A Concept Analysis Inspired Greedy Algorithm for Test Suite Minimization

Sriraman Tallam Neelam Gupta

The University of Arizona

Problem Statement

Given

- $T = \{t_1, t_2, ..., t_n\}$ test cases
- $R = \{r_1, r_2, ..., r_m\}$ testing requirements
- Testing requirements exercised by each t_i (i = 1..n)

Find

 Minimum cardinality subset of T that exercises all the requirements in R exercised by test cases in T.

(NP-Complete Problem - reduction from Set Cover)

Classical Greedy Heuristic for Set Cover

[V. Chvatal - 1979]

Based on the number of requirements covered by a test case.

	r_1	r_2	r_3	r_4	r_5	r_6
$t_1 \\ t_2$	X X	Х	Х	х		
t_3		Х	x		Х	x
$t_{5}^{t_{4}}$			Λ		Х	Λ

Minimized suite $\{t_1, t_2, t_3, t_4\}$ Optimal size suite $\{t_2, t_3, t_4\}$

- Pick test case t_i that covers most requirements.
- Throw out requirements covered by t_i.
- Repeat until all requirements covered.

HGS Greedy Heuristic

[Harrold, Gupta, & Soffa - 1993]

Based on the number of test cases covering a requirement.

Optimal size suite $\{t_2, t_3\}$

- Select test cases that occur in T_i's of cardinality 1. Mark all T_i's containing these test cases.
- Repeatedly select test case that occurs in the maximum number of T_i's of cardinality 2. Mark all T_i's containing these test cases.
- Repeat the process for T_i's of cardinality 3, 4, MAX.
- In case of a tie among test cases, while considering T_i's of cardinality m, test case that occurs in maximum number of unmarked T_i's of cardinality m+1 is chosen.

Using Implications Among Requirements

• [Agarwal - 1994]

Uses the notion of dominators and superblocks to derive *coverage implications* among the basic blocks with the goal of reducing coverage requirements for testing a program.

• [Marre and Bertolino - 2003]

Exploits *entitiy subsumption* and use spanning trees to determine reduced set of coverage entities such that coverage of reduced set implies the coverage of unreduced set.

Concept Analysis and Test Suite Minimization

- Test cases as *objects* and requirements as their *attributes*.
- Coverage for each test case is the *relation* between a object and its attributes.

Reduced Context Table, Concepts and Lattice

- Applying object reduction: $t_3 => t_5$.
- Applying attribute reductions: $r_6 => r_3 \& r_4 => r_1$.

Reduced Context Table, Concepts and Lattice

• Applying *object reduction*: $t_3 => t_1$.

Owner reductions select $\{t_2, t_3, t_4\}$ as the minimized suite which is of optimal size.

Selecting Test Cases from Strongest Concepts

[Sampath, Mihaylov, Soutter, & Pollock - 2004]

- each web session as an object, URLs used in session as attributes
- select one test case from each next-to-bottom concept.

Our Delayed-Greedy Algorithm

Input: Context table for given test suite T Output: Test cases in minimized suite T_{min}

While (Context Table != empty) do While (heuristic not needed) and (Context table != empty) do Remove rows o_j for object implications $o_i \Rightarrow o_j$ Remove columns r_j for attribute implications $r_i \Rightarrow r_j$ Add test cases corresponding to owner reductions to T_{min} and update Context Table.

Endwhile

If (Context Table != empty) Then Pick test case using greedy heuristic, add it to T_{min} and update the Context Table Endif

Endwhile

If (greedy heuristic never used) Then T_{min} is of optimal size Endif Return(T_{min})

Prog.	loc.	Avg. un-minin	size of nized suite	Total No. of requirements				
		Branch Cov.	Def-use Cov.	Branches	Def-use pairs			
space	6218	533	539	1356	5179			
tcas	138	20	21	41	51			
print tokens	402	64	66	127	275			
print tokens2	483	77	79	154	235			
schedule	299	46	46	84	148			
replace	516	83	108	155	759			
totinfo	346	53	53	83	287			

DelGreedy vs. Greedy, HGS, and SMSP

Average Size Of

Number of times

 $(|T_{min}| \text{ by Algo. - } |T_{min}| \text{ by DelGreedy}) = 0,1, 2, 3...$

Minimized Suites

Program	Branch Coverage
space	123
tcas	4
print-tokens	6
print-tokens2	4
schedule	2
replace	9
totinfo	2

