
Constructing Compact Models of Concurrent Java Programs

James C. Corbett
Department of Information and Compyter Science

-- University of Hawai’i

Honolulu, HI 96822

corbktt@hawaii.edu

Abstract

Finite-state verification technology (e.g., model ‘checking)
provides a powerful means to detect concurrency errors,
which are often subtle and difficult to reproduce, Never-
theless, widespread use of this technology by developers is
unlikely until tools provide automated support for extract-
ing the required finite-state models directly from program
source. In this paper, we explore the extraction of com-
pact concurrency models from Java code. In particular, we
show how static pointer analysis, which has traditionally
been used for computing alias information in optimizers, can
be used to greatly reduce the size .of finite-state models of
concurrent Java programs.

Keywords

Static Analysis, Model Extraction, Finite-state’ Verification

1 Introduction

Finite-state analysis tools (e.g., model checkers) can auto-
matically detect concurrency errors, which are often subtle
and difficult to reproduce. Before such tools can be applied
to software, a finite-state model of the program must be
constructed. This model must be accurate enough .to ver-
ify the requirements and yet abstract enough to make the
analysis tractable. In this paper, we consider the problem
of Eonstructing such models for concurrent Java programs.

We consider Java because, with the explosion of internet
applications, Java stands to become the dominant language
for writing concurrent software. A new generation of pro-
grammers is now writing concurrent afiplications for the f+st
time and encountering subtle concurrency errors that have
heretofore plagued mostly operating system and telephony
switch developers. Java uses a monitor-like mechanism for
thread synchronization that, while simple to describe, can
be difficult to use correctly (a colleague teaching concurrent,

Permission to make digital/hard copies of all or part of this material for
penonal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title ofthe publication and its date appear, and notiCe is
given that copyright is by permission ofthe ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
ISSTA 98 Clear-water Beach Florida USA
Copyright 1998 O-89791-971-8/981 03..%5.00

Java programming found that more than half of the students
wrote programs with nested monitor deadlocks).

Ideally, an analysis tool could extract a model from a
program and use the model to verify,some property of the
program (e.g., freedom from deadlock). In practice, extract-
ing concurrency models is difficult to automate completely.
In order to obtain a model small enough for a tractable
analysis, an analyst must assist most existing tools by spec-
ifying what aspects of the program to model. In particular,
the representation of certain variables is often necessary to
make the model sufficiently accurate, but these variables
must often be abstracted or restricted to make the analy-
sis tractable. Although a model that restricts the range of
a variable does not represent all possible behaviors of the
program and thus cannot technically be used to verify the
program has a property, the conventional wisdom is that
most concurrency errors are present in small versions of a
system[6, 91, thus these models can still be useful for finding
errors (testing).

Most previous work ‘on concurrency analysis of soft-
ware has ,used Ada [7, 13, ,12, 2, 3, 81. Although some
aspects of these methods can also be applied to Java
programs, the Java language presents several new chal-
lenges/opportunities:

1. Due to the object-oriented style of typical Java pro-
grams, most of the variables that need to be repre-
sented are fields of heap allocated objects, not stack
or statically allocated variables as is common in Ada.

2. Java threads must be created dynamically, thus is it
impossible (in general) to determine how many threads
a program will create. Although Ada tasks may be
created dynamically, many concurrent Ada programs
contain only statically allocated tasks.

3. Java has a locking mechanism to synchronize access to
shared data. This can be exploited to reduce the size
of the model. / 1

The main contribution of this paper is to show how static
pointer analysis can be used to reduce the size of finite-state
models of concurrent Java programs. The method employs
virtual coarsening [l], a well-known technique for reducing
the size of concurrency models by collapsing invisible actions
(e.g., updates to variables that are local or protected by a
lock) into adjacent visible ,actions. The static pointer anal-
ysis is,used to construct an approximation of the run-time
structure of the,heap at each statement. This information
can be used to identify which heap objects are actually local
to a thread, and which locks guard access to which variables.

This paper is organized as follows. We first provide a
brief overview of Java’s concurrency features in Section 2.
Section 3 defines our formal model (transition systems) and
Section 4 explains how the size of such models can be re-
duced with virtual coarsening given certain information on
run-time heap structure is available. We then explain how
to collect this information using static pointer analysis in
Section 5. Section 6 shows how to use the heap structure
information to apply the reductions. Finally, Section 7 con-
cludes.

2 Concurrency in Java

Java’s essential concurrency features are illustrated by
the familiar bounded buffer system shown in Figure 1. In
Java, threads are instances of the class Thread (or a subclass
thereof) and are’created using an allocator (i.e., new). The
constructor: for Tiiread*takes a& a parameter any object im-
pletienting the interf&e Runnable, which essentially means
the object hds’a’methbd iun(). Once a thread is started by
calling its start0 method, the thread executes the run0
method of this object. Although threads may be assigned
priorities’ to control schedtig, in this pap&r tie assume all
(modeled) threa& h ave equal pi-iority and are scheduled ar-
bitrarily; this captures all possible executions.

In the ex’ample, the program begins with the execution
of the static method main0 by the main thread. This
creates an h&a&e of an IntBuffer, creates instances df
Producer and Consumer that point to this IntBuffer, cre-
at&s instances of Thread that point to the Producer and
Consumer, tid st,arts these threads, which then execute
the ‘run0 methods’ bf the producer and consumer. The
producer and dbxis~~r threads put/get integers from the
shared b&Fe;.

There are two types of synchronization in the bounded
buffer probleni.’ First, access to the buffer should be mu-
tually exclusive. Every Java ‘objkct has an implicit lock.
When a thread executes a synchronizedstatement, it must
ac’quire the lock of th8 object named by the expression be-
fore executing the body of the statement, releasing the lock
when the b,ody is exited. If the lock is unavailable, the
thread will block until the lock is released. Acquiring the
lock of the current object (this) during a method body is
a common idiom and may be abbreviated by simply placing
the keyword synchronized in the method’s signature.

