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Information security

Amazon.com Privacy Notice:
…
We reveal only the last five digits of your credit card numbers when confirming an 
order. Of course, we transmit the entire credit card number to the appropriate credit 
card company during order processing.
…
Promotional Offers: Sometimes we send offers to selected groups of Amazon.com 
customers on behalf of other businesses. When we do this, we do not give that business 
your name and address.
…
Protection of Amazon.com and Others: We release account and other personal 
information when we believe release is appropriate to comply with the law; enforce or 
apply our Conditions of Use and other agreements; or protect the rights, property, or 
safety of Amazon.com, our users, or others.

…Promises, promises.
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Possible implementation

Complex system -- how does Amazon know they are 
meeting their legal obligations?

client host
browser

scripts

web server web server

app server app server app server

database database database

Amazon corporate partner #327firewall

cookies
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Existing abstractions are defunct
• Old model: host devices 

running communicating 
programs
– Host: a proxy for identity and 

privilege, data protection, 
persistent storage location

• Increasingly: pervasive 
networked devices (“fabric”)
– Need to flexibly, adaptively 

map storage, computation 
onto available devices

– Device perimeter no longer 
the right place to provide 
services, enforce system-
level properties

Host view

Fabric view

?
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Secure distributed systems?
• How to build?

– Encapsulation, access control lists,
distributed protocols, encryption, signing,…

• How to validate?
– Have analysis techniques only for individual 

mechanisms!

• Our goal: systems secure by construction
– Programs annotated with explicit security policies
– Compiler/static checker checks, transforms 

programs to satisfy policies
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Information security properties

• Confidentiality (secrecy, privacy)
– Making sure information

isn’t released improperly
– Identify: information flows

• Integrity
– Making sure information only

comes from the right places
– Identify: dependencies

= information flows

?

?
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Policies vs. mechanisms

• Policy/mechanism mismatch
– Conventional mechanisms (e.g., access control): 

control whether A is allowed to transmit to B
– End-to-end confidentiality policy: information I can 

only be obtained by users U (no matter how it is 
transformed)

• How to map policy onto a mechanism?

A B
?

I

U
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Static information flow
• Programs are annotated with 

information flow policies for 
confidentiality, integrity

• Compiler checks, possibly 
transforms program to ensure 
that all executions obey rules

• Loader, run-time validates 
program policy against system 
policies

Source Code Policy

Target Code Policy

System
Policy

Executable code

≤?
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Noninterference
"Low-security behavior of the program is not 

affected by any high-security data."
Goguen & Meseguer 1982

H1 L

LʹH1ʹ

H2 L

LʹH2ʹ

≈L

Confidentiality: high = confidential, low = public
Integrity: low = trusted, high = untrusted

≈L
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Jif: Java + Information Flow
• Program types include security labels

int{L} x;  // type of x is int{L}
• Compiler statically checks information flows

• Refinements:
– Declassification and endorsement escape hatches
– Label polymorphism
– Parameterized types (on labels and principals)
– Automatic label inference
– First-class dynamic labels and principals
– Static and dynamic access control
– Application-defined authentication

• Publicly available:
http://www.cs.cornell.edu/jif



11

Type checking
• Static label checking is type checking in a 

security type system
• Decidable
• Little run-time overhead : labels erased
• Compositional!
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Distributed Battleship
• Two-player game in which each player tries to sink 

other’s ships

• General problem for multiplayer games/simulations: 
hard to prevent cheating
Distrust ⇒ Multiplayer code must change.

• Idea: based on security types, compiler transforms 
code to run securely on untrusted hosts

“A3” “you missed”“hit”
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Secure partitioning and replication

Source Code
(Jif) Policy

Trust
config

Compiler

Splitter

subprograms

Host 1
network
protocol

Host 2
Host 5

Host 3

Host 4

Describes the 
computation and 

the principals' 
security policies.

A subprogram may 
be replicated on 
multiple hosts

Describes the trust 
relationships 

between principals 
and hosts.

Partitions the data 
and computation 

among hosts, so that
policies are obeyed.

Verifies that the 
program obeys 

the security 
policies.

