrastructures

- Enable researchers to leverage prior work

- Enable direct comparisons amongst analyses
- Increase the impact of program analysis research

0

.

S
yials

P, PR
Coloira
[

Univeralty®
e (o

Example Projects that Found Analysis
Support Wanting

]
e Run-time reordering transformations [Strout Thesis Work]

- improves performance of irregular applications
- needs data dependence relations with uninterpreted functions in
compiler infrastructure for C

e Caching policies in parallel file systems [vilayannur]
- estimates memory references in perfect loops with constant loop
bounds

- symbolic analysis would provide a better estimate, but was
unavailable in the infrastructure being used

° Hancock at AT&T [Fisher and Rogers]

- domain-specific language for statisticians to manipulate transactions
using a familiar notation
- two researchers could not do the enormous amount of work to

Root Causes of
Analysis Support Problem

|
« Analysis development typically occurs in research

compilers that have non-robust language support

« Compiler infrastructures are difficult to support long-
term and build robustly in academia

« Some 1nfrastructures have multiple branches
because no mechanism for central updates

e Most fundamental problem is that all compiler
infrastructures integrate program analysis with
program representation

Y~ A

Orado
c MRS

~Cderaity®

Software Architecture for OpenAnalysis

Clients

Toolkit

Intermediate
Representation

—Uses —»

----(Generates --»
-Implements —>

Analysis Manager |---

——————————————————————

IR-Specific Interface
Implementation

. Analysis Results !

- Interface
% A
Results

IR-Specific
Analysis Results

Analysis-Specific Interfaces in
OpenAnalysis

|
e Represent imperative programming constructs with

opaque handles: procedures, statements, memory
references, expressions, operations, constants, etc.

e Make queries on handles
e Example: Control-flow graph analysis
IRStmtType getStmtType (StmtHandle)

SIMPLE, LOOP, STRUCT TWOWAYCONDITIONAL,

”
IR S,
Univeralty®

o P

OpenAnalysis Status

Clients

Toolkit

Intermediate
Representation

Uses ——»

OpenAD

----- Generates ---»
— [Implements —{> R-Compiler
" Alias Results —
______ Interface ! Activity SSA [cra
| % UD & DU chains Datatlow
| AliasMap I
A Reach |[, || Side CallGraph
| Alias I\r‘Ianagcr | Defs Effects LECLOT
N CcFG || CallGraph ICFG
IR Interface | Datatloyy
Whirl in || Sage in S
Open64 || ROSE R C-Breeze | | Binaries

Key Ditferences from Related Work

|
» Analysis frameworks, some IR-specific analysis

- interprocedural analysis, FIAT [Hall et al 95]
- data-flow analysis, Sharlit [Tijang & Hennessy 92]

e Data-flow analysis generator, PAG [Alt and Martin 95]
- must specify how to access entire IR

« Conversion to a canonical IR
- eg. data-flow analysis, requires aliasing info [Moonen 97]
- difficult to map results back to source IR
- must specify a mapping for entire IR

» Analysis tools with adaptation level
- GENOA [Devanbu 92], monolithic layer, assumes AST
- StarTool [Hayes et al 00], analysis-centric, assumes AST

Vo] Fvnay A1 7
g
c S

~Cuversity®

Evaluating OpenAnalysis

]
e Ease of Use: how easy is it to ...

- implement an analysis-specific IR interface?
- contribute an analysis implementation to the toolkit?
- use analysis results?

e Coverage
- how many important analysis algorithms are expressible?
- how many imperative language features can be modeled?

e Accuracy
- how much is lost due to IR independence?

o Efficiency

- what 1s the performance cost of the extra layer of abstraction?

1l ey A1
Colorado

Conclusions

e Language-independent program analysis enables sharing
between and within compiler infrastructures

e Analysis-specific, IR-independent interfaces are the key

- represent complex language constructs with abstractions that are
basic to all imperative programming languages
- design the interface to satisfy a broad range of implementations

e The OpenAnalysis toolkit is being actively used and
further developed within the context of multiple projects
(clients) for multiple IRs

J,Ja
University
v Pl

Collaborators

o
e Paul Hovland (Argonne)

« John Mellor-Crummey (Rice University)
e Barbara Kreaseck (La Sierra University)
o Jean Utke (Umversity of Chicago)

e Nathan Tallent (Rice University)

e Beata Winnicka (Argonne)

e Boyana Norris (Argonne)

e Brian White (Cornell)

e Dan Quinlan (LLNL)

,,,,,,
Univeralty
‘o Pl