The second ‘type ‘of ‘synchronization involves waiting:
callers of put () must wait until there is space in the buffer,
callers of git 0 must ,wait until the buffer is nonempty. On
entry, the precondition for the operation is checked, and, if
false, the thread blocks itself on the object by executing the
wait 0 method, which Feleases the lock. When a method
changes the ‘state ‘of the object in su+ a way that a pre-
condition might now be true, it executes the potifyAll()
method, which wakes up all threads waiting on the object
(these threads must reacquire the object’s lock before re-
turning from wait 0). 1 ! v,

.

3 Formal yodel
’

We model a con&r&t Java program with’ a fhiit&tate
transition system. Each stat& of the ‘transition system is
an’abstraction of-the state the Java program and ea& tran-
sition represents the executidn bf code transfotiing this ab-
stract stdte. Formally, a’ transition-systkm is a pair (S,T)
where’ I _

HeapStruchm:

public class Ix&Buffer I
protected int tl data;
rmtected int count = 0:
;rotected int front = 0;
public IntBuffer(int capacity) I

data = new intCcapacity1; I/ allocate array
Il data.length == size of array (capacity)

3
public void put(int 11 C

synchronized (this) X
while (count = data.length)

w&O; I/ wait until buffer not full
dataC(front + count) % data.lengthl = x;
count = count + I;
if (count == I) II buffer not empty

notifyAll();
3

3
public int get0 C

synchronized (this) < /
while (count q = 0)

w&O; II vait until buffor not empty
int I q dataCfront1;
front = (front t 1) X data.length;
count = count - I;
if (count == dats.length - 1)

notifyAll0; II buffer not full
return x;

3
3

3

public class Producer implements Runnablo < '
protected int next = 0; II next int to produce
protected IntBuffer buf;
public Producer(IntBuffer b) I buf = b; 1
public void run0 C

while (true) I
System.out.println("Put " + next);
buf.put(nextt+);

3
3

3
,I 3

public class Consumer implements Rumablo <
protected IntBuffer buf;
public Consumar(IntBuffer b) C buf = b; 1
publid void run0 I

while (true) I
int x = buf.getO;
System.Out.println(l'Cet I8 + I[);

3
'3

3

public class Hain c
public static void min(String Cl args) I

I&Buffer buf = new IntBuffar(2);
~BY Thread(nev Producer.(buf)),start();
n-q Thread(aew Consumer(buf)):start();

3
3

Figure 1: Bounded Buffer Example

Thread 1:
1: Lock
2:x=0
3: Unlock
4: . . .

Thread 2:
5: Lock
6: . . .

State Variables:
Zocl, ZOQ: location, of thread 1,2
lock: state of lock (0 is free, 1 is taken)
2: value of program variable x (initially 1)

lIansformations~
t, : (Zocl = 1 A lock = 0) * rzoc1 := 2; lock := 1)
t; : jlocl = 2) * {Zocl :‘= 3;; := 0) -
t3 : (rod = 3) j {Zocl := 4;Zock := 0)
tl : (Zoc2 = 5 A lock = 0) j {Zoc2 := 6;Zock := 1)

State Space (fragment): state = (Zocl, Zoc2, lock, z)

(15,O,l)t-‘- (25,1,1) __tz_ (3JAO) % (45~W-x --)

Jlta
(L61.1) (4,6,1,0)

Figure 2: Example of Transition System ,-

l 5’ = D1 x ..: x D, is a set of states. A state is an
assignment of values to a finite set of state variables
u1 , . . . , u,, where each u; ranges over a ibrite domain
D;.

a T C 5’ x S is a transition relation. T is defined by
a set of guarded transformations ti : g; + hi of the
state variables, where gr : S + {true, false}, called the
guard, is a boolean predicate on states, and iii : S +
S, called the transformation, is a map from states to
states:

(s, s’) E T if-f Xg;(s) A s’ = hi(s)

When g;(s) is true, we sometimes write t;(s) for hi(s).

A trace of a transition system is a sequence of transitions:

(so, Sl), (Sl,SZ), . . . , (Sn--1,Sn)

suchthat (si,s;+r)ETforalli=O,...,n-1.
The method of constructing the transition system repre-

senting a Java program is similar to the method presented in
[5] for constructing the (untimed) transition system repre-
senting an Ada program. State variables are used to record
the current control location of each thread, the values of key
program variables, and any run-time information necessary
to implement the concurrent semantics (e.g., whether each
thread is ready, running, or blocked on some object). Each
transformation represents the execution of a byte-code in-
struction for some thread. A depth-first search of the state
space can be used to enumerate the reachable states for anal-
ysis; at each state, a successor is generated for each ready
thread, representing that thread’s execution. The small ex-,
ample in Figure 2 gives the flavor of the translation.

The Java heap must also be represented. We bound the,
number of states in the model by limiting the number of
instances of each class (including Thread) that may exist
simultaneously. For this paper, we assume these limits are
provided by the analyst. If class C has instance limit, kc,,
when a program attempts to allocate an instance of class C

3

at a point where ICC instances are still accessible (Java uses
garbage collection), the transition system goes to a special
trap state-the model does not represent the behavior of the
program beyond this point. As discussed in the introduc-
tion, such a restricted model can still be useful for fmding
errors: ‘I

Consider again the bounded buffer example in Figure 1.
We could generate a restricted model of this program by
representing all the variables but restricting their ranges.
By restricting the variables representing the contents of the
buffer to {O,l} and the variables representing the size of
the buffer to (0, 1,2}, we would obtain a very restricted but
interesting model of the program (i.e., one that would likely
contain any concurrency errors).

4 State Space Reductions

The transition system (S, T) produced by the method
sketched in Section 3 is much larger than required for most
analyses and is often too large to construct. Instead, we con-
struct a reduced tran,sition system (S*,T’) where S’ C S
and use this for the analysis. We reduce the size of the
transition system using virtual coarsening [1], a well-known
technique for reducing the size of concurrency models by
amalgamating transitions. Since we are using an interleav-
ing ,model.of concurrency, reducing the number of transitions
in each thread greatly reduces the number of possible states
by eliminating the interleavings of the collapsed transition
sequences.

