
The Chaining Approach for Software Test
Data Generation

ROGER FERGUSON

Lawrence Technological University

and

BOGDAN KOREL

Illinois Institute of

Software testing is very Iahor intensive and expensive and accounts for a significant portion of

software system development cost. If the testing process could he automated, the cost of

develaplng software could be significantly reduced, Test data generation in program testing is

the proc(,ss of identifying a set of test data that satisfies a selected testing criterion, such as

statement coverage and branch coverage. In this article we present a chain~ng approach for

automated s.oftlvarc test data generation which builds on the current theory of execution-

oriented test data gcn[,ration In the chaining approach, test data are derived based on the

actual execwtinn of the program under test, For many programs, the execution of the selected

statement may require prior execution of some other statements. The existing methods of test

data generstioo may not efficiently generate test data for these types of programs because

they only use control flow information of a program during the search process. The chaining
~pproach US(>Sdata dependence analysis to guide the search process, i.e., data dependence
snaly~l> autt)maticall~ identifies statements that affect the execution of the selected state-
ment ‘f’h(,chaining approach uses these statements to form a sequence of statements that is
to be executed prior to the execution of the selected statement. The experiments have shown

that tht, chaining approach may significantly improve the chances of finding test data as

compared to the existing methods of automated test data generation.

(’categories and Subject T)escr]ptor-s: 1),2.5 [Software Engineering]: Testing and Debug-
ging—test (/0/([gerlernt!(>n

(;eneral Terms: Experimentation, Measurement, Performance

.Additional Key Words :ind Phrases: Data dependency, dynamic analysis, heuristics, program

execution

This research was partially supported by the NSF grant CCR-9308895.
Authors’ addresses: R. Ferguson, Department of Computer Science. Lawrence Technological
[University, 2100() West Ten Mile Road, Soutl-ifielcl, MI 48075-1058; B. Korel, Department of

Computer Science, Illinois Jnstitute of Technology, 10 West 5’lst Street, Chicago, IL 60616;

email. korcl@charlie. iit. edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use

IS granted without fee provided that the copies are not made or distributed for profit or

commercial advantage. the copyright notice, the title of the publication, and its date appear,

and notice }s given that copying is by permission of the ACM, Inc To copy otherwise, to

republish, to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee.

01996 ACM 1049-331 X/96/0100 –0063 $03.50

A(’M ‘J’r;?.wrt,o.. [m .Scd’tware E.g, nwnng and Methodoh, #v.V,,] .5 .?J,, 1. .J:,nu.~r}19.96 Pagr$ 6,3-86

64 ● Roger Ferguson and Bogdan Korei

1. INTRODUCTION

Software testing is a very labor intensive and hence very expensive process.
It can account for 50% of the total cost of software development [Alberts
1976; DeMillo et al. 1987; Myers 1979]. If the process of testing could be
automated [Ince 1987; Jessop et al. 19761, significant reductions in the cost
of software development could be achieved. Data generation for software
testing is the process of identifying program inputs which satisfy selected
testing criteria. Structural test coverage criteria require that certain pro-
gram elements be evaluated (e.g., statement coverage, branch coverage,
data flow coverage, etc.). After initial testing, programmers face the prob-
lem of finding additional test data to evaluate program elements not
covered, e.g., statements not yet covered. Finding input test data to
evaluate those remaining elements requires a good understanding of the
program under test from programmers and can be very labor intensive and
expensive, increasing the overall cost of the software. This is because
programmers do not always work on their own code; for example, during
maintenance programmers modify someone else’s programs, which are
often poorly, or only partially, understood.

The test data generation problem in this article is defined as follows: for
a given program element, find a program input on which this element is
executed. In this article, we will concentrate on finding test data for
program statements. However, the approach is also applicable for branch
testing and data flow testing. A test data generator is a tool which assists a
programmer in the generation of test data for the program. There are three
types of test data generators that could be applied for the test data
generation problem: random test data generators [Bird and Munoz 1982],
path-oriented test data generators [Boyer et al. 1975; Clarke 1976; Korel
1990a; Ramamoorthy et al. 1976], and goal-oriented test data generators
[Korel 1990b; 19921. The path-oriented approach is the process of selecting
a program path(s) to the selected statement and then generating input data
for that path. The path to be tested can be generated automatically, or it
can be provided by the user. The goal-oriented approach is the process of
generating input test data to execute the selected statement irrespective of
the path taken, i.e., the path selection stage is eliminated.

For some programs, the execution of the selected statement may require
prior execution of some other statements in the program. Our experience
with the path-oriented approach and goal-oriented approach has shown
that for these types of programs the control flow graph is not sufficient to
guide the searching process to generate input data to reach the selected
statement. In this article, we extend the goal-oriented approach of test data
generation [Korel 1990b; 1992]. Our new approach, referred to as the
chaining approach, uses data dependencies to guide the search process—
i.e., data dependence analysis is used to identify statements that affect
execution of the selected statement. By requiring that these statements be
executed prior to reaching the selected statement, the chances of executing
the selected statement may be increased. Our experiments have shown that

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996,

The Chaining Approach to Software Test Data Generation . 65

I
s

program sample;
var 1
target,i : integer;
a, b: army [1.. 10] of inleger; 2
fa. lh: boolean;
twgin A?
1
~

3

4
5

6
7
N

9
10
II
12

13

14
1.5

16
17
18

input (a, b,uwgct);
i:=l.

6
4

fa := false;
ih := false:

m

5
\vhile (i s 10) do begin

if (a[i] = target) then
fa := [rue; 6

i:=i+l; 7

end; 8

ii (fa = true) then begin
i:=];

R

9

t-b := lrue;
to

while (i s 1()) do begin
11

if (h[i] # target) then
fh := False;

i:=i+l

end:
end;
if (th = true) then

writcln (‘message l‘)
else writcln (’message 2’);

end.

Q

17
18

c

Fig. 1 A sample program and the corresponding flow graph.

the chaining approach may significantly increase the chances of finding
test data as compared to the existing methods of test data generation.

The organization of this article is as follows. Section 2 introduces basic
concepts and notations. Section 3 overviews existing test data generation
techniques. Section 4 presents the chaining approach. Section 5 describes
the search process. Section 6 presents the results of an experimental study,
and Section 7 discusses future research.

2. BASIC CONCEPTS

A program structure is represented by a graph model. A control jlolLI graph
of a program is a directed graph C = (N, A, s, e) where ~1) N is a set of
nodes, (2) A is a binary relation on N (a subset of N x N), referred to as a
set of edges, and (3} s and e are, respectively, unique entry and unique exit
nodes, s, e E N. A node corresponds to an assignment statement, an input
or output statement, or the predicate of a conditional or loop statement, in
which case it is called a test node. An edge (n, m) E A corresponds to a

ACM TransactIons on Software Eng)neerlng and Methodology. Vol. 5. NO 1, .January 1996

66 ● Roger Ferguson and Bogdan Korel

possible transfer of control from node n to node m. An edge (n, m) is called
a branch if n is a test node. Figure 1 shows a control flow graph of a sample
program.

Each branch in the control flow graph can be labeled by a predicate,
referred to as a branch predicate, describing the conditions under which the
branch will be traversed. For example, in the program of Figure 1, branch
(6,7) is labeled “a[i] = target.”

