
taking symbolic execution to the libraries

sarfraz khurshid yuk lai suen
(now at microsoft)

university of texas at austin

PASTE
6/sep/5

6/sep/5 khurshid abstract symbolic execution PASTE 2

assert-first programming

programmers have long used assertions to state crucial
properties of code
• various dynamic and static analyses make use of assertions

we believe we can squeeze more value from assertions and make
them a viable form of program annotations
• testing
• repair

abstract symbolic execution provides enabling technology
• can unify software verification and resilient computing

assert-first programming has the potential to provide the benefits
of test-first programming but at a lower cost
• it is easier to write an assertion than to manually construct a

high quality test suite or a correct repair routine

6/sep/5 khurshid abstract symbolic execution PASTE 3

our take on symbolic execution

problem with traditional symbolic execution: it does not scale

proposed solution: try not to perform it fully symbolically

• treat a handful of fields symbolically

• e.g., in repair, we selectively make fields symbolic

• provide direct support for symbolic execution of certain
(commonly used) classes

• give semantics for symbolic manipulations of objects
and solve constraints in ensuing path conditions

• alleviate the need to symbolically execute intricate
implementations of library code

• prevent path conditions from becoming too
complex and choking underlying solvers

6/sep/5 khurshid abstract symbolic execution PASTE 4

example

consider a red-black tree

• binary search tree

• red nodes have black children

• same number of black nodes on all paths from root to leaf
class TreeMap {

Entry root;
int size;
static class Entry {

int key;
Entry left, right, parent;
boolean color;

}
...

113

1 5 9 13

7

1 5

size: 9

6/sep/5 khurshid abstract symbolic execution PASTE 5

assertion example

class invariant of TreeMap
boolean repOk {

if (root == null) return size == 0; // empty tree
if (root.parent != null) return false; // root has no parent
// check acyclicity and parent relation
Set visited = new HashSet();
List workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

...
}
if (visited.size() != size) return false; // check size
... // check colors
... // check keys
return true;

}

6/sep/5 khurshid abstract symbolic execution PASTE 6

test generation example

korat: monitor executions of repOk to systematically enumerate
inputs for which repOk returns true [boyapati+02, marinov05]

• provides non-isomorphic generation

simple to implement using a model checker [khurshid+03]

efficient for enumerating a large number of small (~ a dozen
nodes) structures

example: size=3, i.e., 3 nodes, 3 keys

1

0 2

1

0 2 0 2

1

6/sep/5 khurshid abstract symbolic execution PASTE 7

repair example

juzi: on assertion violation, repair the state of the program and
let it continue to execute [garcia05, khurshid+05, suen05]

can be efficient for repairing large structures (~ 10K nodes)
with a small number of corruptions

example

113

1 5 9 13

7

4 6

size: 18

113

1 5 9 13

7

4 6

size: 9

6/sep/5 khurshid abstract symbolic execution PASTE 8

resilient computing background

fault-tolerance and error recovery have featured in software
systems for a long time

most of the past work has been on specialized repair routines
• file system utilities, such as fsck

• commercial systems, such as IBM MVS operating system
and lucent 5ESS switch

demsky and rinard’s framework is more generic [OOPSLA’03]

• declarative constraints define desired structures

• mapping defines data translations between abstract and
concrete states

• requires users to provide mappings and learn a new
constraint language

6/sep/5 khurshid abstract symbolic execution PASTE 9

outline

motivation

traditional symbolic execution

• supporting references

supporting library classes

• towards an implementation

discussion

6/sep/5 khurshid abstract symbolic execution PASTE 10

traditional forward symbolic execution

technique for executing a program on symbolic input values

• pioneered three decades ago [boyer+75, king76]

explore program paths

• for each path, build a path condition

• check satisfiability of path condition

various applications

• test generation and program verification

traditional use focused on programs with fixed number of
variables of primitive types

6/sep/5 khurshid abstract symbolic execution PASTE 11

concrete execution path (example)

x = 1, y = 0

1 >? 0

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 – 1 >? 0

int x, y;

if (x > y) {

x = x + y;

y = x – y;

x = x – y;

if (x – y > 0)

assert(false);

}

6/sep/5 khurshid abstract symbolic execution PASTE 12

symbolic execution tree (example)

x = X, y = Y

X >? Y

[X > Y] y = X + Y – Y = X

[X > Y] x = X + Y – X = Y

[X > Y] Y - X >? 0

[X <= Y] END [X > Y] x = X + Y

[X > Y, Y – X <= 0] END [X > Y, Y – X > 0] END

int x, y;

if (x > y) {

x = x + y;

y = x – y;

x = x – y;

if (x – y > 0)

assert(false);

}

6/sep/5 khurshid abstract symbolic execution PASTE 13

handling more general programs

how to handle programs with references or pointers?
e.g., if (current.left.parent != current) ...

several recent approaches work with arbitrary java/C++ programs
[khurshid+03, pasareanu+04, visser+04, xie+04, csallner+05,
godefroid+05, cadar+05]

common theme: perform symbolic execution at concrete
representation level

6/sep/5 khurshid abstract symbolic execution PASTE 14

example algorithm

to symbolically execute a method m

• create input objects with uninitialized fields

• execute m

• follow mainly Java semantics

• systematically initialize fields on first-access
• add constraints to path condition and check for

feasibility

6/sep/5 khurshid abstract symbolic execution PASTE 15

example field initialization

idea: on first access of a field, non-deterministically initialize it to
explore all aliasing possibilities

when method execution accesses field f
if (f is uninitialized) {

if (f is reference field of type T) {
non-deterministically initialize f to
− null
− a new object of class T (with uninitialized fields)
− an object created during prior field initialization