The reduced transition system is constructed by classify-
ing each transformation defkring T as visible or invisible and
then composing each (maximal) sequence of invisible trans-
formations in a given thread into the visible transformation
following that sequence. ,The transitions and states gener-
ated by these composed transformations form (S*, T*). For
example, in Figure 2, we might replace transformations t2

and t3 with a single transformation t2 o t3 that updates x and
releases the lock, we could then eliminate control location 3
from the domain of 10~1.

We assume the requirement to be verified (tested) is spec-
ified as a stuttering-invariant formula f in linear temporal
logic (LTL) [ll], the atomic propositions of which are of the
form u; = d; where y; is a state variable and d: E Di. State-
ment s +=(s,r) f denotes that formula f is true in state s of
transition system (S,T). To be useful, the reduced transi-
tion system should ’

: 1. Be equivalent to the original transition system for the
‘I purpose of uerification. Specifically, for all s E S

S k(s* ,T*) f ifbad OdY “s /=(S,T) f.

2. Be construct&e directly from the program, without
first constructing (S, T).

Note that the reduced model constructed is specific to the
formula f, thus the reduction must be repeated for each
property verified.

We classify a transformation as invisible and compose
it with its successor transformation(s) only if we can show
that this cannot change the truth value of f. An LTL for-
mula is constructed by applying temporal operators to state
predicates, which are boolean combinations of atomic propo-
sitions. Let p1 ,...,pm be the state predicates of f. An
f-observation in a state s denoted Pf(s) is a vector of m
booleans giving the value of (pr , . . . ,p,) in s. A transforma-
tion g + ‘h is f-observable if it can change an f-observation:

3; E s.s(s) A (d4 # W(s)))

Each, trace (se,sr), . . . , (~~-1,s~) defines a sequence of f-
observations P,(ss), . . . , Pf(sn), which we reduce by com-
bining consecutive identical (i.e., stuttered) f-observations.
It is easy to show that the set of these reduced f-observation
sequences determines the truth value off in se.

Therefore, to satisfy condition 1 above, we construct the
reduced transition system such that it has the same set of
reduced f-observation sequences as the original transition
system. To satisfy condition 2, we must do this without
constructing (3, T); we must classify transformations as vis-
ible/invisible based on information obtained from the pro-
gram code. Below, we.give two cases in, which transforma-
tions representing, Java code can be made invisible. In both
cases, we need information about the structure of the heap
at run-time to apply the reduction. We show how to collect
this information in Section 5.

4.1 LocaPVariable Reduction

Some state variables are accessed only when a particular
thread is running. For example, some program variables are
locally scoped to a particular thread by the language seman-
tics. Also, the state variable recording the control location
of a thread is accessed only by that thread. Transformations
that access exclusively such state variables may be made in-
visible provided they are not f-observable.

To understand why, consider transformation’ t in Fig-
ure 3. Assume t is not f-observable and accesses only vari-
ables local to the’ thread whose code it represents. Let t’
represent code in this same thread that can be executed
immediately following the code represented by t. We can
replace t and t’ with to t’ (if there ‘are multiple successors
to t, say t: for’i’k l,..., n, then we replace t and t: for
i= 1 , . . . , n with to t: for i = 1,. . . , n). To prove that this
reduction does not change the truth value of f, we must
show that the resulting transition system has the same set
of reduced f-observation sequences as the original transition
system.

For any state sr in ‘which t is enabled, there may be one
or more sequences of transformations tl, . . . , tn represent-
ing the execution of code from other threads (i.e., not the
thread of t). Combining t and t’ eliminates traces in which
hr..., t, occurs between t and t’. This does not eliminate
any reduced f-observation sequences, however, since exe
cuting tl,..., tn before t must produce the same reduced f-
observation’ sequence as executing t before tl , . . . , t,; Since
t accesses only variables that tl, . . . , t, cannot access, t is
independent of tl , . . . , tn and commutes: for any state sr
in which both t and tl,..., n = tl o . . . o t, are enabled,
to t1)..., n(a) = h,..., n o t(sl). Since t is not f-observable,
the trace obtained by9executing t, tl, . . . , t,, t’ must have the
same reduced f-observation sequence as the trace obtained
by executing tl ,..., &tot’. ,‘/

To use this technique, we would like to determine what
variables are local to a particular Java thread (i.e., can only
be’ referenced by that thread). A program variable is local
to a thread if:

1. The variable is stack allocated (i.e., is declared in a
method body,or as a formal parameter).

2. The variable is statically allocated and referenced by
at most one thread.

3. The variable is heap allocated (i.e., an instance vari-
able of an object) and the object is accessible onlyfrom
one threaf. For example, the variable next of class

Before reduction After reduction

4 t1 t* 4’ s2 -...--) s; tot’ t 0 t’

Figure 3: Reduce by ;combining t and t’

Producer in Figure 1 is accessible only by the producer
thread.

Case 1 is trivial to detect. Case 2 is more difficult due to
the dynamic nature of thread creation, though the follow-
ing conservative approximation is reasonable: a static vari-
able may be considered local if it is accessed only by code
reachable’ from main0, or only by code reachable from a
single run0 method of a class that is passed to a Thread
allocator at most once (the allocator is outside any loop or
recursive procedure). For example, if the variable next were
a static member of class Producer, then since that variable is
accessed only by code reachable from the Producer’s run0
method, and since there is only one instance of Producer
created, this analysis could determine next is local to the
producer thread. Case 3 is the’ most difficult. Clearly if the
object containing the variable is accessible only from stack
or statically allocated variables that themselves are local to
a specific thread (cases 1 and, 2), then the heap allocated
variable is also local to that thread, but determining this
requires information about the accessibility of heap objects
at run-time.