An input variable of a program is a variable which appears in an input
statement, e.g., input(x). Let 1 = (xl, Xz, . . . , x~) be a vector of input
variables of the program. The domain DX, of input variable xi is a set of all
values which xi can hold. By the domain D of the program we mean a cross
product, D = D., X Dz, x . . . x DXn, where each DX, is the domain for input
variable xi. A single point x in the n-dimensional input space D, x G D, is
referred to as a program input x.

A path P in a control flow graph from node nh, to node nh, is a sequence
P = (nh,, n~,, . . . , nk,) of nodes, such that for all i, 1 S i < q, (nh,, nh,+,) E A.
For example, P = (3, 4, 5, 6, 8, 5, 9) is a path in the control flow graph of
Figure 1 from node 3 to node 9. A path is feasible if there exists program
input on which the path is traversed during program execution; otherwise
the path is infeasible.

A use of variable v is a node in which a variable v is referenced. In
particular, a use can be: (1) an assignment statement, (2) an output
statement, (3) the predicate of a conditional or loop statement. A definition
of variable v is a node which assigns a value to variable v. In particular, a
definition of variable v can be: (1) an assignment statement, (2) an input
statement. For example, node 5 is a use of variable i, and node 7 is a
definition of variable fa in the program of Figure 1. Let U(n) be a set of
variables whose values are used at node n, and let D(n) be a set of variables
whose values are defined at n.

A definition-clear path from nh, to nk, with respect to variable v is a path

(nk,, nk,, nkq) in the control flow graph that starts at node nk, and ends
at node nh~ and for all 1 < i < q, u @ D(nkt), i.e., variable v is not modified
along the path. Let S be a set of variables. A definition-clear path from nk,
to nh with respect to S is a path (nh,, nh,, . . . , nk~) in the control flow graph
whic~ starts at node nk, and ends at node nh and for all i, 1 < i < q,
(D(nh,) rl S) = 0—i.e., none of the variables fro”m S are modified along the
path. For example, path (11, 12, 13, 15, 12, 16) is a definition-clear path
with respect to a set of variables {fa, P}.

Control dependence captures the dependence between test nodes and
nodes that have been chosen to be executed by these test nodes. The control
dependency is defined as [Ferrante et al. 19871: let Y and Z be two nodes
and (Y, X) be a branch of Y. Node Z postdominates node Y iff Z is on every
path from Y to the exit node e. Node Z postdominates branch (Y, X) iff Z is
on every path from Y to the program exit node e through branch (Y, X). Z is
control dependent on Y iff Z postdominates one of the branches of Y and Z
does not postdominate Y. For example, in the program of Figure 1, node 7 is

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996

The Chaining Approach to Software Test Data Generation . 67

control dependent on node 6 because node 7 postdominates branch {6, 7),
and node 7 does not postdominate node 6.

3. EXISTING METHODS OF TEST DATA GENERATION

This section overviews the existing methods of automated test data gener-
ation, The test data generation problem in this article is defined as follows.

Given node g (referred to as the goal node) in a program, the objective is
to find program input x on which node g will be executed.

There are three types of test data generation methods that could be
applied for this problem: random test data generation [Bird and Munoz
1982], path-oriented test data generation [Boyer et al. 1975; Clarke 1978;
Korel 1990a; Ramamoorthy et al. 1976], and goal-oriented test data gener-
ation IKorel 1990b; 1992].

The path-oriented approach reduces the problem of test data generation
to a “path” problem—i. e., a program path is selected (automatically or by
the user ~which leads to node g. Then program input x that results in the
execution of the selected path is derived. If the program input is not found
for the selected path, a different path is selected which also leads to node g.
This process is repeated until a program path is selected for which a
program input x is found or when the designated resources have been
exhausted, e.g., search time limit.

Two methods have been proposed to find program input x to execute the
selected path P—namely, symbolic execution [Boyer et al. 1975; Clarke
1975; Howden 1977] and execution-oriented test data generation IKorel
1990a]. The symbolic execution is a program analysis method that gener-
ates an algebraic expression over the symbolic input values—i. e., symbolic
execution generates path constraints—which consist of a set of equalities
and inequalities on the program’s input variables. These constraints must
be satisfied for path P to be traversed. A number of algorithms have been
used for solving these constraints [Clarke 1976; Ramamoorthy et al. 1976].
Symbolic execution is a promising approach; however, there are several
problems that still need to be overcome. These weaknesses include diffi-
culty with dynamic data structures, arrays, and the handling of procedures.

The alternative approach, referred to as an execution-oriented approach
of test data generation, for finding program input for the selected path was
proposed in Korel 11990a]. This approach is based on actual execution of a
program under test and function minimization methods. In this approach,
the goal of finding a program input is achieved by solving a sequence of
subgoals, where function minimization methods [Gill and Murray 1974;
Glass and Cooper 1965] are used to solve these subgoals. Since the
approach is based on the actual execution, values of array indexes and
pointers are known at each step of program execution, and this approach
exploits this information in order to overcome some limitations of the
methods based on symbolic execution.

As pointed out by DeMillo and Ince [DeMillo et al. 1987; Ince 19871, there
are some weaknesses with the existing path-oriented test data generators;

A(’M Transt+ct]ons on Software Engineering and Methodology, Vol. 5, NI, 1, January 1996

68 . Roger Ferguson and Bogdan Korel

those weaknesses are mainly associated with the path selection process.
For the path selection process, the disadvantage of not knowing if the
selected path is feasible makes the path-oriented approach of limited use
for certain classes of programs. Significant computational effort can be
wasted in analyzing these infeasible paths that are generated. One attempt
to alleviate the infeasibility problem was reported by Clarke [19791. In this
technique, symbolic execution [Clarke 1976; Howden 1977] is used to
detect, if possible, path infeasibility in early stages of path selection.
Although this technique can alleviate the infeasibility problem, the test
data generator can often fail to find input data to traverse the selected path
because of undetected in feasibility or the failure of the generator to find
input data due to the weaknesses of symbolic execution.

The path-oriented approach is probably best suited for programs with a
relatively small number of paths to reach the selected node. However, for
programs with complex control structures and usually an infinite number of
paths to reach the selected node, the path-oriented approach may be ineffi-
cient because only control information is used in the process of path selection.

Other research in the path-oriented approach was offered by DeMillo and
Offutt [1991; 1993] as part of their constraint-based testing. This is a
fault-based method that uses algebraic constraints to generate test cases
designed to find particular types of faults. The approach creates a path
expression constraint for each statement in the program which describes
all paths up to, but not including loops, that statement. Each path to the
statement is represented as a disjunctive clause. Symbolic evaluation is
used to represent constraints, and heuristics methods are used to solve
these constraints. The constraint-based approach falls into the category of
path-oriented methods of test data generation. As with other path-oriented
approaches, this approach may have problems with selection of feasible
paths for programs with complex control structures because this approach
is not able to identify statements that affect the execution of the selected
statement. Additionally, since only the first two array elements are treated
as separate variables [DeMillo and Offutt 19931 during symbolic evalua-
tion, the constraint-based approach may not efficiently generate test cases
for certain classes of programs with arrays.