Every host may run 
splitter for itself
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Security for distrusting principals

• Principals vs. hosts

A

C

B "Alice trusts hosts A & C"
"Bob trusts hosts B & C"

• Security guarantee:
Principal P's security policy 
might be violated only if a 
host that P trusts fails

If B is subverted, 
Alice's policy is 
obeyed; Bob's policy 
might be violated.
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Security policies in Jif/split

• Confidentiality labels:
int{Alice:} a1; "a1 is Alice's private int"

• Integrity labels:
int{*:Alice} a2; "Alice trusts a2"

• Combined labels:
int{Alice: ; *:Alice} a3; (Both)

int{Alice:} a1, a2;
int{Bob:} b;
int{*:Alice} c;

Insecure
a1 = b;
b = a1;
c = a1;

Secure
a1 = a2;
a1 = c;

• Enforced in Jif language
using static information flow analysis:
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Battleship example

• A’s board is 
confidential to A but 
must be trusted by 
both A and B:
{A: ; *:A,B}

• B’s board is 
symmetrical:
{B: ; *:A,B}

A B

Host A Host B

Compiler

Splitter
violates

B’s integrity violates A’s
confidentiality
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Replication
• Idea 1: replicate both boards onto both hosts 

so both principals trust the data.

Host A

A

Host B

A

• Problem: host B now has A’s confidential data.
• Idea 2: host B stores a one-way hash of cells

• Cleartext cells checked against hashed cells to 
provide assurance data is trusted by both A & B.

• Compiler automatically generates this solution!
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Host labels
• Trust in hosts described by host labels

Trust
config

• Battleship game:

• Data with confidentiality C and integrity I can 
be securely placed on host h if:

C U Ch and Ih U I
• A’s board: {A: ; *:A,B} but  {A:}U/{B:} and 
{*:A} U/ {*:A,B}

Compiler

Splitter

Host A Host B

{B: ; *:B}{A: ; *:A}
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Secure replication condition
• Data with confidentiality C, integrity I can be 

securely placed on hosts hi if:
C U Chj

for some host hj

TIhi
U I     (instead of Ih U I)

A’s board: {A:;*:A,B}

{B:;*:B}{A:;*:A}
Host BHost A

Confidentiality: {A:}U{A:}
Integrity: {*:A}T{*:B}U{*:A,B}

Example
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Replicating computation
• Replicated data ⇒ replicated computation
• Computation must be placed on hosts that 

are trusted to observe, produce data
• Control transfers in original program may 

become transfers among groups of hosts

Host A

Host B

Host C

Host D

Host E
Host F

S1;
S2;
S3

S1 S2 S3
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• Computation can transfer control between 
hosts with different integrity levels

• Battleship:

• How to prevent B from sabotaging integrity of 
computation with invalid invocations?

• Generally: how to prevent group of low-
integrity hosts from sabotaging integrity?

Restoring integrity

Host A

Host B

Host A

Host B

Host A increasing
integrity
(according to A)
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Host A

Host B

• Solution: high-integrity hosts generate one-
time capability tokens that low-integrity 
hosts use to return control

Capability tokens

Host AS1;
S2;
S3 S3

• At any given time, usable capabilities exist for at 
most one high-integrity program point
– low-integrity hosts can’t affect high-integrity 

execution

S1

S2

S3
S3

increasing
integrity
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Host A

Host B

Splitting capability tokens

Host A

S1;
S2;
S3;
S4;

S4

S1

S2

Host Cʹ
S3ʹ

increasing
integrity
(according to A)

Host C
S3

S4

S4’’

S4’

• Capabilities may be split into multiple 
tokens, recombined to return control.

S4’ S4’’
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Downgrading in Jif
Declassification (confidentiality)
int{Bob:; *:Alice} x;
y = declassify (x, {Bob:; *:Alice} to {*:Alice})

Endorsement (integrity)
int{Bob:} x;
y = endorse (x, {Bob:} to {Bob:; *:Alice})

• Unsafe escape hatch for richer confidentiality, 
integrity policies with intentional information flows

• Requires static authorization (access control)
• Requires pc integrity at downgrading point to ensure 

integrity of unsafe operations
– Untrusted code cannot increase the information released:
“Robust declassification” [CSFW01, CSFW04]
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Host BHost A

Downgrading in Battleship
• Declassification: board location (i,j) not confidential 

once bomb dropped on it:
loc = declassify(board[move],

{A:; *:A,B} to {*:A,B})
• Endorsement: opponent can make any legal move, 

and can initially position ships wherever desired.
move = endorse(move_ , {*:B} to {*:A,B})