4.2 Lock Reduction

We propose another technique for virtual coarsening based
on Java’s locking mechanism. A transformation that up
dates a variable z of an instance of class C may be made
invisible provided it is not f-observable and there exists an
object e, such that any thread accessing x is holding the
lock of 1, (!& may be the instance of C containing x). We
say the lock on L, protects x. The intuition behind this re-
duction is that, even though other threads may access a,
they cannot do so until the current thread releases the lock
on .t?,, thus any changes’to x need not be visible until that
lock is released.

The correctness of this reduction can be shown using
the diagram in Figure 3. The reasoning is similar to that
for the local variable reduction. Assume the only non-local
variables t accesses are those that are protected by locks.
The thread whose code t represents must hold the locks for
these variables at si. Therefore, although there exist trans-
formations representing code in other threads that accesses
these variables, such transformations cannot be in the se-
quence tl,..., t, since the other thread would block before .
reaching such transformations.

Assuming f does not reference the state of a shared ob-
ject, this reduction allow us to represent complex updates
to such objects with two transformations. In the bounded

‘A statement s is reachable from a statement S’ if there exists a
path in the program’s control flow graph from s’ to s (i.e., a thrend
might execute 3 after executing 8’).

4

Heap Structure:

public clam Progrmner I
protected long hours = 80;
protected double salary = 60000.0;
protected Object hoursLock = new Object.0;
protected Object salarylock = nev ObjectO;
public void updateHours(long nevHours) C

synchronized (howaLock) C
hours = newHours;

3
3
public void updateSalary(double muSalary). <

synchronized (salaryLock) I
.W,lq = nevsalary;

3
3

,,

3

Figure 4: Example of Splitting Locks

buffer example, each execution of put 0 or get 0 ,updates
several variables, yet we can represent each call with a trans-
formation that acquires the lock and a transformation that
atomically updates the state of the buffer and releases the
IO&

In order to apply these reductions, we need to determine
which lochs protect which variables. Clearly if an instance
variable of a class is only accessed within synchronized meth-
ods of that class, then the variable is protected by the lock of
the object in which it is contained. Nevertheless, itiis com-
mon for variables to be protected by locks in other objects.
For instance, in the bounded buffer example, the array ob-
ject referenced by instance variable data is protected by the
lock on the enclosing IntBuff er object. This very common
design pattern is known as containment [lo]: an object X is
conceptually2 nested in an object Y by placing a reference
to X in Y and accessing X only within the methods of Y.

Another common design pattern in which lochs protect
variables in other objects is splitting locks [lo]. A class might
contain independent sets of instance variables that may be
updated concurrently. In this case, acquiring a loch on the
entire instance would excessively limit potential parallelism.
Instead, each such set of instance variables has its own loch,
usually an instance of the root class Object. An example is
given in Figure 4; two threads could concurrently update a
Programmer’s hours and salary.

In general, dete r-mining which lochs protect which vari-
ables requires information about the structure of the heap
at run-time. Collecting this information is the topic of the
next section.

5 Reference Analysis
’ ,

In this section, we describe a static analysis algorithm that
constructs an approximation of the run-time heap struc-
ture, from which we can collect the information needed for
the reductions. Understanding run-time heap structure is
an important problem in compiler optimization since ac-
curate knowledge of a&sing can improve many standard

‘Java does not allow physical nesting of objects.

optimizations. One common approach is to construct a di-
rected graph for each program statement that represents a
iluite conservative approximation of the heap structure for
all control paths ending at the statement. Several different
algorithms have been proposed, differing in the method of
approximation.

Our algorithm is an extension of the simple algorithm
given by Chase et al [4], which uses this basic approach. We
extend Chase’s algorithm in three ways. First, we handle
multi-threading; Chase’s algorithm is for sequential code.
Second, we distinguish current and summary heap nodes;
this allows us to collect information on one-to-one relation-
ships between objects, Third, we handle arrays.

5.1 The Program

For the reference analysis, we represent a multi-threaded
program as a set of control flow graphs (CFGs) whose nodes
represent statements and whose arcs represent possible con-
trol steps. There is one CFG for each thread: one CFG for
the main0 method and kc identical CFGs for each run0
method of class C (recall ko is the instance limit for class
C’). In this paper, we do not handle interprocedural anal-
ysis. ‘We assume all procedure (method) calls have been
inlined; this limits the analysis to programs with statically
bounded recursion. Polymorphic calls can be &lined using a
snitch statement that branches based on the object’s type
tag; since this tag is not modeled in our analysis, all methods
to which the call might dispatch will be explored.

In our algorithm, we require the concept of a loop block.
For each statement s, let loop(s) be the innermost enclosing
loop statement s is nested within (or null if s is not in any
loop). The set {s’lloop(s’) = loop(s)} is called the loop block
of s.

Our analysis models only reference variables and values.
References are pointers to heap objects. A heap object con-
tains a fixed number of fields, which are references to other
heap objects (we do not model fields not having a reference
type). For class instances, the number of fields equals the
nurpber of instance variables with a reference type (possibly
zero). For arrays, the number of fields equals zero (for an
array of a primitive, type) or one (for an array of references);
in the latter case allarray elements are represented by a
single field named Cl.

In Java, references can be manipulated only in four ways:
the new allocator returns a unique new reference, a field can
be selected, a field can be updated, and references can be
checked for equality (this last operation is irrelevant to the
analysis). ,

5.2 The Storage Structure Graph

A storage structure graph ,(SSG) is a fmite conservative ap-
proximation ~of all possible ‘pointer paths through the heap
at a particular statement s. There are two types of nodes
in an SSGi variable nodes and heap nodes. There is one
variable node for each statically allocated reference variable
and for each stack allocated reference variable in scope at
s. There are one or two heap nodes for each allocator A
(e.g., new CO) in the program, depending on the location
of statement s in relation to A. Ifs is within the loop block
of A or in a different thread/CFG than A, the SSG for s
contains a current node for A, which represents the current
instance of class C-the instance allocated by A in the cur-
rent iteration of A’s loop ;block. For all statements s, the
SSG for s contains a,summary node for A, which represents

,

5

--_._ __I__-_.--_.- ._-__

/I ckiss with two fields
class c (

cr; .?
CL: :,,

I
IIMethoddody
(C x,y,z: /I stack vliriables

1: ,x=newC();’ t ;
while (...) (/

2: y = new CO;
3: ,I y.f=x; i ,-
4: y.g=z; <-
5: z=y;

1

I ,.~

b

1 ! Figure i: SSG for.&atenient 4

the summ&ked instances of class Fall instahces allocated
by A ih completed &era&or& ok A’s loop’block.