The goal-oriented approach of test data generation [Korel 1990b; 1992]
differs from the path-oriented test data generation in that the path selection
stage is eliminated. The approach starts by initially executing a program with
arbitrary program input. When the program is executed, the program execu-
tion flow is monitored. During the program execution, the search procedure
decides whether the execution should continue through the current branch or
whether an alternative branch should be taken because, for example, the
currently executed branch does not lead to the execution of the selected node.
If an undesirable execution flow at the current branch is observed, then a
real-valued function is associated with branch. Function minimization search
algorithms are used to find automatically new input that will change the flow
execution at this branch. The general idea of the goal-oriented approach is to
concentrate only on branches which “influence” the execution of the goal

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

The Chaining Approach to Software Test Data Generation . 69

node g and to ignore branches which in no way influence the execution of
node g. For instance, branch (5, 6) in Figure 1 does not influence the
execution of node 11 because, assuming termination of loop 5–8, branch
(5, 9) will always be executed. Therefore any execution within the loop is
allowed, However, branch (9, 16) is an essential branch with respect to
node 11 because if this branch is executed then node 11 cannot be reached.
If branch (9, 16} is executed then the search procedure suspends the
program execution and tries to identify a new input for which the alterna-
tive branch (9, 10 I is taken. All branches in a program are classified into
different categories. The search procedure [Korel 1990b; 1992 I uses this
classification during program execution to continue or to suspend the
execution at the current branch. This branch classification [Korel 1990b;
1992] is based solely on flow graph information, and it is determined prior
to the program execution.

4. GENERAL DESCRIPTION OF THE CHAINING APPROACH

In this section, we describe a new test data generation approach referred to
as the chaining approach. The approach has been presented for the node
problem; however, this approach can be used for other types of problems,
e,g,, the branch problem and the definition-use chain problem [Laski and
Korel 1983; Rapps and Weyuker 19851. The chaining approach is an
extension of the goal-oriented approach [Korel 1990b; 19921. The main
limitation of the path- and goal-oriented test data generation methods is
that only the control flow graph is used to guide the search process. This
limited amount of information may make some nodes very difficult to
reach. For example, prior to reaching node 17 in the program of Figure 1,
node 7 must be executed, and node 14 cannot be executed. The path-
oriented method is not able to identify that node 7 affects execution of node
17 and that node 14 should be omitted during execution, because only a
control flow graph is used in the process of path selection. As a result, the
path-oriented approach may generate a large number of paths before the
“right” path is selected, because the path selection process “blindly” gener-
ates paths to node 17. Similarly, the goal-oriented approach identifies that
all nodes from 1 to 15 do not affect the execution of node 17. As a result, the
goal-oriented approach, in most cases, will fail to reach node 17 (notice that
only when one of the elements of array a equals the value of tar-get and all
elements of array b equal to the value of target will node 17 be executed).

The chaining approach uses data dependency analysis to guide the test
data generation process. The basic idea of the chaining approach is to
identify a sequence of nodes to be executed prior to execution of node g. The
chaining approach uses the following data dependency concepts to identify
such a sequence:

Let p be a node and r a variable used in p. By a last definition n of
variable L’ at node p we mean a node which satisfies the following condi-
tions: (1 } z E D(rr), (2) LIE U(p), and (3) there exists a definition-clear path
of t from n to p, The last definition is a node that assigns a value to

A(’NI ‘fransactlnns on Software Engineering and Methodology. Vol. .5, NI, 1. .January 1996

70 ● Roger Ferguson and Bogdan Korel

variable u, and this value may potentially be used by node p. For example,
node 4 is a last definition of variable B at node 16 in Figure 1. By a set of
all last definitions of node p, represented by LD(P), we mean a set of all last
definitions of all variables used in p. For example, the set of all last
definitions of node 16 in the program of Figure 1 is LD(16) = {4, 11, 14).

The chaining approach starts by executing a program for an arbitrary
program input x. During program execution for each executed branch (p, q),
the search process, which is described in more detail in Section 5, decides
whether the execution should continue through this branch or whether an
alternative branch should be taken (because, for instance, the current
branch does not lead to goal node g). If an undesirable execution flow at the
current branch (p, q) is observed, then a real-valued function (defined in
Section 5) is associated with this branch. Function minimization search
algorithms are used to find automatically new input that will change the
flow execution at this branch. If, at this point, the search process cannot
find program input x to change the flow of execution at branch (p, q), then
the chaining approach attempts to alter the flow at node p by identifying
nodes that have to be executed prior to reaching node p. As a result, the
alternative branch at p may be executed. It is important to note that the
goal-oriented approach would have declared failure of the search at this
point [Korel 1990b; 19921. We will refer to node p of the branch (p, q) as a
problem node, The chaining approach finds a set LD(p) of last definitions of
all variables used at problem node p. By requiring that these nodes be
executed prior to the execution of problem node p, the chances of altering the
flow execution at problem node p may be increased. Such a sequence of nodes
to be executed is referred to as an event sequence and is used to control the
execution of the program by the chaining approach.

Example 4.1. Suppose that node 11 is a goal node in the program of Figure
1. The chaining approach starts by executing the program for an arbitrary
input x, e.g., a = (27, 58, 78, 4, 89, 21, 54, 85, 35, 96), b = (45, 99, 6, 45, 2, 63,
28, 15, 94, 22), target = 56. At node 9 the flow of execution proceeds down the
false branch (9, 16). At this point execution is suspended, since branch (9, 16)
does not lead to node 11. The search process tries to identify a new program
input to change the flow of control at node 9. Assuming the search process
cannot find a new program input x to alter the flow at node 9, the chaining
approach identifies node 9 as a problem node and finds a set of last definitions
of node 9, LD(9) = {3, 71, to determine nodes that are to be executed prior to
reaching problem node 9. Since node 3 already was executed before node 9,
node 7 is selected. The chaining approach requires now that node 7 is reached
first, then problem node 9, and finally node 11. In order to reach node 7, any
path from the start nodes to node 7 can be traversed; after node 7 is reached,
only those paths can be traversed that do not modify variable fa before node 9
is reached. This sequence of nodes will cause the change of execution at node 9
and the execution of node 11. The following program input will cause that the
specified sequence of nodes is traversed: a = (56, 58, 78, 4, 89, 21, 54, 85, 35,
96), b = (45, 99, 6, 45, 2, 63, 28, 15, 94, 22), target = 56. Using the last

ACM TransactIons on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

The Chaining Approach to Software Test Data Generation . 71

@*@J&@& ~~~~~3_..@
E= <(s,S IL (n2,S2),..,, (nk,sk), (M+.

Fig, ~ A graphical representation of event sequence E.

definitions of problem nodes to identify a sequence of node executions may

significantly increase the chances of finding program inputs to execute the

selected nodes. For this particular example the chaining approach will always
find input data to execute node 11 regardless of the initial values of input
variables.

4.1 AN EVENT SEQUENCE

In this section we present the concept of an event sequence. Event se-
quences are generated by the chaining approach and then used to “guide”
the execution of the program during the search process. Informally, by an
elent we mean the fact that a node is executed. Similarly, an er,lent sequence
refers to a sequence of executed nodes. More formally:

—An vL1ent sequence E is a sequence (e ~, ez, . . . , eh) of events where each
e[f’nt is a tuple e, = (~2i, Si) where n, E N is a node and S, a set of
variables referred to as a constraint set. For every two adjacent events,
e, = [n,. S,) and e,, , = ~nl+~, S, +~) there exists a definition-clear path
with respect to .!, from n, to n, , ~.