• declassify, endorse often correspond to network 
data transfers, hash value checks

loc MD5(loc,nonce)nonce
declassify
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Battleship main loop (simplified)

while (bobHits < NUM_SHIPS) {
int aliceMove = alice.getNextMove();
aliceHits +=      

bob.isHit(aliceMove)?1:0;
if (aliceHits == NUM_SHIPS) break;
int bobMove = bob.getNextMove();
bobHits += 

alice.isHit(bobMove)?1:0;
}
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Unannotated isHit code
class PlayerAlice authority(Alice) {

int[] public_board;
int[] board;

boolean isHit( int coord ) {
public_board[coord] = board[coord];
return public_board[coord] == SHIP;

}
…

}
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Unannotated isHit (simplified)
class PlayerAlice authority(Alice) {

int{*:Alice,Bob}[] {*:Alice,Bob} public_board;
int{Alice:; *:Alice,Bob}[] {*:Alice,Bob} board;

boolean{*:Alice,Bob} isHit(int coord) {
public_board[coord] = board[coord];
return public_board[coord] == SHIP;

}
…

}
Can’t assign from
{Alice:; *:Alice,Bob} to
{*:Ali`ce,Bob}

Can’t assign from
{Alice:; *:Alice,Bob} to
{*:Ali`ce,Bob}
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Battleship isHit code 
class PlayerAlice authority(Alice) {

int{*:Alice,Bob}[] {*:Alice,Bob} public_board;
int{Alice:; *:Alice,Bob}[] {*:Alice,Bob} board;

boolean{*:Alice,Bob} isHit(int coord)
where authority(Alice) {
public_board[coord] =

declassify(board[coord],
{Alice:; *:Alice,Bob} to {*:Alice,Bob});

return public_board[coord] == SHIP;
}
…

}
Not enough integrity for 
declassification (isHit, coord)
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Battleship isHit code 
class PlayerAlice authority(Alice) {

int{*:Alice,Bob}[] {*:Alice,Bob} public_board;
int{Alice:; *:Alice,Bob}[] {*:Alice,Bob} board;

boolean{*:Alice,Bob} isHit{*:Alice,Bob}
({*:Alice,Bob} coord ) 

where authority(Alice) {
public_board[coord] =

declassify(board[coord],
{Alice:; *:Alice,Bob} to {*:Alice,Bob});

return public_board[coord] == SHIP;
}
…

}
• Success!
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Result boolean{*:Alice,Bob} isHit{*:Alice,Bob}    
({*:Alice,Bob} coord ) {
public_board[coord] = 

declassify(board[coord],
{Alice:; *:Alice,Bob} to 
{*:Alice,Bob});

return public_board[coord] == SHIP;
}

Host A Host B

isHit:

pub_board[move]=board[move];
declassify(Hb,vid,board[move]);

// comm. primitive

isHit:

tmp = recvDeclassify(Ha,
vid,
board[move]);

public_board[move] = tmp;

return pub_board[coord] == SHIP;

int[] public_board;
int[] board;

int[] public_board;
HashVal[] board;

return pub_board[coord] == SHIP;
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Experimental results
• Implemented a variety of small programs in 

JIF and used JIF/split compiler to compile to 
distributed systems.
– Battleship, three secure auction protocols, simple 

financial transactions, oblivious transfer
– Security-intensive, mutual distrust
– Integrity constraints force use of replication

• Implemented same programs with hand-
crafted Java/RMI code.

• JIF versions are 13-65% shorter, but send
2-4× more messages.
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Related work
• Language-based security and static 

information flow (see [SM02])
– mostly ignores distribution, distrust

• Multilevel security and information flow
• Uniform replication for improved integrity and 

availability
– replicated state machines, BFT, file systems

• Stack Inspection
– tries to protects downward control integrity
– vulnerable to other integrity failures (“confused 

deputy”)
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Selected theoretical results
• Safety of capability token protocol [TOCS02]

• Noninterference for:
– CPS language with state [HOSC02]

– Simple language with dynamic labels [FAST04]

– Concurrent language with secure message 
passing [CSFW03]

• Robust declassification property [CSFW01], 
proof that integrity check enforces it [CSFW04]
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Conclusions
• Methods are needed for obtaining end-to-end 

assurance for distributed systems
• Information flow policies are a (the?) natural way to 

describe end-to-end information security
• JIF compiler provides a practical programming model 

while validating information flows
• JIF/split back end automatically uses a variety of 

common techniques to solve distributed security 
problems
– Encryption, digital signing, secure one-way

hashing, nonces, capabilities, access control,
agreement protocols, commitment protocols

• Future work: incorporate more mechanisms, enforce 
richer security properties (e.g., availability)
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http://www.cs.cornell.edu/jif