Each heap no’he J&s & fixed numbkr of fields fro& which
edges may be directed. Each e&e in t&L SSG for a stat?
ment s repres+,s a‘possible reference value at s. Edges
are, directed fro? yariible nodes and fields of heap nbdes
towards heap nodes. In general, more ‘than one edge may
leave a v&Able node or heap node field since different paths
to s may Sesult iA diffe&nt valueg for that reference. Even
if there is only ?pe,path to s, there may be multiple ,edges
lea@g a summary node or arra$ field,since such nodes rep-
resent multiple %riables at runltime.

ti example SSG is shown in F$ure 5. tie elide parts of
the code not, relevant to the analysis with . . . and prepend
line ntibers to s&ple ,+atem’enti for identification. Vari-
able nodes are s,hown as cirbles, heap nodes as rectangles
with a slot for ea+ field. Heap nodes are labeled +h the
name of the clys, prefix+ with the’ statement number of the
allocator. PSumma$, nodes are saxed-with an asterisk(*).
Thus 2:C* represents the summary,?ode for the allocator of
class C at isqatement 2. We often omit disconnechd nodes
(e.g., the summary node for axi allbcator that is not :rn a
loop). Note that the linked list is represeFt.ed with,? self
loop on nod: 2:C*.

Like Chase et al [4], we’distinguisti objects of the same
class that were allocated by diffbrent allpcators. This heuris-
tic is based on the observ+ion‘that objects allocated by a
given allocator tend ‘to be treated similarl$ For example,
both Employee and Meeting objects might contain a nested
Date object allocated in their respective constructors (i.e.,
there are two Date allocators). By’ distinguishing the two
kinds of Date objects, the analysis co$d determine that a
Date inside of,an Emp&opee cannot be affected when the Date
inside of a Meeting is updsted. ,

A conser&ive SSG for a statement s contains the follow:
ing information about, the structure of {he heap at run-time:

1. If there exists’an’edge from (he node for variable X to
6 he& node for allocator A, then after some execution

, ’ path lending at s (i.e., s has just been executed by the
‘ thread of its CFG), X Fay point’ to,an object allo-

cated by 4. Otherwihe, X &inot’point to tiy object
allocatedbyA., ,, ” ”

2. If there exists an edge from field F of the current heap
node foi,allocator B to a heap node for allocator A,
then after some execution path ending at s, the F field

for the current instance allocated by B may point to
an object allocated by A. Otherwise; the F field for
the current, instance allocated by B cannot point, to
any object allocated by A.

3. If there exists an edge from field F of the summary
heap node for allocator B to a heap node for allocator
A, then after some execution path ending at 8, the F
field for some summarized instance allocated by B may
point to an object allocated by A. Otherwise, there is
no summarized instance allocated by B whose F field
points to any object allocated by A.

4. For each of the above three cases, if the heap node for
allocator A is the current node, then the reference must,
be to the current instance allocated by A, otherwise
the reference is to some summarized instance allocated
by A.

Note that the useful information is the lack of an edge. One
graph is more precise than another if it has a strict subset
of its edges.

5.3 The Algorithm * ’

We use a modified dataflow algorithm to compute, for each
statement, a conservative SSG with as few edges as possi-
ble. Initially, each statement has an SSG with no edges.
A worklist is initialized to contain the start statement of
main(>. On each step, a statement is removed from the
head of the worklist and processed, possibly updating the
SSGs for that, statement and all statements in other CFGs.
Ifany edges are added to the statement’s SSG, the successors
of the statement in its CFG and any dependent statements
in other CFGs are added to the tail of the worklist. One
statement is dependent on another if they may reference the
same v&able at run-time:, they select the same static vari-
able or instance variable. The algorithm terminates when
the worklist is empty.

To process a statement, we employ three operations on
SSGs: join, step, and summarize. First,, we compute the pre-
SSG for Che statement by joining the SSGs of all immediate
predecessors inits CFG. SSGs are joined by taking the union
of their edge sets (this ‘is an any-paths analysis). The pre-
SSG is then updated by the St&p operation (discussed below)
in a manner refiecting the semantics of the statement to
prdduce the post-SSG. Finally, if the statement is the last,
statement of a loop block, the post-SSG is summarized to
produce the new version of the statement’s SSG, otherwise
the post-SSG is the new version. We summarize an SSG by
redirecting all edges to/from the current nodes of allocators
within the loop block to their corresponding summary nodes
(see the SSGs for statement 6 in Figure 6).

The step operation uses abstract interpretation to up-
date the,SSG (an abstract representation of the run-time
heap) according to the statement’s semantics. only es-
signments to reference variables need be considered; other
statements cannot add edges to the SSG (i.e., the post-SSG
equals the pre-SSG). Each pointer expression has an I-value
and an r-value, defined as follows. The l-value of a varinble
is the variable’s node. The l-value of a field selector expres-
sion r.f is the set of f fields of the nqdes in the r-value
of x. The. r-value of an expression is the set of heap nodes
pointed to from the expressidn’s l-value, or, in the case of
an allocator, the current node for that allocator.

The semantics of an assignment el = e2 depend on
whether the left hand side is a stack variable or a local static

6

variable. If er is either a stack variable or a local static vari-
able, we perform a strong update by removing all edges out
of the node in I-value(ei) and then adding an edge from the
node in I-value(e+) to each node in r-value(ez). Otherwise,’
we perform a ureok update by simply adding an edge from
each node/field in I-vaZue(el) to each node in r-ualue(ez).