The event sequence (also referred to as a chain) identifies a sequence of nodes
that are to be executed during program execution. A constraint set associated
with each event e, z [n,, S,) identifies the constraints imposed on the execution
from a given node n, to node n,. ~ of the next event e, , , in the event sequence.
It is required that all variables in the constraint set are not modified during
program execution between node n{ and node n, , ,. For example, the following
is an event sequence E = ([s, 0), (7, {fa}), (9, 0}, (11, 0)) in the program of
Figure 1. There are four events: el = (s, @), ez = (7, {fa}), e,] = (9, !3), and e4 =
(11, (3). This event sequence requires that the start node s is first executed,
followed by the execution of node 7, followed by the execution of node 9, and
finally execution of node 11. A constraint is imposed on the execution between
nodes 7 and 9; it is required that the value of fa is not modified during
program execution between nodes 7 and 9. However, there are no constraints
imposed on the execution between nodes s and 7 and between nodes 9 and
1 I—i.e., the execution can follow any path between nodess and 7 and between
nodes 9 and 11. Graphical representation of a “general” event sequence is
shown in Figure 2. A graphical representation of the event sequence E = ((s,
~~), ~7, {fal, (9, Q), ~11, @)) for the program of Figure 1 is shown in Figure 3.

An event sequence is feasible if there exists a program input on which the
event sequence is traversed. For example, the event sequence E = ((s, 0),
(7, {fai), (9, ZI), (11, @)) is feasible because this sequence will be traversed
during program execution on the following input: a = (56, 58, 78, 4, 89, 21,

AcM Tran.actions on Software Engineering and Methodology. 1’o1 FI.No. 1. January l$J9~

72 ● Roger Ferguson and Bogdan Korel

Fig.3. Agraphical representation ofeventsequence E= ((s, 0), (7,1fa}), (9,0), (ll,0)).

54, 85, 35, 96), b = (45, 99, 6, 45, 2, 63, 28, 15, 94, 22), target = 56. On the
other hand, event sequence ((s, @), (3, {~al), (9, @), (11, 0)) is not feasible
because there is no input to traverse this sequence.

4.2 GENERATING EVENT SEQUENCES

In this section we describe the process of generating event sequences
during the search process. Initially, for the given goal node g, the following
initial event sequence is generated: E. = ((s, O),(g, 0)). Suppose that
during the search process a problem node p is encountered—i.e., a test node
at which the execution should be changed, but the searching procedure is not
able to find a program input that will alter execution at p (the search process
is described in Section 5). In this case, the chaining approach finds a set of last
definitions LD(p) of problem node p, LD(p) = (dl, dz, d~). This set is used
to generate N event sequences. Each newly generated event sequence contains
an event associated with problem node p and an event associated with last
definition dI. The following event sequences are generated:

For
one

E,= ((S, 0), (d,, D(dJ), (P, ~), (g, 0))

Ez = ((S, 0), (dz, D(dJ)> (P, @), (g, 0))

. . .

EN= ((S, 0), (drv, D(dJ), (P> 0), (g, 0)}

the sake of presentation we assume that each definition modifies only
variable. As a result, a constraint set associated with each last

definition di in Ei is a one-element set D(di) that requires that a variable
defined in di is not modified between di and p.

The chaining approach selects one of the event sequences from the
list—for example, El—and tries to find program input on which event
sequence El is traversed. If during this process a new problem node p ~ is
encountered, e.g., between the start node s and dl, the chaining approach
determines a set of last definitions for p ~, LD(p ~) = (fl, fz, fM), and
generates M new event sequences: El,, El,, E1~. These event sequences
are constructed from El by inserting two events to El: one related top ~ and
the second related to L. The following event sequences are generated:

E], = ((S, 0), (fl, D(~l)), (p,, 0), (all, D(dl)), (P, @), (g> 0)}

. . .

E,M= ((S, @), (fw D(fM)), (PI, @), (all, ~(dJ)> (P, 0), (g, 0))

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

The Chaining Approach to Software Test Data Generation . 73

Problem node
. . .

El -..

?F’’” -----
Fig. .1 A search tree generated hy the chaining approach

The chaining approach selects the next event sequence from the set of
already generated sequences and tries to find program input on which this
event sequence is traversed. If such an input is found then the input to
execute the goal is also found. If the input is not found then new e~’ent
sequences may be generated, and the chaining approach selects the next
event sequence to explore.

The process of generating event sequences may be organized in a form of
a tree referred to as a scorch tre(’. The initial event sequence E(, represents
the nmt of the tree. Each event sequence E, derived from E,, tby using a set
of last definitions I.IX,D) – (d], clz, . , CIV)and problem node p) is a child of
E,,. Similarly, for each event sequence El new event sequences E, , E, ,
E,,, can be generated that include a new problem node p] and last defini-
tions of PI, LD(pl) = [fI, F2, . , fiw). These new event sequences E{,. E,,,

E,,t are children of E,. This process of generating event sequences. . . .
creates the tree-like structure shown in Figure 4.

The chaining approach traverses the search tree in a depth-first search
traversal, attempting to find an event sequence E for which a program
input is found that “executes” the selected event sequence. For example.
after the search process fails to find program input for El ~shown in Figure
4) it generates new event sequences El,, E,,,. . . . El,,. The chaining ap-
proach explores then El, to El,, (under the assumption that no new event
sequences are generated). Only after all children of E1 are explored, the
search process explores Ez. This traversal process continues until the
search tree has heen completely traversed or until the designated search
resources are exhausted, e.g., time limit.

ACM Tr:in.<act]ons on S(]ftware Englnecring and Methl)ci,,l<,K\ \’ol 3, N(I 1. .Januarl 1996

74 ● Roger Ferguson and Bogdan Korel

In order to control the “depth” of the search, a limit may be imposed on
the level of the search. For example, event sequences El, Ez, . . . , EN shown
in Figure 4 are on the first level, whereas event sequences Ell, lllz, . . . , El,~

are in the second level. lf the search limit is imposed on the first level, then

event sequences El, Ez, . . . , EN are only explored. The event sequences on
the second level are not even generated. Let k be a search level that
determines the level of generation of event sequences in the search tree.
Let us assume that each test node (potential problem node) has N last
definitions. Further, let us assume that a particular problem node can
occur only once in the event sequence. In this case the search tree would
contain NK event sequences which could be used to search for an input for
the goal node. Notice that the goal-oriented approach of test generation
[Korel 1990b; 1992] is equivalent to the chaining approach with the level-O
search limit.

