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Abstract

Testing is often performed frequently during develop-
ment to ensure software reliability by catching regression
errors quickly. However, stopping frequently to test also
wastes time by holding up development progress. User stud-
ies on real development projects indicate that these two
sources of wasted time account for 10–15% of development
time. These measurements use a novel technique for com-
puting the wasted extra development time incurred by a de-
lay in discovering a regression error.

We present a model of developer behavior that infers
developer beliefs from developer behavior, and that pre-
dicts developer behavior in new environments — in partic-
ular, when changing testing methodologies or tools to re-
duce wasted time. Changing test ordering or reporting re-
duces wasted time by 4–41% in our case study. Changing
the frequency with which tests are run can reduce wasted
time by 31–82% (but developers cannot know the ideal fre-
quency except after the fact). We introduce and evaluate a
new technique,continuous testing, that uses spare CPU re-
sources to continuously run tests in the background, provid-
ing rapid feedback about test failures as as source code is
edited. Continuous testing reduced wasted time by 92–98%,
a substantial improvement over the other approaches.

We have integrated continuous testing into two develop-
ment environments, and are beginning user studies to eval-
uate its efficacy. We believe it has the potential to reduce the
cost and improve the efficacy of testing and, as a result, to
improve the reliability of delivered systems.

1. Introduction

Wasted time during software development costs money
and morale. One source of wasted development time is re-
gression errors: parts of the software worked in the past, but

are broken during maintenance or refactoring. Intuition sug-
gests that a regression error that persists uncaught for a long
time wastes more time to track down and fix than one that is
caught quickly, for three reasons. First, more code changes
must be considered to find the changes that directly pertain
to the error. Second, the developer is more likely to have
forgotten the context and reason for these changes, making
the error harder to understand and correct. Third, the de-
veloper may have spent more time building new code on
the faulty code, which must now also be changed. If the er-
ror is not caught until overnight, these problems are exacer-
bated.

To catch regression errors, a developer can run a test suite
frequently during development. After making a sequence of
code changes, the developer runs the test suite, and waits
for it to complete successfully before continuing. This syn-
chronous use of the test suite leads to a dual inefficiency.
Either the developer is wasting potential development time
waiting on the CPU to finish running tests, or the CPU is
idle waiting for the developer to finish a sequence of code
changes, while regression errors potentially continue to fes-
ter, leading to wasted time fixing them down the road.

How can these two sources of wasted time be reduced?
The testing framework with which the test suite is built
could perhaps be enhanced to produce useful results in less
time, by changing the way that errors are reported or the or-
der in which they are run. The developer could test more fre-
quently (catching regression errors more quickly at the ex-
pense of more time waiting for tests), or less frequently (re-
versing the trade-off), in hopes of striking a better balance
between the two sources of wasted time.

Or the developer might use the test suite asynchronously,
using the processor cycles unused during development to
run tests. Without tool support, asynchronous testing means
that the developer starts the test suite, and continues to edit
the code while the tests run on an old version in the back-
ground. This is unsafe, however. If the test suite exposes an
error in the code, it may be an old error that no longer ex-
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ists in the current version of the code, and recently intro-
duced errors may not be caught until the suite is re-run.

1.1. Continuous testing

We introduce here the idea ofcontinuous testing, which
uses real-time integration with the development environ-
ment to asynchronously run tests that are always applied to
the current version of the code, combining the efficiency of
asynchronous testing with the safety of synchronous test-
ing. The developer never needs to explicitly run the test
suite. The process can be tuned, prioritizing tests and parts
of tests, to come as close as possible to presenting to the de-
veloper the illusion that the entire test suite runs instanta-
neously after every small code change, immediately notify-
ing the developer of regression errors.

We conducted a pilot experiment to experimentally ver-
ify our intuitions about continuous testing before proceed-
ing with our planned controlled user study. Are regression
errors caught earlier easier to fix? Does continuous testing
really promise a sizable reduction in wasted time, compared
to simpler strategies like test reordering or changing test fre-
quency?

To answer these questions, we needed both real-world
data on developer behavior, and a model of that behavior
that allowed us to make predictions about the impact of
changes to the development environment. The data came
from monitoring two single-developer software projects us-
ing custom-built monitoring tools to capture a record of how
the code was changed over time, when tests were run, and
when regression errors were introduced and later revealed
by tests.

Our model, which is central to our analysis, is a finite au-
tomaton where states represent both whether the code under
development actually passes its tests, and whether the devel-
oper believes that it does. Transitions among states are trig-
gered by events such as editing code (to introduce or fix er-
rors), running tests, and being notified of test results.

