

Automatically Generating Refactorings to
Suppport API Evolution

Jeff Perkins

MIT CSAIL

13 Sep 2005 16:10Page 1

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Outline

Library evolution
Libraries evolve
Clients often don’t track library changes
Contributions

Mechanism to automatically upgrade clients
Non-behavior preserving changes
Applicability
Comparison with other approaches
Conclusion

13 Sep 2005 16:10Page 2

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Libraries evolve

APIs change
Refactorings
Bug fixes
New functionality
Design changes

Deprecated methods, classes, fields, etc are retained for
backwards compatibility

13 Sep 2005 16:10Page 3

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Clients often don’t track library changes

Laziness

Fear

Problems result
Improvements are missed
Code may fail (if old methods are removed)
Libraries must maintain deprecated methods (or old versions of the
library) indefinitely

13 Sep 2005 16:10Page 4

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Contributions

Use information already in the library to upgrade the client

Upgrade information is specified in code (precise, machine
readable)

Mechanism to test library improvements without changing
client

Analysis of applicability in two libraries

13 Sep 2005 16:10Page 5

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Outline

Library evolution
Mechanism to automatically upgrade clients

Upgrading Methods
Upgrading Classes
Upgrading fields

Non-behavior preserving changes
Applicability
Comparison with other approaches
Conclusion

13 Sep 2005 16:10Page 6

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Upgrading Methods

Deprecated code normally includes documentation with a
suggested change. For example:

 /** Use getSize() instead of size() **/

This can be expressed more precisely in the body of the
method:

 @Deprecated public int size() { return getSize(); }

A tool can update client code accordingly.

13 Sep 2005 16:10Page 7

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Upgrading Classes

The deprecated class indicates its replacement by extending
the new class
 class NewClass { public void m1() { ... } public void m2() { ... } ... } @Deprecated class OldClass extends NewClass { }

The tool could replace uses of OldClass with NewClass

13 Sep 2005 16:10Page 8

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Upgrading fields

A deprecated static final field’s replacement is the
value of the deprecated field
 class Old { static final int CURSOR = New.CURSOR; ... }

The tool could replace instances of Old.CURSOR with
New.Cursor

Other fields don’t have as straightforward a substitution.
Annotations could be used in these cases.

13 Sep 2005 16:10Page 9

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Outline

Library evolution
Mechanism to automatically upgrade clients
Non-behavior preserving changes

Library evolution may result in semantic changes
Run time selection between implementations
Advantages of run time selection

Applicability
Comparison with other approaches
Conclusion

13 Sep 2005 16:10Page 10

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Library evolution may result in semantic changes

Reasons for semantic changes
More precise or accurate results may be returned.
New exceptions or errors may be thrown
Exceptions that were previously thrown may no longer be thrown

Clients may rely on the old behavior

Library developers will retain and deprecate the previous
version for compatibility

13 Sep 2005 16:10Page 11

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Run time selection between implementations

The deprecated method contains two implementations
Original implementation
A call to the replacement method

For example:
 Deprecated int old_method (Object x) { if (complete_backwards_compatibility) { // old code } else { return new_method (x); } }

13 Sep 2005 16:10Page 12

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Advantages of run time selection

Code with semantic changes can be handled

Preferred update to client code is precisely expressed

Client can test changes without modifying their code

Client can update only if testing indicates that the change is
compatible for them.

13 Sep 2005 16:10Page 13

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Outline

Library evolution
Mechanism to automatically upgrade clients
Non-behavior preserving changes
Applicability

Library test cases
Results

Comparison with other approaches
Conclusion

13 Sep 2005 16:10Page 14

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Library test cases

java.awt and Apache Byte Code Engineering Library (BCEL)

Examined deprecated methods to determine the types of
modifications

Modifications that our approach supports
Rename method
Method arguments changed
Method semantics changed
Rename static final field

Modifications that our approach would not support
Replace constructor with factory
Redesign required

13 Sep 2005 16:10Page 15

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Results

 AWT BCEL Supported

Rename method 73 0 Yes

Method arguments changed 9 0 Yes

Method semantics changed 1 4 Yes

Rename static final field 13 0 Yes

Replace constructor with factory 0 1 No

Redesign required 26 0 No

Total deprecated methods/fields 122 5

13 Sep 2005 16:10Page 16

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Outline

Library evolution
Mechanism to automatically upgrade clients
Non-behavior preserving changes
Applicability
Comparison with other approaches

Other approaches
Refactoring disadvantages

Conclusion

13 Sep 2005 16:10Page 17

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Other approaches

Chow and Notkin (1996) - annotate changed functions with
update rules in the language of Sorcerer

Borland (2004) - team refactoring tool

Lund University (2004) - similar team refactoring tool for
Eclipse

Henkel and Diwan (2005) - capture refactorings to an XML
file for later replay

13 Sep 2005 16:10Page 18

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Refactoring disadvantages

Changes are limited to refactorings.

A new language or file format is required

An additional artifact must be shipped

A special tool must be used by developers to record
refactorings

13 Sep 2005 16:10Page 19

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Outline

Library evolution
Mechanism to automatically upgrade clients
Non-behavior preserving changes
Applicability
Comparison with other approaches
Conclusion

Conveying updates in code is a potentially useful approach

13 Sep 2005 16:10Page 20

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Conveying updates in code is a potentially useful
approach

Library developers explicitly and precisely indicate
suggested replacements

Replacement information is specified and edited in the
original programming language

Replacement information is encoded directly into the
distributed code

Clients can test changes before updating

The use of particular development environments is not
required

79% of examined cases are applicable

13 Sep 2005 16:10Page 21

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

Questions

13 Sep 2005 16:10Page 22

Jeff PerkinsAutomatically Generating Refactorings to Suppport API Evolution

	
	 Outline
	 Libraries evolve
	 Clients often don't track library changes
	 Contributions
	 Outline
	 Upgrading Methods
	 Upgrading Classes
	 Upgrading fields
	 Outline
	 Library evolution may result in semantic changes
	 Run time selection between implementations
	 Advantages of run time selection
	 Outline
	 Library test cases
	 Results
	 Outline
	 Other approaches
	 Refactoring disadvantages
	 Outline
	 Conveying updates in code is a potentially useful approach
	 Questions