We now show more formally as to how a new event sequence is generated
from a given sequence E. Let E = (el, ez, ei-l, ei, ei+l, . . ., e~) be an
event sequence. Suppose (1) that the execution partially traversed the
event sequence up to event e, and (2) that a problem node p is encountered
between events ei and ei. ~. Let d be a last definition of problem node p. A
new event sequence is generated from E by inserting two events into
sequence: ed = (d, D(d)) and eP = (p, 0). Event eP is always inserted
between events ei and e,. ~; however, event ed, in general, may be inserted
in any position between e ~ and eP. Suppose that ed is inserted between
events eh and e~+ ~. The following event sequence is then generated:

E’ = (el, ez, . . . , eh_l, eb, e~, ek+l, . . . , ei-l, ei, eP, ei+l, . . . , e~),

Insertion of new events into the sequence requires modifications of the
corresponding constraint sets associated with each event. This update is
done in three steps:

(1) s~ = Sk u D(d)

(2) Sp = Si
(3) forallj, k + 1 s.j s i, SJ = SJ U D(d)

The constraint set Sd of ed equals the constraint set of the preceding event
eh and a variable defined by d. The constraint set SP of eP equals the
constraint set of ei. Finally in step (3), all constraint sets between eh+ ~ and
ei are modified by including a variable defined at d.

Example 4.2.1. Suppose that node 17 is a goal node in the program of
Figure 1. The chaining approach generates the following initial event
sequence E. = ((s, 0), (17, 0)) and starts the search by executing the
program for an arbitrary input x, e.g., a = (27, 58, 78, 4, 89, 21, 54, 85, 35,
96), b = (45, 99, 6, 45, 2, 63, 28, 15, 94, 22), target = 56. The execution
starts at the entry node s and proceeds to node 16. At node 16 the flow of
execution proceeds down the false branch (16, 18). At this point execution is
suspended, since branch (16, 18) does not lead to node 17. The search

ACM Transactions on Software Engineering and Methodology, Vol. 5, No, 1, January 1996.

The Chaining Approach to Software Test Data Generation . 75

Fig 5. A search tree generated in Example 4.2.1

process tries to identify a new program input; however, in most cases it will

fail. Node 16 is the problem node; therefore, the set of last definitions of

node 16 is identified, LD(16) = {4, 11, 14). The chaining approach uses this

set to generate new event sequences. The following sequences are gener-

ated and are graphically shown in Figure 5:

E,= {(S, 0), [11, {f%}), (16, @), (17, @))

J??,={(S, @), (14, {fb}), (16, 0), (17, @))

Notice that event sequence ((s, 0), (4, {N}), (16, 0), (17, 0)) is not generated
because this was the event sequence for which the search was not success-
ful. The chaining approach selects the first event sequence El. During the
search a new problem node is found at node 9. The set of last definitions of
node 9 is identified LD(9) = {3, 7), and two new event sequences are
generated:

E,, = ((S, @), (3, {~a}), (9, 0), (11, {fb}), (16, ~), (17, @))

E,, ={(S, @), (7, {fa}), (9,0), (11, {fb}), (16, 0), (17, 0))

The chaining approach selects El,; however, the search fails, and no new
event sequences are generated. When event sequence El, is selected, the
chaining approach finds an input on which El, is traversed; on this input
goal node 17 is also executed. The following input may be generated: a =
(56, 58, 78, 4, 89, 21, 54, 85, 35, 96), b = (56, 56, 56, 56, 56, 56, 56, 56, 56,
56), target = 56. The search tree generated for this example is shown in
Figure 6.

5. THE SEARCH PROCESS

In this section we describe the process of tinding input data to “traverse” a

given event sequence. The problem is stated as follows:

—Given an event sequence E = (el, e2,. . . , ek), the goal is to find program
input x on which event sequence E is traversed.

ACM Transactions on Software Engineering and Methodology, vol ~. NO 1~January lgg~.

76 ● Roger Ferguson and Bogdan Korel

Problem node

Fig. 6. The entire search tree for Example 4.2.1.

The search starts by initially executing a program for an arbitrary program
input. During the program execution for each executed branch, the search
procedure decides whether the execution should continue through this
branch or whether an alternative branch should be taken. In the latter case
a new input must be found to change the flow of execution at the current
branch. For this purpose every branch in the program is classified into
different categories. The branch classification is determined prior to the
program execution. The search process uses this classification during
program execution to continue or suspend the execution at the current
branch. In the latter case, the search procedure determines a new program
input.

Branch Classification

For every two adjacent events ei = (ni, Si) and ei+ 1 = (ni+ 1, Si+ 1) in the
event sequence E a branch classification is computed. The branch classifi-
cation relates to the situation that event ei has already occurred (node n,
was executed), and now the goal is to reach node rzi+~ without modifying
any variable in Si.

Critical Branch. A branch (p, q) is called a critical branch with respect
to events ei and ei+ ~ iff (1) there does not exist a definition-clear path from
p to ni. ~ or ni with respect to Si through branch (p, q) and (2) there exists a
definition-clear path from p to ni+ ~ with respect to Si through the alterna-
tive branch of (p, q).

If a critical branch (p, q) is executed, then program execution is sus-
pended because the execution cannot lead to ni+ ~ or because the path is not
a definition-clear path from q to ni +~ or n, with respect to Si. Notice that
node ni can be executed several times before reaching node ni. ~. The search

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

The Chaining Approach to Software Test Data Generation . 77

algorithm attempts to find a program input x which will change the flow of

execution at critical branch (p, q); as a result, an alternative branch of
(p, q) is executed. If a program input is found, the execution continues
through the alternative branch. However, if program input x cannot be
found, then the search is suspended, and node p is “declared” as a problem
node (for which new event sequences may be generated). For instance, for
two adjacent events (11, {fi)) and (16, 0) in some event sequence for the
program of Figure 1, branch (13, 14) is critical because once this branch is
executed the value of fi is modified in node 14. In this case, a new program
input must be found on which alternative branch (13, 15) is taken.

S<’niicr-itical Branch, A branch (p, q) is called a semicritical branch with
respect to events e, and e, , , iff (1) (p, q) is not a critical branch, {2) n, , ~ is
control dependent on test node p, and (3) there does not exist an acyclic
definition-clear path from p to n,. ~ with respect to S, through branch (p, q).

Recall that the control dependence has been described in Section 2. If a
semicritical branch (p, q) is executed, the program execution is terminated,
and the search algorithm tries to find a new program input x to change the
flow at this branch (p, q). If the search for a new program input is
unsuccessful, then the program execution is allowed to continue through
branch (p, q), hoping that on the next execution of test node p the
alternative branch will be taken. For instance, branch (12, 13) is a
semicritical branch with respect to events (11, {fb]) and (16, 0) because to
reach node 16 the program has to iterate loop 12–15 and reach again node
12 without modifying fb. Clearly, if a semicritical branch is followed, the
execution has to iterate, and there is a “danger” of executing a critical
branch; it is obvious that the alternative branch of the semicritical branch
is more “promising” at this point.

The remaining branches are classified as nonessential. If a nonessential
branch is executed, the program execution is allowed to continue through
this branch.

Example 5.1. Given the following event sequence:

Ez, = <(s, D), (7, {fal), (9, 0), (11, {~b}), (16, 0), ~17, 0))

for the program of Figure 1, the following branch classification is computed:

Pair of events Critical branches Semicritical branches

1: ls, .~ l,(7,1fc111 (5, 9) (6,8)

2’ (7. {)%11,(9, .’) — (5, 6)

:{ (9, ..”), (11, l/7111 [9, 16)
4: ill, {/bll, (16, .’l (13, 14) (12, 13J
,5: 116. S:,), (17.’.”) (16, 18)

This branch classification is used to control the program execution. At the
beginning of program execution classification 1 is used until node 7 is
executed. Classification 2 is then used until node 9 is reached. The search
procedure then uses classification 3 until node 11 is reached, and so on.
Each time when an “event” occurs, then the next classification is used to
control program execution.