Any edges added to a statement’s, SSG (for a step or
summarize operation) are also added to the SSGs for all
statements in other CFGs; we assume threads may be sched-
uled arbitrarily, ‘thus any statement in another thread may
witness this reference value.

The executiori of a thread allocator new Thread(x) is
treated as an assignment of I to a special field,runuable in
the Thread object (this reflects the inlining of the~construc-
tor for Thread). Let X be the ‘set of classes to which the
object referenced by x might belong (i.e., all subclasses of
the type of x). When the allocator is processed,, we add to
the worklist the start statement of every CFG for a run0
method of a class in X (i.e., the start statement of a CFG
is implicitly dependent on every thread allocator that might ’
start3 the thread). I

When a CFG for a run0 method of a class C ascesses
aniinstance variable of the current object this (e.g., the
expression next in the Producer’s run0 method of Figure 1)
the r-value of this is the set of heap nodes for class dpointed (
to by rmmable fields of heap nodes for class Threat (i.e., we
do not associate a given thread/CFG with a specific thread
allocator).

5.4 Computing One-to-One Relationships

The summarized,information ,gathered by the above analysis
is not sufhcient for the lock reduction. An SSG edge from the
summary node for an allocator A to the summary node for
allocator B indicates that objects allocated by A’may poixit
to objects allocated by B. We ,need to know if each object
allocated by A points to a difierent object allocated by B;
only then would holding the lock of an A object protect a
variable access h the nested B object.

We can conservatively estimate this information’ when
SSGs are summarized and updated as follows. An edge
from the summary node for A to the summary node for’.
B is marked one-tocone if each A points to a different B at’
run-time. If A and B are in the same loop block, then an
edge from some field’of the summary node of A to the s&n-
mary node of B, when first added to an SSG by a summarize
operation, is marked one-to-one. Ifthe field of the summary
node of A is subsequently updated by a step operation in
such a way that another edge to the summary node of B
would have been added, then the edge is no longer ‘marked
one-to-one.

This method is based on the observation that nested ob,
jects are almost always allocated in the same loop block as
their enclosing object (often in the enclosing object’s con-
structor). Given a constructor or loop body that allocates
an object, allocates one or more nested objects, &+iks
these objects together, the one-to-one relationships between
the objects are recorded in the SSG as arcs between the
current nodes of the,allocatom. When these nodes are sums
marized at the end of the loop block, this information is
then preserved as annotations on the arcs between the sum-
mary nodes. In fact, this is the motivation for distingui’shing

sTechnicallv. the thread is started when its start0 method is
called, but since we are not using any thread scheduling informa-
tion, assuming the thread starts when allocated produces the same
SSGs.

current from summarized instances/nodes.

5.5 Example

Consider the Java source in Figure 6. The first SSG in
Figure 6 is the post4SG for statement 6 the fhst time it
is processed (i.e., before any summary information exists).
The second SSG is the result of summarizing this SSG. Note
that, since nodes 3:B and 5:A are summarized together, the
arc from field a2 of 3:B* to 5:A* is labeled as one-to-one
(l-l), but since 2:A is a current node, there is no one-to-one
relationship between field a1 of 3:B* and 2:A (nor would
there be if a loop were added around this code and 2:A was
summarized).

The last SSG is the final SSG for statement 9 (the end
of the method). After statement 7, the Thread allocated
there may have access to the A allocated by statement 2,
while after statement 8, the al field of some B may point to
some A allocated at statement 5. Note that stack variable
b is out of scope at statement 9 and thus can be removed
from the SSG. The arc from 2:A to 0:A is added by state-
ment 0, which is placed on the worklist when statement 7
is processed. Although we have not shown the fhml SSGs
for statements 1-8, all these SSGs would contain this arc,
even though the reference value it represents cannot appear
until after statement 7, no thread scheduling information is
considered.

5.6 Complexity

Given a program with S statements and V variables and
allocators, our algorithm must const~ct S SSGs each con-
taining O(V) nodes aud up .to O(V2) edges. The running
time to process a statement is (at worst) proportional to the
total number of edges in all SSGs, as is the number of times
a statement can be processed before a 6xpoint is reached.
Thus the worst case runmng ‘time is O(S2V4). Here, S is
the number of statements after inlining all procedure calls,
which could produce an exponential blowup in the number
of statements.

Despite this complexity, we do not anticipate the cost of
the reference analysis to be prohibitive. First, based on the
application ,of the algorithm to several small examples, we
believe the average complexity to be much lower. SSGs are
generally’ sparse; many edges in a typical SSG would vio-
late Java’s type system and could not be generated by the
analysis. Also, very few edges are added to a statement’s
SSG after it has been processed once, thus each statement is
typically processed only a few times. Second, S and V refer
to the number of- modeled statements and variables--in a
typical analysis, only a fraction of the program will be mod-
eled. The reference analysis does not model variables hav-
ing primitive (i.?; non-reference) types, nor need it model
statements mampulating such variables exclusively. Also, a
program requirement might involve only- a small subset of
the program’s classes; the rest of the program need not be
represented.

-5‘.

6 Applying the Reductions

In this section, we explain how to use the information col-
lected by the reference analysis to ,apply the local variable
and lock reductions.

7

class A implements Rumable C
A a3;

void run0 C
0: a3 = nev A();

1
>
class B I

A al;

i$lt’h, c
this.4 = a;
thia.a2 = new A();

v
1
class Hain I IS /,

static B III x;
static void main(...) C

1: x = new BC..;I;
2: Aa= new A(); ’

while, (...I C
3: Bb = nw B(a);

I // inlined constructor
4: b.ai = a; ,’

6: b.a2 = new AO; ’
>, :,

6: xc...3 = b;
)
if (... ‘1

I: (n-w Thread(a)) .startO i
&%3

6: xC...l+ E xc..+~2:
9: >

3

6: (before summary, fmt iteration)
t

l:B[I .,

I:BR /
I

Figure 6: Reference Analysis Example

6.1 Local Variable Reduction

Applying the local variable reduction ‘is straightforward.
The set, of heap nodes in an SSG that are local to a given
thread are those that are accessible only from stack or static
variables local to the thread. Ah heap variables are accessed
with expressions of the form ref.id where ref is a reference
expression and id is the name of the instance variable. The
variable accessed by such an expression is local to the thread
if the nodes in the r-value of ref are local to the thread in
the pm-SSG for the statement.