DelGreedy computed same or smaller size suites for all programs

		freau	mev of	l (size	ofTm	in by	Alga.	- size (√ Tmi	in by I)elGre	edv)
Prog.	Algo.	<i>Jreq</i>	inc, c	(B	anch (overa	ee Sur	tes			
rrog.	rugo	0		2	3	4	5	.ge 5a	7	8	9	<u> </u>
		0	1	2	5	٣	5	0	/	6	2	23
space	Greedy	0	4	10	20	22	22	12	8	2	-	-
	HGS	4	19	22	18	18	10	5	3	1	-	-
	SMSP	0	0	0	0	0	0	0	0	0	0	100
tcas	Greedy	57	41	2	-	-	-	-	-	-	-	-
	HGS	58	36	6	-	-	-	-	-	-	-	-
	SMSP	0	0	0	0	5	6	11	10	13	18	37
print	Greedy	82	17	1	-	-	-	-	-	-	-	-
tokens	HGS	43	36	15	4	2	-	-	-	-	-	-
	SMSP	0	0	0	0	0	0	2	3	2	2	91
print	Greedy	86	14	-	-	-	-	-	-	-	-	-
tokens2	HGS	49	44	17	0	-	-	-	-	-	-	-
	SMSP	0	0	0	2	1	0	0	1	1	1	94
schedule	Greedy	100	0	-	-	-	-	-	-	-	-	-
	HGS	37	48	14	1	-	-	-	-	-	-	-
	SMSP	99	0	1	-	-	-	-	-	-	-	-
replace	Greedy	49	45	4	2	-	-	-	-	-	-	-
	HGS	33	37	27	- 3	-	-	-	-	-	-	-
	SMSP	0	0	0	0	0	0	0	0	0	1	99
totinfo	Greedy	84	16	-	-	-	-	-	-	-	-	-
	HGS	27	47	20	5	1	-	-	-	-	-	-
	SMSP	1	2	8	12	20	12	17	12	9	4	3

Number of Optimal Size Suites

Prog.	Algo.	Br	anch Co	werage	e Suites
		NO	OPT	UN	Time
					(msec)
space	DelGreedy	-	92	8	259.876
	Greedy	100	0	0	266.012
	HGS	96	4	0	280.213
	SMSP	100	0	0	-
tcas	DelGreedy	-	68	32	4.294
	Greedy	43	37	20	3.876
	HGS	42	39	19	4.031
	SMSP	100	0	0	-
print	DelGreedy	-	71	29	6.295
tokens	Greedy	18	62	20	6.163
	HGS	57	35	8	5.967
	SMSP	100	0	0	-
print	DelGreedy	-	84	16	7.051
tokens2	Greedy	14	70	16	6.820
	HGS	51	29	20	7.128
	SMSP	100	0	0	-
schedule	DelGreedy	-	99	1	5.446
	Greedy	0	99	1	5.212
	HGS	63	36	1	5.863
	SMSP	1	99	0	-
replace	DelGreedy	-	53	47	8.510
	Greedy	51	25	24	7.512
	HGS	67	17	16	7.763
	SMSP	100	0	0	-
totinfo	DelGreedy	-	46	-54	5.483
	Greedy	16	32	52	5.318
	HGS	73	11	16	5.565
	SMSP	99	1	0	-

DelGreedy computed same or more number of optimal size solutions than other algorithms

Time performance of DelGreedy was comparable to other algorithms.

DelGreedy vs. Variants of DelGreedy

Number of times

($|T_{min}|$ by Algo. - $|T_{min}|$ by DelGreedy) = 0,1, 2, 3...