AC’M Transactions on Software Engineering and Methodology, Vol. 5. No. 1. .January 1996

78 ● Roger Ferguson and Bogdan Korel

Branch Predicate

A, > AZ
A, ZAz
A, <A,
Al SAz
Al = A,
Al +A2

Fig. 7.

Function F rel

AZ – Al <
A, – Al ~

A, – A2 <

A, – A2 ~

abs(Al – A2) ——

–abs(A1 – AZ) <

Branch functions of arithmetic predicates.

Finding Input Data

The problem of finding input data is reduced to a sequence of subgoals
where each subgoal is solved using function minimization search tech-
niques that use branch predicates to guide the search process. Each branch
(P, q) in the flowgraph is labeled by a predicate, referred to as a branch
predicate, describing the conditions under which the branch will be tra-
versed. There are two types of branch predicates: Boolean and arithmetic
predicates. Boolean predicates involve Boolean variables. On the other
hand, arithmetic predicates are of the following form: A ~ op AZ, where Al
and A2 are arithmetic expressions, and op is one of (<, s, >, 2, =, #}. For
the sake of presentation, we assume that the arithmetic branch predicates
are simple relational expressions (inequalities and equalities).

Each branch predicate Al op AZ can be transformed to the equivalent
predicate of the form F rel O, where F and rel are given in Figure 7. F is a
real-valued function, referred to as a branch function, which is (1) positive
(or zero if rel is <) when a branch predicate is false or (2) negative (or zero
if re~ is = or s) when the branch predicate is true. It is obvious that F is
actually a function of program input x. The branch function is evaluated for
any program input by executing the program. For instance, the true branch
of a test statement “if a[i] = target then . . .“ (node 6 in Figure 1) has a
branch function F, whose value can be computed for a given input by
executing the program and evaluating the nabs (a[i] - target)” expression.

Let E={el, e2, ..., e~) be an event sequence. The goal is to find program
input x on which E will be traversed. The goal of finding a program input x
is achieved by solving a sequence of subgoals. Let X“ be the initial program
input (selected randomly) on which the program is executed. If E is
traversed, X“ is the solution to the test data generation problem. Suppose,
however, that a critical or semicritical branch (p,q) was executed between
events ei and ei +~—i. e., the event sequence was partially traversed up to
event ei, and the critical or semicritical branch was encountered when the
execution was supposed to reach node ni +~. Let E’ = (el, e2, . . . , e,) be an
event subsequence of E that was successfully traversed. In this case we
have to solve the first subgoal. Let (p, t) be an alternative branch of branch
(p, q). There are two possible cases depending on the type of branch
predicate of (p, t).

If a branch predicate of (p, t) is of a Boolean type then the search is
terminated, and node p is declared as a problem node for the critical

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

The Chaining Approach to Software Test Data Generation . 79

branch; in the case of a semicritical branch the execution continues through
branch (p, q).

On the other hand, if the branch predicate of (p, t) is of an arithmetic
type then the following procedure is used: let F,(x) be a branch function of
branch (p, t). The first subgoal is to find a value of x which causes Fl(x) to
be negative (or zero) at node p; as a result, (p, t) will be successfully
executed. More formally, we want to find a program input x satisfying Fl(x)
rel, O subject to the constraint: E’ = (el, ez, . . . , e,) is traversed on x, where
rel, is one of l=, ~, ~1.

This problem is similar to the minimization problem with constraints
because the function F,(x) can be minimized using numerical techniques for
constrained minimization, stopping when Fi(x) becomes negative (or zero,
depending on relr). Because of a lack of assumptions about the branch
function and constraints, direct-search methods [Gill and Murray 1974;
Glass and Cooper 1965] are used. The direct-search method progresses
toward the minimum using a strategy based on the comparison of branch
function values only. The simplest strategy of this form is that known as
the alternating-variable method, which consists of minimizing the current
branch function with respect to each input variable in turn. The search
proceeds in this manner until all input variables are explored in turn. After
completing such a cycle, the procedure continuously cycles around the
input variables until either the solution is found or no progress (decrement
of the branch function) can be made for any input variable. In the latter
case, the search process fails to find the solution.

Once input X1 for the first subgoal is found, the program continues
execution until either the whole event sequence is traversed or a new
branch violation occurs at some other node. In the latter case, the second
subgoal has to be solved. The process of solving subgoals is repeated until
the solution x to the main goal node is found, or until no progress can be
made at some node, in which case, the search process fails to find the
solution for a given event sequence; in the latter case, this node is declared
as a problem node, and new event sequences may be generated.

6. EXPERIMENTAL STUDY

The goal of the experiment was to compare the following methods of test
data generation: random test data generation, path-oriented test data
generation, goal-oriented test data generation, and the chaining approach
of test data generation on two levels of search: level 1 and level 3. Notice
that the goal-oriented approach is equivalent to the chaining approach with
the level-O search limit. In the path-oriented approach the execution-
oriented method IKorel 1990a] was used for finding program input for
selected paths.

The chaining approach has been developed as a part of the test data
generation system TESTGEN [Korel 1989; 1995]. TESTGEN supports test
data generation for programs written in a subset of Pascal. The following

A(IM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, .January 1996

80 ● Roger Ferguson and Bogdan Korel

execution-oriented test data generation methods are implemented: path-
oriented, goal-oriented, and chaining methods.

Experiment

The experiment was performed on a personal computer with a 60MHz
Pentium processor. In the experiment, 11 programs were used. For every
program the following procedure was applied: for every node in the pro-
gram, the goal was to find program input on which the selected node was
executed.

Since initial data for the search were generated randomly, for some nodes
the success of the search may depend on the initial input data. In order to
reduce the element of “luck” during the search, for each node the search
was repeated 10 times. Consequently, for each program the total number of
tries was 10*number of nodes. For each try the limit of five minutes was
imposed on the search—i. e., if the search was unsuccessful after five
minutes the search was terminated and was considered unsuccessful. This
procedure was used for every test data generation method except the
random method.

In the random method, input data were generated randomly, and during
program execution all executed nodes were marked as covered. The random
approach was limited to five minutes; this corresponded to 200,000 to
700,000 executions (random tries) depending on the program. If at least one
input was generated on which a particular node was executed, the search
was considered successful for the node.

In the path-oriented test data generation the paths were generated
according to the following procedure. Initially all acyclic paths to reach a
selected node were generated, If the search was not successful then all
paths with maximum two occurrences of any node were generated (this
corresponds to one loop iteration). If the search was not successful then all
paths with maximum three occurrences of any node were generated (two
loop iterations). This process was repeated until either the solution was
found or the search time limit was exhausted.

Measurements

During the experiment the following information was measured for every
program:

(a) Success rate

(b) Coverage

(c) Average time of successful search

(d) Maximum time of successful search

(e) Average time of unsuccessful search

(f) Maximum time of unsuccessful search

ACM Transactions on Software Engineering and Methodology, Vol. 5, No, 1, January 1996.