}
if (f is numeric field)

initialize f to a new symbolic value
}

6/sep/5 khurshid abstract symbolic execution PASTE 16

algorithm illustration

E0
next

E1
next

t
null

t
E0

next
E1

next
?

next
E0

next
E1

t next E0 next E1

next

t

E0
next

E1
next

t

consider executing the statement
next = t.next;

6/sep/5 khurshid abstract symbolic execution PASTE 17

outline

motivation

traditional symbolic execution

• supporting references

supporting library classes

• towards an implementation

discussion

6/sep/5 khurshid abstract symbolic execution PASTE 18

abstract symbolic execution (dianju)

basically the same algorithm as before except that objects and
methods of supported classes are treated specially

• building constraints on symbolic objects based on predicates

• updating state of symbolic objects based on state modifiers

path conditions may represent rich constraints, e.g.,
string_0.equals(“hello”) and !set_0.contains(int_0)

dedicated constraint solvers, e.g., for strings, sets, and maps

• based on dedicated generators, e.g., for generating
mathematical objects that represent sets (or maps)

• can be focused to avoid/provide generation of certain
values, e.g., a set must contain the value null

TestEra [ASE’01] had direct support for objects encapsulating
primitives and arrays; GSE [TACAS’03] handled strings

6/sep/5 khurshid abstract symbolic execution PASTE 19

example benefits in test generation

consider generating objects of class Test where field s is
initialized to HashSet objects
class Test {

Set<Integer> s; // s != null
}

dianju does not require detailed class invariant
• e.g., s != null suffices; no need for invariant for HashSet

as an (extreme) example consider generating tests with 9 integers

• korat evaluates 3M candidates and generates 26K valid
structures, while dianju evaluates 29 = 512 candidates

• for systematic testing of library implementations, korat’s
approach is necessary; for client code, dianju’s suffices

6/sep/5 khurshid abstract symbolic execution PASTE 20

implementation via instrumentation

implementation has three basic components

• special libraries that implement basics of symbolic execution

• support for manipulation of symbolic objects

• constraint solvers, including use of off-the-shelf DP
implementations, e.g., CVC-lite [barrett+04]

• a bytecode instrumentation engine that allows using a
standard JVM to perform symbolic execution

• introduces new fields and methods; replaces declarations
and operations on supported types with special libraries

• uses BCEL [dahm, bcel.sourceforge.net], javassist[chiba98]

• a systematic backtracking mechanism

can be implemented using off-the-shelf model checkers

6/sep/5 khurshid abstract symbolic execution PASTE 21

instrumentation example

add shadow fields to keep track of field accesses
Entry left; boolean left_is_symbolic;

replace field accesses with invocations of new methods
this.left → this.left()
where
Entry left() {

if (left_is_symbolic) {
left_is_symbolic = false;
left = ...; // non-deterministic initialization

}
return left;

}
implemented using bytecode manipulation

6: getfield #18;//Field left:Ldianju/examples/TreeMap$Entry;
6: invokevirtual #252;//Method left:()Ldianju/examples/TreeMap$Entry;

6/sep/5 khurshid abstract symbolic execution PASTE 22

nondeterministic initialization

the class Explorer allows emulating nondeterministic choice

• choose method returns an integer value nondeterministically
Explorer.initialize();
do {

...
// i is systematically initialized to 0, 1, 2
int i = Explorer.choose(2);
...

} while (Explorer.incrementCounter());
simple stateless search, similar to VeriSoft [Godefroid97]

• bounded depth-first

6/sep/5 khurshid abstract symbolic execution PASTE 23

outline

motivation

traditional symbolic execution

• supporting references

supporting library classes

• towards an implementation

discussion

6/sep/5 khurshid abstract symbolic execution PASTE 24

how symbolic execution enables testing

black-box [ISSTA 2002]
• symbolically execute repOk; inputs for which it returns

true are desired test inputs

white-box/hybrid [TACAS 2003, ISSTA 2004]

• symbolically execute method under test; on field
initialization, take into account preconditions

6/sep/5 khurshid abstract symbolic execution PASTE 25

how symbolic execution enables repair

to repair structure s [SPIN 2005]

• execute s.repOk() and monitor the execution

• note the order in which fields of objects in s are
accessed

• when execution evaluates to false, backtrack and modify
value of the last field that was accessed

• modify the field value to a new (symbolic) value that is
not equal to the original value

• re-execute repOk

6/sep/5 khurshid abstract symbolic execution PASTE 26

role of assertions

efficient symbolic execution can unify software verification and
resilient computing via the use of assertions

• systems can be systematically tested before deployment as
well as ensured to behave as expected once deployed

applicability

• assertion-based techniques have minimal cost

• assertion describes what; test generator or repair routine
describes how

scalability

• it is possible to abstract away from irrelevant details

assertions are already immensely popular in hardware
verification; the time has also come that we realize the
potential benefits assertions have long offered in software

6/sep/5 khurshid abstract symbolic execution PASTE 27

?/!

khurshid@ece.utexas.edu

http://www.ece.utexas.edu/~khurshid