Note that heap variables may be local for some state-
ments and non-local for others! A common idiom is for an
object to be allocated, initialized, and then made available
to other threads (e.g., the IntBuff er object of the example
in Figure 1). The reference analysis can determine that, the
instance variables of such an object are local until the object
is made available to other threads.

6.2 Lock Reduction

Applying the lock reduction is more complex. We need to
determine whether a variable is protected by a lock. In
general, the relationship between a variable and the lock
that protects it may be too elaborate to determine with
static analysis. Here, we propose a heuristic that we believe
is widely applicable and, in pa&c&r, works for the locking
design patterns given in [lo]. The heuristic assumes that
the relationship between the object containing the variable
and the object containing the lock matches the following
general pattern: either the lock object, is accessible from the
variable object, or vice versa, or both are accessible from a
third object, or the lock and variable are in the same object.

This pattern can be expressed in terms of three roles:
the root, the lock, and the uariable. The lock object con-
tnins the lock, the variable object contains the variable, and
from the root object, the other two objects are accessible.
Each role must be played by exactly one object, but one ob-
ject may play multiple roles. For the expression dataCi.1 in
the bounded buffer example, the IntBuffer object is both
the root and the lock object, while the int array referenced
by data is the variable object;. For the expression count,
the IntBuffer object plays all three roles. For the expres-
sion salary in the splitting locks example of Figure 4, the
Programmer object pIays the root and variable roIes, while
the Object referenced by sala!ryLock plays the role of lock.

We consider all static variables to be fields of a special
environment object. called env, which can play’ the roles of
variable and root, but not the’role of lock. This generalizes
the pattern to include the case where the lock object, or
the variable object are accessible from static variables, and
the case where the variable is static. Also, we fully qualify
all expressions by prepending this to expressions accessing
variables in the current instance, and by prepending env to
all static variable accesses.

For each static/heap variable, we want to determine
whether there exists a lock that protects the variable (i.e.,
any thread accessing the variable must be holding the lock).
Static variables are represented by variable nodes, heap vari-
ables by fields of heap nodes, and locks by heap nodes in the
SSG. Essentially, we use the expressions accessing the vari-
abIe and Iock to identify the lock object; we can interpret
the expressions (abstractly) using their SSGs.

Formally, for each static/heap variable u, we want to
compute Protect(u): the set, of locks protecting u. For each
such u, let Access(v) be the set of program expressions that

may access u; these sets can be constructed during the ref-
erence analysis. For each expression E, in Access(u), we
compute Protect(v, E,): the set of locks the thread is hold-
ing at Ev protecting V. Since a lock must protect a variable
everywhere:

Protect(u) =
n

Protett(u, E,)

e,~Accesq~)

lf the lock is a summary node, then the variable must be
a field of a summary node; the interpretation is that each
variable object is protected by a unique lock object.

Given. an expression E, accessing V, we compute
Protect(u, E,) as follows. We say Er is a lock expression
at E,, ifit is the argument to some enclosing synchronized
statement. For each Et, we define a triple (E,, St, S,) where
E, is the root expression, which is the common prefix of EC
and E,,, SC is the lock selector, which is the part of EC not in
Ep, and S, is the variable selector, which is the part of E,
not in Er and with the final selector removed (i.e., E,& is a
reference to the object containing u, not u itself). For exam-
ple, consider the expression hours in method updateHours in
Figure 4. The fully qualified expression4 accessing the vari-
able is this.hours, a lock expression is this.hoursLock,
and this pair yields the triple (this, hoursLock,X). Note
that 5’~ = A indicates the lock and root objects are the same,
while S V = X indicates that the variable and root objects are

. the same.
Given E, and (Ep, St, A), we identify a candidate lock e

in the SSG as follows. For an SSG node n and a selector S,
n.S is the set of nodes reached from n by following S, while

S-’ (u) = {nlu is. a field of an object in n.S}

is the set of SSG nodes such that applying selector S to these
nodes may reach the object containing variable u. First, in
the pre-SSG for E,, we compute the set of possible root
objects for Ev’s access to u:

R = r-uolue(E,.) n S;‘(u)

lf R contains exactly one node, then this node is the candi-
date root r and we compute the set of possible locks L = r.5’1
in the pre-SSG of Et. lf L contains exactly one node 1, then
this node is the candidate lock.

We include -f in Protect(u, E,) if we can deduce from the
SSGs that, for each instance of u at run-time, there is a
unique instance of 1 held by the thread. Note that this does
not follow immediately since r, 1, and the SSG nodes on the
paths from r to L and from r to u might represent multiple
objects at run-time. Nevertheless, we can still conclude that
for each variable represented by u at run-time there is a
unique lock represented by .fZ if both of the following are
true:

1. For each variable represented by u at run-time, there
is a unique root object represented by r. This holds
provided S, = A, r is a current node, or all arcs on
the path selected by S,, are on&o-one arcs between
summary nodes.

2. For each root object represented by r at m-time,
there is a unique lock object represented by e. This

‘In oar analysis, the method will have been inlined and the this
variable replaced with a new temporary holding this implicit param-
eter. In addition, a simple propagation analysis can be used to allow
recognition of the pattern even if multiple selectors are decomposed
into a series of assignments (e.g., r.f.g expressed as tl = x.f; t1.g).

holds provided that St = X, e is a current node, or
all arcs on the path selected by St are one-to-one arcs
between summary nodes.

A variable u is protected if Protect(u) is nonempty. A trans-
formation may be made invisible if it is not f-observable
and all variables it might access are protected or local.