The Chaining Approach to Software Test Data Generation . 81

Success rate SR is defined as follows:

100CZ * (Number of successful tries)
SR =

(m ‘~ Number of program nodes)

where m = 10 is the repetition factor for the search, i.e., in order to reduce
the factor of “luck” during the search the experiment was repeated m times
for each node.

Coverage represents the percentage of nodes for which at least one try
was successful in finding input data during the experiment,

Programs

The experiments were performed for programs of different complexity. The
following Pascal programs were used in the experiment: FORMAT, STACK,
BANK, BIGBANK, BSEARCH, SAMPLE, BUBBLE, DAYS, FIND, GCD,
and TRITYP, The source code of these programs can be found in Korel and
Ferguson [1995]. The last five programs represent the Pascal version of the
five Fortran programs used in the test data generation experiment for
mutation testing described in DeMillo and Offutt [1991].

Program BANK maintains a bank account and supports simple transac-
tions: open an account, deposit, withdraw, balance. Program STACK main-
tains stack operations like push, pop, empty, full. The input to program
Stack are requests for stack operations. FORMAT performs text formatting
within the selected column width (text is represented as an array of
characters). BIGBANK is an extended version of the program BANK and
supports transactions for different types of accounts. BSEARCH is a binary
search program. SAMPLE is the program of Figure 1. BUBBLE performs
array sorting using bubble sort. TRITYP accepts as input the relative
lengths of the sides of a triangle and classifies the triangle as equilateral,
isosceles, scalene, (jr illegal. DAYS calculates the number of days between
the two given days. GCD computes the greatest common divisor of a
sequence of numbers. FIND accepts an input array A of integers and an index
F; it returns the array with every element to the left of AIF] less than or equal
to AIFl and every element to the right of AIF’1 greater or equal to AIF1.

Program Nn of nodes No. of branches No. of lines

BANK

STACK

FORMAT

BIGBANK

BSl?AR(’H

SAATP1.E

BUBBI,Ji

TRITYP

DAYS

GCD

FIN1)

85
40

77
277

1/4

18

13

49

28

/3:1

25

50
22

42

166
1()
]~

6
46
10
44
18

155
78

137
483

34
28
26
76
47

122
38

.4(’M Transactlnns on Software Engineering and Methodology. Vol 5, NO 1. .January 1996.

82 . Roger Ferguson and Bogdan Korel

Results

SR: Success Rate

c: Coverage
ASUC: Average Successful Search Time
Msuc: Maximum Successful Search Time

AUnSuc: Average Unsuccessful Search Time
MUnSuc: Maximum Unsuccessful Search Time

Time was measured in seconds with the precision of 0.1 second.

BANK

Random
Path-oriented
Goal-oriented
Chaining (level 1)
Chaining (level 3)

FORMAT

Random
Path-oriented
Goal-oriented
Chaining (level 1)
Chaining (level 3)

BIGBANK

Random
Path-oriented
Goal-oriented
Chaining (level 1)
Chaining (level 3)

STACK

Random
Path-oriented
Goal-oriented
Chaining (level 1)
Chaining (level 3)

BSEARCH

Random
Path-oriented
Goal-oriented
Chaining (level 1)

SR

63%
72%
92’70
98%

SR

61%
84%
91%
94%’

SR

60%
73%
89%
95%

SR

90%

92%

95%

100’%

SR

100%
94%

c

67%
63%
95%

100%

c

74%
61%
94%
94%
94%

c

68%
60%
85%
97%
99%

c

79%
90%

97%

100’%

100%

c

100’7C

100%

100%

ASUC

0.1

0,3

0.7

1.5

ASUC

0,1

0.2

0.6

0.7

ASUC

0.1
7

20
34

ASUC

0.1

0.3

0.4

1

ASUC

0.1
0,1

0.1

MSUC

0.5

2

6

16

MSUC

0.1
1

19

47

MSUC

1
17

230
290

MSUC

0.1

9
10

25

MSUC

0.1
0.1

0.1

AUnSuc

300

0.3

4

12.5

AUnSuc

300

0.4

13

56

AUnSuc

300

8

149

300

AUnSuc

300

0.3

9.5
—

AUnSuc

—

0.1
—

MUnSuc

300

1

9

13

MUnSuc

300

5

22

93

MUnSuc

300

15

286

300

MUnSuc

300

1

16
—

MUnSuc

—

0.1
—

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

The Chaining Approach to Software Test Data Generation . 83

SAMPLE

Random
Path-oriented
Goal-oriented

Chaining (level 1)

Chaining (level 3)

BUBBLE

Random
Path-oriented
Goal-oriented

TRITYP

Random
Path-oriented
Goal-oriented
Chaining {level 11
Chaining (level 3)

DAYS

Random
Path-oriented
Goal-oriented
Chaining (level 11
Chaining (level 3)

GCD

Random
Path-oriented
Goal-oriented
Chaining (level 1~
Chaining (level 3)

FIND

Random
Path-oriented
Goal-oriented
Chaining [level 1)

SR

95%
61%-

91%’

1007

SR

100[Z
100%

SR

98%
26C+
61%
99%

SR

94%
95%
98”4
98 ‘t

SR

98%
90%
99%

100%

SR

99.6%
96%

100%

c

95%’

95%’
61%

95%

100’%

c

100%
100%

100%

c

‘777,

100%

84%
1007C
100%

c

100%
100%
100%’
100%
100%

c

100%’

100%

95%
100%

10070

c

100%

100%

100%

100%

ASUC

6
0.1
0.1
0,1

ASUC

0.1
0.1

ASUC

15
0.1
0,6
1,3

ASUC

0.1
0.1
0.1
0.1

ASUC

1.8

0.2

0.4

0.4

ASUC

6
0.1
0.1

MSUC

10

0.4

1

2

MSUC

0.1

0.1

MSUC

280
1
2

17

MSUC

1
1
1
1

MSUC

61
1
3
8

MSUC

48
1
1

AUnSuc

300
0.1
0.1

AUnSuc

AUnSuc

300
0.1
1.1
5

AUnSuc

0.1
0.1
0.1
0.1

AUnSuc

300

02

2.3
—

AUnSuc

136
0.1

MUnSuc

300
1

1
—

MUnSuc

MUnSuc

300
1
3

11

MUnSuc

0.1
0.1
0.1
1

MUnSuc

300
1
3

—

MUnSuc

136
0,1

ACM Transactions on Software Engineering and Methodology, Vol 5, No 1, ,January 1996

84 ● Roger Ferguson and Bogdan Korel

Conclusions of the Experiment

For small programs with relatively uncomplicated structure the random
approach and path-oriented approach performed well. However, for pro-
grams with more-complex control structures and when execution of some
statements depends on execution of other statements, these methods did
not perform well in the experiment. The results of the experiment indicate
that the chaining approach may increase the chances of generating test
data. This is demonstrated by the increased value of the success rate for
the chaining approach. Notice that the larger the value of the success rate,
the larger the chances that a particular method may generate input for the
selected node.

