
A Concept Analysis Inspired Greedy
Algorithm for Test Suite

Minimization

Sriraman Tallam Neelam Gupta

The University of Arizona

2

Problem Statement

Given
• T = {t1, t2, …., tn} test cases
• R = {r1, r2, …., rm} testing requirements
• Testing requirements exercised by each ti (i = 1..n)

Find
• Minimum cardinality subset of T that exercises all the

requirements in R exercised by test cases in T.

(NP-Complete Problem - reduction from Set Cover)

3

Classical Greedy Heuristic for Set Cover

[V. Chvatal - 1979]

Based on the number of requirements covered by a test case.

• Pick test case ti that covers most
requirements.

• Throw out requirements covered
by ti.

• Repeat until all requirements
covered.

Minimized suite {t1, t2, t3, t4}

Optimal size suite {t2, t3, t4}

4

HGS Greedy Heuristic

[Harrold, Gupta, & Soffa - 1993]

Based on the number of test cases covering a requirement.

• Select test cases that occur in
Ti’s of cardinality 1. Mark all Ti’s
containing these test cases.

• Repeatedly select test case that
occurs in the maximum number of
Ti’s of cardinality 2. Mark all Ti’s
containing these test cases.

• Repeat the process for Ti’s of
cardinality 3, 4, …. MAX.

• In case of a tie among test cases,
while considering Ti’s of cardinality
m, test case that occurs in maximum
number of unmarked Ti’s of
cardinality m+1 is chosen.

T1 T2 T3 T4 T5

Minimized suite {t1, t2, t3}

Optimal size suite {t2, t3}

5

Using Implications Among Requirements

• [Agarwal - 1994]

Uses the notion of dominators and superblocks to
derive coverage implications among the basic
blocks with the goal of reducing coverage
requirements for testing a program.

• [Marre and Bertolino - 2003]

Exploits entitiy subsumption and use spanning trees
to determine reduced set of coverage entities such
that coverage of reduced set implies the coverage of
unreduced set.

6

Concept Analysis and Test Suite Minimization

• Test cases as objects and requirements as their attributes.
• Coverage for each test case is the relation between a object

and its attributes.

Concept LatticeContext
table

Concepts

t3 => t5

r6 => r3 and r4 => r1

7

Reduced Context Table, Concepts and Lattice

• Applying object reduction: t3 => t5.
• Applying attribute reductions: r6 => r3 & r4 => r1.

Reduced
Concept
Lattice

Reduced
Context
Table

Concepts

t3 => t1

8

Reduced Context Table, Concepts and Lattice

• Applying object reduction: t3 => t1.

Reduced
Context
Table

Reduced
Concept
Lattice

Concepts

Owner reductions select {t2, t3, t4} as the minimized suite which is

of optimal size.

9

Selecting Test Cases from Strongest Concepts

[Sampath, Mihaylov, Soutter, & Pollock - 2004]
• each web session as an object, URLs used in session as attributes
• select one test case from each next-to-bottom concept.

Concept LatticeContext
table

Concepts

Minimized suite {t1, t2, t3, t4}

t1 is redundant

10

Our Delayed-Greedy Algorithm
Input: Context table for given test suite T
Output: Test cases in minimized suite Tmin

While (Context Table != empty) do
While (heuristic not needed) and (Context table != empty) do

Remove rows oj for object implications oi => oj

Remove columns rj for attribute implications ri => rj

Add test cases corresponding to owner reductions to Tmin and
update Context Table.

Endwhile
If (Context Table != empty) Then Pick test case using greedy heuristic,

add it to Tmin and update the Context Table Endif

Endwhile
If (greedy heuristic never used) Then Tmin is of optimal size Endif
Return(Tmin)

11

Experiments

12

DelGreedy vs. Greedy, HGS, and SMSP

Number of times

(|Tmin| by Algo. - |Tmin| by DelGreedy) = 0,1, 2, 3…
Average Size Of

Minimized Suites

DelGreedy computed same
or smaller size suites for all
programs

13

Number of Optimal Size Suites

DelGreedy computed
same or more number
of optimal size solutions
than other algorithms

Time performance of
DelGreedy was
comparable to other
algorithms.

14

DelGreedy vs. Variants of DelGreedy

Number of times

(|Tmin| by Algo. - |Tmin| by DelGreedy) = 0,1, 2, 3…

15

DelGreedy vs. Variants of DelGreedy

Number of times

(|Tmin| by Algo. - |Tmin| by DelGreedy) = 0,1, 2, 3…

16

DelGreedy vs. Variants of DelGreedy

Observation: Obj.+Attr. always gives same size
solutions as DelGreedy because owner reductions
appear as attribute reductions.
Question: Why use owner reductions at all?
Answer: Owner reductions reduce the size of the
table sooner resulting in better overall time
performance of DelGreedy in comparison to
Obj.+Attr.
For example, in space DelGreedy took 662
milliseconds while Obj.+Attr. took 5516 milliseconds.

17

Conclusions

• A new greedy heuristic called Delayed-Greedy that is
designed to obtain same or more reduction in the test
suite size as compared to Classical Greedy heuristic.

• In our experiments, Delayed-Greedy also always
produced same or smaller size minimized suites than
HGS and SMSP.

• In our experiments, time performance of Delayed-
Greedy was comparable to other algorithms.

• Delayed-Greedy computed larger number of optimal
size solutions as compared to other algorithms.
Moreover, it was able to identify that the solution was
optimal in a large number of cases.

	Problem Statement
	Classical Greedy Heuristic for Set Cover
	HGS Greedy Heuristic
	Using Implications Among Requirements
	Concept Analysis and Test Suite Minimization
	Reduced Context Table, Concepts and Lattice
	Reduced Context Table, Concepts and Lattice
	Selecting Test Cases from Strongest Concepts
	Our Delayed-Greedy Algorithm
	Experiments
	DelGreedy vs. Greedy, HGS, and SMSP
	Number of Optimal Size Suites
	DelGreedy vs. Variants of DelGreedy
	DelGreedy vs. Variants of DelGreedy
	DelGreedy vs. Variants of DelGreedy
	Conclusions