Note that inaccuracy in the reference analysis leads to
a larger model, not an incorrect model. If we cannot de-
termine that a variable is local or protected by a lock, then
a transformation accessing that variable will be visible; the
transition system will have more states, but, will still be rep-
resent all behaviors of the (possibly restricted) program.

6.3 Example

Consider the bounded buffer example in Figure 1. The SSGs
for all statements in the producer and consumer run0 meth-
ods are isomorphic to the heap structure shown at the top of
the figure (there would also be nodes for the stack variables).
Room these SSGs, we can deduce that variable next in the
Producer object is local to the producer thread. Thus, for a
formula f that does not depend on next, the transformation
incrementing next may be invisible.

Also in the bounded buffer example, the variable
data[. . .I in the array object and all the instance vari-
ables of the IntBuffer class are protected by the lock of
the I&Buffer object. Thus, for a formula that does not
depend on these variables, the sequence of transformations
representing the methods put0 and get (1 may be com-
bined into two transformations: one to acquire the lock, the
other to update the variables and release the lock.

Although a complete program is not shown for the split-
ting locks example, of Figure 4, each allocator for Programmer
would produce an SSG subgraph isomorphic to the heap
structure shown at the top of the figure. The arcs from
a summary Programmer node to its Object nodes would be
one-to-one. The analysis could determine that each instance
variable hours is protected by the Object accessible via field
hoursLock

7 Conclusion

We have proposed a method for using static pointer anal-
ysis to reduce the size of finite-state models of concurrent
Java programs. Our method exploits two common design
patterns in Java code: data accessible by only one ttiead,
and encapsulated data protected by a lock.

The process of extracting models from source code must,
to some ‘degree, be depended on the source language. Al-
though our presentation was restricted to Java, many as-
pects of our method are more widely applicable and could
be used to reduce finite-state models of programs with heap
data and/or a monitor-like synchronization primitive (e.g.,
Ada’s protected types).

The method is currently being implemented as part of a
tool intended to provide automated support for extracting
finite-state models from Java source code. Although we have
no empirical data on the method’s performance at this time,
the effectiveness of virtual coarsening for reducing concur-
rency models is well known, and the manual application of
the method to several small examples suggests that many
transitions can be made invisible for a typical formula.

With the arrival of Java, concurrent programming has
entered the mainstream. Finite-state verification technology
offers a powerful means to find concurrency errors, which

9

are often subtle and. difficult to reproduce. Unfortunately,
extracting the finite-state model of a program required by
existing verifiers is tedious and error-prone. As a result,
widespread use of this technology is unlikely until the ex-
traction of compact mathematical models from real soft-
ware artifacts is largely automated. Methods like the one
described here will be essential to support such extraction.

/ ‘

Acknpwledgerpents

Thanks are due, to George Avrunin for helpful comments on
a draft of this paper.

References

[1] E. Ashcroft and Z. Manna. Formalization of proper-
ties of parallel programs. Machine Intelligence, 6:17-41,
1971.

[2] G. S. Avnrpin, U. A. Buy, J. C. Corbett, L. K. Diion,
and J. C. Wileden. Automated analysis of concurrent
systems with the ,constrained expression toolset,. IEEE
Trans. Softw. Eng., 17(11):12047-1222, Nov. 1991.

[3] T. Bultan, J. ‘Fisher, and R. Gerber. Compositional
verification by model checking for counter examples. In
Ziel [14], pages 224-238. _

[4] D. R. Chase, M. Wegman, and F. K. Zadeck. Anal-
ysis of pointers and structures. In Proceedings of the
ACM SIGPLAN’SO Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 296-
310, June 1990.

[5] J. C. Corbett. Timing analysis of Ada ,tasking pro-
, grams. IEEE Trans. Softw. Eng., 22(7):461-483, 1996.

[6] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Pie-

’
tocol verification as a hardware design aid. In IEEE
International Conference on Computer Design, Otto-’
ber 1992.

[7] S. Duri, U. Buy, R. Devarapalli, and S. M. Shatz. Us-
ing state space reduction methods for deadlock anal-
ysis in Ada tasking. In T. Ostrand and E. Weyuker,

I editorsi Proceedings of the 1993 International Sympo-
i sium on Software Testing and Analysis (ISSTA), pages
51-60, New York, June 1993. ACM Press.

,/ i
[8] M. B. Dwyer and L. A. Clarke. : Data flow ,atmlysis

for verifying properties of concurrent programs. In
D. Wile, editor, Proceedings of the Second Symposium
on Foundations, of Software Engineering, pages 62-75,
Dec. 1994,

[9] D. Jackson and C. A. Damon. Elements of stylei Ana-
lyzing a software design feature with a counterexample
detector. In Ziel [14], pages 239-249. /

[lo] ,D. ‘Lea. Concurrent Programming in Java: Design
Principles and Patterns. Addison-Wesley, Reading,
Massachusetts, 1997.

[ii] 0. Lichtenstein and A. Pnueli. Checking that finite
state concurrent programs satisfy their linear specifica-

.li tions. In Proceedings of the Twelfth ACM Symposium
on the Priciples of Programming Languages, pages 97-

? 105, 1985.

PI

Cl31

[I41

10

S. P. Masticola and B. G. Ryder. Static ix&rite wait
anomaly detection in polynomial time. In Proceedings
of the 1990 International ‘Conference on Parallel Pro-
cessing, volume II, pages 78-87, 1990.

M. Young, R. N. Taylor, K. Forester, and D. Brod-
beck. Integrated concurrency analysis in a software de-
velopment environment. In R. A. Kemmerer, editor,
Proceedings of the ACM SIGSOFT ‘89 Third Sympo-
sium on Software Testing, Analysis and Verification,
pages 200-209, 1989. Appeared as Software Engineer-
ing Notes, 14(8). (’

S. Ziel, editor. Proceedings of the 1996 International
Symposium on Software Testing and Analysis (ISSTA),
ACM Press, January 1996.