DeMillo and Offutt [1991] reported the results of the test data generation
experiment for mutation testing using the constraint-based approach. The
experiment was performed for five programs. We have created a Pascal
version of these programs and used them in our experiment: BUBBLE,
DAYS, FIND, GCD, and TRITYP. For these programs the path-oriented
and chaining approaches did not have any major problems in generating
program inputs to execute statements (even random testing was very
successful for these programs, except program TRITYP). Since the con-
straint-based approach [DeMillo and Offutt 19911 is a path-oriented ap-
proach, it also did not have problems in generating program inputs for
these programs. However, the programs used by DeMillo and Offutt in
their experiment are quite simple with respect to generating program
inputs. We believe that the constraint-based approach may not be efficient
in generating program inputs for more-complex programs-for example,
BANK, FORMAT, and BIGBANK, for which path-oriented methods did not
perform very well in our experiment, as opposed to the chaining approach.
For these programs the major challenge is to identify an executable path(s)
among a large number of infeasible paths. Since the constraint-based
approach uses only a control flow graph to identify paths, it may waste a lot
of effort “blindly” exploring infeasible paths.

7. CONCLUSIONS

In this article, we have presented the chaining approach of test data
generation that is an extension of the existing execution-oriented methods
of test data generation. The existing techniques use only the control flow
graph in the search process. The chaining approach uses data dependency
analysis to guide the search process. As a result, the effectiveness of the
process of test data generation may be improved.

The chaining approach was presented for the node problem. However, it
may be also used for branch testing and data flow testing (definition-use
chain coverage) [Laski and Korel 1983; Rapps and Weyuker 1985]. In order
to use the chaining approach for branch and data flow coverage different
initial event sequences are generated. Recall that for the node problem the
following initial event sequence is generated: E = {(s, O),(g, 0)), where g is
a goal node. In branch testing the goal is to execute a selected branch (p, q),

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

The Chaining Approach to Software Test Data Generation . 85

and the following initial event sequence is generated: E = ((s, D, [p, 0),
(q, ~)). In data flow testing the goal is to “evaluate” the definition-use pair
(d, u), and the following initial event sequence is generated: E = ((s, OJ,
(d, D(d)), (u, @)). When the initial event sequence is generated, the search
process is identical to the search process used for the node problem.

We do not claim that the chaining approach is optimal. Instead, we open
the way for new directions of research into test data generation methods
based on dependency analysis. One possible direction of future research is
to use program slicing [Korel and Laski 1988; Weiser 1982] in the process
of test data generation. During test data generation, multiple executions of
the program are required. Program slicing may improve the efficiency of
the test data generation because in many cases a program slice may be
executed rather than the whole program. This may improve the efficiency
of test data generation for programs with expensive loops, i.e., loops with a
large number of loop iterations.

REFERENCES

AI.BER~S, D. 1976. The economics of software quality assurance. In AFIPS Conference
Proceed! rigs: 1976 Natlona[Computer Conference. Vol. 45. AFIPS Press. 433– 442

BIRII. D ,ANI)hflxoz. ~ 1982. Automatic generation of random self-checking test cases.

IBM ,Syst. eJ. 22, 3, 229-245,

BOY~R, R.. EI.SPAS, B.. ,wm LEVITT, K, 1975. SELECT—A formal system for testing and

debugging programs by symbolic execution. SIGPLAN Not. 10, 6 tJune I, 234-245.

(’I.ARKK, L 1976, A system to generate test data and symbolically execute programs. IEEE

‘Jlmns. Soft{{. Eng. Y, 3, 215–222.

cl. AaKh. 1, 1979. Automatic test data selection techniques. Infotech State of the Art Report

on Software Testing, In fotech International. Sept.

DK MtLI,~). R. ANO Orw’r’r. A. 1991. Constraint-based automatic test data generation. IEEE
Tran.<. So~fIJ. Eng. 17, 9, 900–910.

~KMI1.lJ). R. .\~I) Ow’{’’rr, A. 1993. Experimental results from an automatic test data
generator. .4(’.M Trans. S,,ftw. Eng, Methdd. 2, 9, 109–127.

DE MI I.1,(). f?., MCCRMKEX, W., MAItTIN, R,, ~rin PASSAFILVJE, ,J. 1987 Softumre Te.strng and

ELw/uatIoa. Benjami]](’ummin gs. Menlo Park, Calif.

FmMxTI:, tJ , OTTEXSTI?IN,K., ~NIIWARREN,.J. 1987. The program dependence graph and its
use in Optimization. .4(’M Trans Program, Lang. Syst. 9, 5, 319–349.

(:11,[., P)x1) M(TRRAY, W.. Eds. 1974. Nurn~rical Methods fbr Con.strarned Optlmtzation.
Academic, Ncw York.

(; I..Ass. H, .ixl~ C()()PEt{, L. 1965. Sequential search: A method for solving constrained
optimization problems. -J .4(’M 12, 1, 71–82.

Howl)m. W. E 1977. Symbolic testing and the DISSECT s.vmbolic evaluation system. IEEE
Tran,s .Softu, Eng. .4, 4.266-278.

Ix(’E, D 1987. The automatic generation of test data, Comput J. 30, 1, 63-69

tJ~ss{lP, W.. Ih.N~h[, t] , ROY. S., AXI) SCAWX)N, J. 1976. ATLAS—An automated software

testing system. In Pr{j[wdlng.x of the 2nd International Conferenw cm Software Engineering.

K(}REL, B 1989. TESTGEN—A structural test data generation system. In the fJth Interna -

tic}ncl (’c)n/t,rt,nce I)n Sc)ftl(wrc Testing (Washington, DC.). USPDI, Washington, D.C.

~ORE1., B 1990a, Automated test data generation. IEEE Trans. Softu,. Eng. 16, 8, 870-879.

KOREI,. B 1990b. .4 dynamic approach of automated test data genemtion. In the Confer.

en{v Ii/ISof([{wre Maintenance (San Diego, Calif.). 31 1–3 17.
KOREI., B 1992. Dynamic method for software test data generation. ,J. S@uI. Testzng Verif

Rr//ah. 2, 4, 20:3-21:1.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No 1. January 1996

86 ● Roger Ferguson and Bogdan Korel

KOREL, B. 1995. TESTGEN—An execution-oriented test data generation system. Tech. Rep.
TR-SE-95-01, Dept. of Computer Science, Illinois Inst. of Technology, Chicago.

KOREL, B. AND LASKI, J. 1988. Dynamic program slicing. Inf. Process. Lett. 29, 3, 155–163.
KOREL, B. ANDFERGUSON,R. 1995. Chaining approach of test data generation—Experimen-

tal results. Tech. Rep. TR-SE-95-02, Dept. of Computer Science, Illinois Inst. of Technology,
Chicago.

LASKI, J. AND KOREL, B. 1983. Data flow oriented program testing strategy. IEEE Trans.
Softw. Eng. 9, 3, 347–354.

MYERS, G. 1979. The Art of Software Testing. John Wiley and Sons, New York.
RAMAMOORTHY,C., Ho, S., AND CHEN, W. 1976, On the automated generation of program

test data. IEEE Trans. Softw. Eng. 2, 4, 293-300.
RAPPS, S. ANDWEYUKER, E. 1985. Selecting software test data using data flow information,

IEEE Trans. Softw. Eng. SE-11, 4, 367–375.

WEISER, M, 1982. Program slicing. IEEE Trans. Softw. Eng. SE-10, 4, 352–357.

Received December 1993; revised October 1994; accepted November 1995

ACM Transactions on Software Engineering snd Methodology, Vol. 5, No. 1, January 1996

