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The Simplest Context

Meaning of a program with persistent state:

� input domain (think: STDIN)

� output domain (think: STDOUT)

� state space (think: permanent R/W file)
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State is Anomalous

On the one hand... On the other hand...
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State is Anomalous

On the one hand... On the other hand...

States are ‘inputs’ that
influence program be-
havior

States are ‘outputs’
that only the program
creates

(bottom line)

A state variable is not independent
– sample at your own risk!
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Testing Viewpoint

Stateless case:

Black-box program � .
Specification function � .
Test point � � fails if
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Operational profile: Usage P.d.f. on .
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Persistent state:

Replace by sequences
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. (Sequence profile)

State is only implicit — tester may sample ...(?)
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Proving Viewpoint

Specification is a first-order formula in values
of program variables
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Pre-cond before
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State variable

�

is explicit – specification is
state-prescriptive...(?)
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Invariants in Proofs

Room for confusion –
First-order formulas include implicit evaluation
times; Hoare logic hides quantification.

For example, correctness of program :
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Invariant role filter out -impossible states.

Pre-condition role filter out inputs humans agree
not to use.
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Testing with Invariants

Stateless testing of to approximate proof:

Sample , and for each

�

such that
� � �

,
run and check

� �
� 	 �

. (TestEra)

7/10



Testing with Invariants

Stateless testing of to approximate proof:

Sample , and for each

�

such that
� � �

,
run and check

� �
� 	 �

. (TestEra)

With state it’s more complicated.

First try: Sample � . For each

� �
�

� �

such that

� � �
�

� � � �� �

, run and check� � �
�

� �
�

�
� 	 �

.

7/10



Testing with Invariants

Stateless testing of to approximate proof:

Sample , and for each

�

such that
� � �

,
run and check

� �
� 	 �

. (TestEra)

With state it’s more complicated.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

First try: Sample � . For each

� �
�

� �

such that

� � �
�

� � � �� �

, run and check� � �
�

� �
�

�
� 	 �

.

Better: Sample
�
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Proof-, Testing-like Formulas

Let be a logical formula (invariant,
post-condition, etc.) applied to a program.
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post-condition, etc.) applied to a program.

is Proof-like: No test case can falsify .

is Testing-like: There is a low probability that
test-case sequences drawn according to a
given operational profile will falsify .

Since profiles are arbitrary human specifications,
proof-like and testing-like can be very different.

itself can be proof- or testing-like if it is obtained
using all possibilities, or only those from a profile.
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Daikon, TestEra, Etc.

Daikon TestEra

Generates possible
pre- and
post-conditions from
given testset.

Generates bounded
exhaustive testset
(BET) from given
pre-condition; checks
given post-condition.

9/10



Daikon, TestEra, Etc.

Daikon TestEra

Generates possible
pre- and
post-conditions from
given testset.

Generates bounded
exhaustive testset
(BET) from given
pre-condition; checks
given post-condition.

+invariant +profile

9/10



Daikon, TestEra, Etc.

Daikon TestEra

Generates possible
pre- and
post-conditions from
given testset.

Generates bounded
exhaustive testset
(BET) from given
pre-condition; checks
given post-condition.

+invariant +profile

� �

From invariant and profile, generate BET;
check invariant as post-condition.
Use BET to generate possible post-condition.
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Summary

� Testing needs to recognize state and
invariants

� Sample state with care!

� Drive sampling with invariants
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