	frequency of (size of Tmin by Algo size of Tmin by DelGreed								dy)				
Prog.	Algo.				I	Branch	Cove	rage S	Suites				
		0	1	2	3	4	5	6	7	8	9	10	>10
space	Obj. + Attr.	100	0	0	0	0	0	0	0	0	0	0	0
	Own. + Attr.	79	19	1	1	0	0	0	0	0	0	0	0
	Own. + Obj.	99	1	0	0	0	0	0	0	0	0	0	0
	Own.	71	27	2	0	0	0	0	0	0	0	0	0
	Obj.	4	9	25	34	17	4	6	1	0	0	0	0
	Attr.	79	19	1	1	0	0	0	0	0	0	0	0
tcas	Obj. + Attr.	100	0	0	0	0	0	0	0	0	0	0	0
	Own. + Attr.	97	3	0	0	0	0	0	0	0	0	0	0
	Own. + Obj.	92	8	0	0	0	0	0	0	0	0	0	0
	Own.	86	14	0	0	0	0	0	0	0	0	0	0
	Obj.	67	33	0	0	0	0	0	0	0	0	0	0
	Attr.	97	3	0	0	0	0	0	0	0	0	0	0
pnnt	Obj. + Attr.	100	0	0	0	0	0	0	0	0	0	0	0
tokens	Own. + Attr.	95	5	0	0	0	0	0	0	0	0	0	0
	Own. + Obj.	99	1	0	0	0	0	0	0	0	0	0	0
	Own.	92	8	0	0	0	0	0	0	0	0	0	0
	Obj.	88	12	0	0	0	0	0	0	0	0	0	0
	Attr.	95	5	0	0	0	0	0	0	0	0	0	0
print	Obj. + Attr.	100	0	0	0	0	0	0	0	0	0	0	0
tokens2	Own. + Attr.	100	0	0	0	0	0	0	0	0	0	0	0
	Own. + Obj.	100	0	0	0	0	0	0	0	0	0	0	0
	Own.	100	0	0	0	0	0	0	0	0	0	0	0
	Obj.	96	4	0	0	0	0	0	0	0	0	0	0
	Attr.	100	0	0	0	0	0	0	0	0	0	0	0

DelGreedy vs. Variants of DelGreedy

Number of times

($|T_{min}|$ by Algo. - $|T_{min}|$ by DelGreedy) = 0,1, 2, 3...

		frequency of (size of Tmin by Algo size of Tmin by DelGreedy)											
Prog.	Algo.				E	Branch	Cove	rage S	Suites				
		0	1	2	3	4	5	6	7	8	9	10	>10
schedule	Obj. + Attr.	100	0	0	0	0	0	0	0	0	0	0	0
	Own. + Attr.	100	0	0	0	0	0	0	0	0	0	0	0
	Own. + Obj.	100	0	0	0	0	0	0	0	0	0	0	0
	Own.	100	0	0	0	0	0	0	0	0	0	0	0
	Obj.	100	0	0	0	0	0	0	0	0	0	0	0
	Attr.	100	0	0	0	0	0	0	0	0	0	0	0
replace	Obj. + Attr.	100	0	0	0	0	0	0	0	0	0	0	0
	Own. + Attr.	95	5	0	0	0	0	0	0	0	0	0	0
	Own. + Obj.	94	6	0	0	0	0	0	0	0	0	0	0
	Own.	92	8	0	0	0	0	0	0	0	0	0	0
	Obj.	61	38	1	0	0	0	0	0	0	0	0	0
	Attr.	95	5	0	0	0	0	0	0	0	0	0	0
totinfo	Obj. + Attr.	100	0	0	0	0	0	0	0	0	0	0	0
	Own. + Attr.	97	3	0	0	0	0	0	0	0	0	0	0
	Own. + Obj.	91	9	0	0	0	0	0	0	0	0	0	0
	Own.	88	12	0	0	0	0	0	0	0	0	0	0
	Obj.	88	12	0	0	0	0	0	0	0	0	0	0
	Attr.	97	3	0	0	0	0	0	0	0	0	0	0

Observation: Obj.+Attr. always gives same size solutions as DelGreedy because owner reductions appear as attribute reductions.

Question: Why use owner reductions at all?

Answer: Owner reductions reduce the size of the table sooner resulting in better overall time performance of DelGreedy in comparison to Obj.+Attr.

For example, in *space* DelGreedy took 662 milliseconds while Obj.+Attr. took 5516 milliseconds.

Conclusions

- A new greedy heuristic called Delayed-Greedy that is designed to obtain same or more reduction in the test suite size as compared to Classical Greedy heuristic.
- In our experiments, Delayed-Greedy also always produced same or smaller size minimized suites than HGS and SMSP.
- In our experiments, time performance of Delayed-Greedy was comparable to other algorithms.
- Delayed-Greedy computed larger number of optimal size solutions as compared to other algorithms.
 Moreover, it was able to identify that the solution was optimal in a large number of cases.

