
Invariants and State
in Testing and Formal Methods

Dick Hamlet

Portland State University

Supported by NSF CCR-0112654 and SFI E.T.S. Walton Fellowship

1/10

The Simplest Context

Meaning of a program with persistent state:

� input domain (think: STDIN)

� output domain (think: STDOUT)

� state space (think: permanent R/W file)

2/10

The Simplest Context

Meaning of a program with persistent state:

� input domain (think: STDIN)

� output domain (think: STDOUT)

� state space (think: permanent R/W file)

� � �

��
�

� �� � � �
� 	 �

2/10

State is Anomalous

On the one hand... On the other hand...

3/10

State is Anomalous

On the one hand... On the other hand...

States are ‘inputs’ that
influence program be-
havior

3/10

State is Anomalous

On the one hand... On the other hand...

States are ‘inputs’ that
influence program be-
havior

States are ‘outputs’
that only the program
creates

3/10

State is Anomalous

On the one hand... On the other hand...

States are ‘inputs’ that
influence program be-
havior

States are ‘outputs’
that only the program
creates

(bottom line)

A state variable is not independent
– sample at your own risk!

3/10

Testing Viewpoint

Stateless case:

Black-box program � .
Specification function � .
Test point � � fails if

� � �

�

� � �
.

Operational profile: Usage P.d.f. on .

4/10

Testing Viewpoint

Stateless case:

Black-box program � .
Specification function � .
Test point � � fails if

� � �

�

� � �
.

Operational profile: Usage P.d.f. on .

Persistent state:

Replace by sequences

�
�

�
��� �

�

.

� � �

. (Sequence profile)

4/10

Testing Viewpoint

Stateless case:

Black-box program � .
Specification function � .
Test point � � fails if

� � �

�

� � �
.

Operational profile: Usage P.d.f. on .

Persistent state:

Replace by sequences

�
�

�
��� �

�

.

� � �

. (Sequence profile)

State is only implicit — tester may sample ...(?)

4/10

Proving Viewpoint

Specification is a first-order formula in values
of program variables

� � �
� � � 	 � .

Type, Symbol Evaluation Variables (�
�

original)
Pre-cond before

�

Post-cond after

� �
�

� �
�

�
� 	

Assertion any

� �
�

� �
�

�
� 	

Invariant

�

before/after

�
�

�

5/10

Proving Viewpoint

Specification is a first-order formula in values
of program variables

� � �
� � � 	 � .

Type, Symbol Evaluation Variables (�
�

original)
Pre-cond before

�

Post-cond after

� �
�

� �
�

�
� 	

Assertion any

� �
�

� �
�

�
� 	

Invariant

�

before/after

�
�

�

State variable

�

is explicit – specification is
state-prescriptive...(?)

5/10

Invariants in Proofs

Room for confusion –
First-order formulas include implicit evaluation
times; Hoare logic hides quantification.

For example, correctness of program :

�� �
�

�
�

� �
�

� � � � � � � �
�

� �
�

�
� 	 ��

� �

6/10

Invariants in Proofs

Room for confusion –
First-order formulas include implicit evaluation
times; Hoare logic hides quantification.

For example, correctness of program :

�� �
�

�
�

� �
�

� � � � � � � �
�

� �
�

�
� 	 ��

� �
Invariant role filter out -impossible states.

Pre-condition role filter out inputs humans agree
not to use.

��
�

� � � � �
�

� � � �� � � � �
�

� �
�

�
� 	 �� �

6/10

Testing with Invariants

Stateless testing of to approximate proof:

Sample , and for each

�

such that
� � �

,
run and check

� �
� 	 �

. (TestEra)

7/10

Testing with Invariants

Stateless testing of to approximate proof:

Sample , and for each

�

such that
� � �

,
run and check

� �
� 	 �

. (TestEra)

With state it’s more complicated.

First try: Sample � . For each

� �
�

� �

such that

� � �
�

� � � �� �

, run and check� � �
�

� �
�

�
� 	 �

.

7/10

Testing with Invariants

Stateless testing of to approximate proof:

Sample , and for each

�

such that
� � �

,
run and check

� �
� 	 �

. (TestEra)

With state it’s more complicated.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

First try: Sample � . For each

� �
�

� �

such that

� � �
�

� � � �� �

, run and check� � �
�

� �
�

�
� 	 �

.

Better: Sample
�

, say

� � �
� � �� � � �
�

�, such
that

�� � ���
� ��
�

� � � � . Sample

� � � .
If

� �� � �
� � � , run on the sequence,

obtaining state sequence

� � �
�
	 �� � � �
�

� and
check

� � �
� �

�
�

� � � �
� �

�
��� � �

�
� � 	 �

.
7/10

Proof-, Testing-like Formulas

Let be a logical formula (invariant,
post-condition, etc.) applied to a program.

8/10

Proof-, Testing-like Formulas

Let be a logical formula (invariant,
post-condition, etc.) applied to a program.

is Proof-like: No test case can falsify .

is Testing-like: There is a low probability that
test-case sequences drawn according to a
given operational profile will falsify .

Since profiles are arbitrary human specifications,
proof-like and testing-like can be very different.

8/10

Proof-, Testing-like Formulas

Let be a logical formula (invariant,
post-condition, etc.) applied to a program.

is Proof-like: No test case can falsify .

is Testing-like: There is a low probability that
test-case sequences drawn according to a
given operational profile will falsify .

Since profiles are arbitrary human specifications,
proof-like and testing-like can be very different.

itself can be proof- or testing-like if it is obtained
using all possibilities, or only those from a profile.

8/10

Daikon, TestEra, Etc.

Daikon TestEra

Generates possible
pre- and
post-conditions from
given testset.

Generates bounded
exhaustive testset
(BET) from given
pre-condition; checks
given post-condition.

9/10

Daikon, TestEra, Etc.

Daikon TestEra

Generates possible
pre- and
post-conditions from
given testset.

Generates bounded
exhaustive testset
(BET) from given
pre-condition; checks
given post-condition.

+invariant +profile

9/10

Daikon, TestEra, Etc.

Daikon TestEra

Generates possible
pre- and
post-conditions from
given testset.

Generates bounded
exhaustive testset
(BET) from given
pre-condition; checks
given post-condition.

+invariant +profile

� �

From invariant and profile, generate BET;
check invariant as post-condition.
Use BET to generate possible post-condition.

9/10

Summary

� Testing needs to recognize state and
invariants

� Sample state with care!

� Drive sampling with invariants

10/10

Summary

� Testing needs to recognize state and
invariants

� Sample state with care!

� Drive sampling with invariants

� Invariants are inherently prescriptive

10/10

Summary

� Testing needs to recognize state and
invariants

� Sample state with care!

� Drive sampling with invariants

� Invariants are inherently prescriptive

� Operational profiles define ‘usage invariants’

10/10

Summary

� Testing needs to recognize state and
invariants

� Sample state with care!

� Drive sampling with invariants

� Invariants are inherently prescriptive

� Operational profiles define ‘usage invariants’

� Tools using first-order formulas with tests
need specification-based invariants

10/10

Summary

� Testing needs to recognize state and
invariants

� Sample state with care!

� Drive sampling with invariants

� Invariants are inherently prescriptive

� Operational profiles define ‘usage invariants’

� Tools using first-order formulas with tests
need specification-based invariants

10/10

	
	The Simplest Context
	State is Anomalous
	Testing Viewpoint
	Proving Viewpoint
	Invariants in Proofs
	Testing with Invariants
	Proof-, Testing-like Formulas
	Daikon, TestEra, Etc.
	Summary