Used observationally, following the transitions triggered
by observed events in the recorded data, the model can
be used to infer developer beliefs about whether tests suc-
ceed or fail, distinguishing true accidental regression errors
from intentional, temporary, changes to program behavior.
Our analysis indicates a correlation between ignorance time
(time between the accidental introduction of an error and its
eventual discovery) and fix time (time between the discov-
ery and correction of the error). This confirms that regres-
sion errors caught earlier are easier to fix, and permits us
to predict an average expected fix time, given an ignorance
time. We were then able to calculate that wasted time from
waiting for tests and fixing long-festering regression errors
accounted for 10% and 15% of total development time for
the two monitored projects.

Used predictively, the model, together with the correla-
tion observed above, can be used to evaluate the effect a
change to the testing strategy or development environment
has on wasted time. In this case, the observed events are
altered to reflect a hypothetical history in which the new
technique is used, and the model is re-run on the new event
stream.

We evaluated three techniques for reducing wasted
time. The first technique is to (manually) run tests more
or less frequently. We discovered that the optimal fre-
quency, for the projects we studied, would have been
two to five times higher than the developer’s actual fre-
quency. The second technique is test prioritization, which
reduces test-wait time by more quickly notifying devel-
opers of errors. In our experiments, the impact of test pri-
oritization was non-negligible, but less than that of test
frequency. The third technique is continuous testing, intro-
duced above, which dominated the other two techniques
and eliminated almost all wasted time.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents our model
of developer behavior and beliefs Section 4 presents the
quantities measured, the methodology used to gather data,
and the specific development projects to which these meth-
ods were applied. Section 5 gives experimental results. Fi-
nally, Section 6 discusses future work to improve and fur-
ther validate continuous testing, and concludes.

2. Related work

Modern IDE’s (integrated development environments)
for Java such as Eclipse and IntelliJ IDEA, offercontinu-
ous compilation. The IDE maintains the Java project in a
compiled state as it is edited, speeding software develop-
ment in two ways. First, the developer receives rapid feed-
back about compilation errors on every save, allowing for
quick correction while that code is fresh in the developer’s
mind. Secondly, the developer is freed from deciding when
to compile, meaning that when it is time to run or test the
code, no intervening compilation step is necessary.

Henderson and Weiser [8] proposecontinuous execution.
By analogy with a spreadsheet such as VisiCalc, their pro-
posed VisiProg system (which they hypothesized to require
more computational power than was available to them) dis-
plays a program, a sample input, and the resulting output
in three separate windows. VisiProg treats a program as a
data-flow-like network and automatically updates the out-
put whenever the program or the input changes. Rather than
continuously maintaining a complete output, which would
be likely to overwhelm a developer, the test suite abstracts
the output to a simple indication of whether the output for
each individual test case is correct.
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Programming by Example [5, 10] and Editing by Exam-
ple [14, 13] can be viewed as varieties of continuous ex-
ecution: the user creates a program or macro (possibly by
providing input–output pairs), immediately sees its results
on additional inputs, and can undo or change the program
or macro in response. Our work differs in both its domain
and in abstracting the entire program output to the test out-
put, lessening the user’s checking burden. (The user is re-
quired to write tests, which behave as a partial specifica-
tion.)

The Extreme Programming methodology [2] emphasizes
the importance of unit test suites that are run very frequently
to ensure that code can be augmented or refactored rapidly
without regression errors. Continuous testing can be seen as
taking this approach to its logical conclusion.

While it is desirable to run complete test suites, that may
be too expensive or time-consuming. Regression test selec-
tion [11, 7, 18] and prioritization [23, 19, 22] aim to re-
duce the cost or to produce useful answers more quickly.
Test prioritization is a key enabling technology for realistic
continuous testing, and Section 5.4 compares several sim-
ple strategies. Our domain allows using data from previous
runs of the test suite to aid prioritization, which we focus
on here rather than data collected from coverage analysis of
the program and test suite.

Kim, Porter, and Rothermel [9] examine the impact of
testing frequency on the costs and benefits of regression
test selection techniques, by artificially creating develop-
ment histories that add defects to a working code base. Our
work differs by using real development histories, and focus-
ing on the impact on development time of changing test fre-
quency and other techniques.

Boehm [3] and Baziuk [1] have shown that in projects
using a traditional waterfall methodology, the number of
project phases between the introduction and discovery of
a defect has a dramatic effect on the time required to fix it.
We are investigating whether similar results hold on the or-
der of seconds rather than days.

Several other authors use terms similar to our uses of
continuous compilation, continuous execution, and contin-
uous testing. Plezbert [17] uses the term “continuous com-
pilation” to denote an unrelated concept in the context of
just-in-time compilation. His continuous compilation oc-
curs while the program is running to amortize or reduce
compilation costs and speed execution, not while the pro-
gram is being edited in order to assist development. Childers
et al. [4] use “continuous compilation” in a similar context.
Siegel advocates “continuous testing”, by which he means
frequent synchronous testing during the development pro-
cess by pairs of developers [20]. Perpetual testing or resid-
ual testing [16] (also known as “continuous testing” [21])
monitors software forever in the field rather than being
tested only by the developer; in the field, only aspects of

the software that were never exercised by developer test-
ing need be monitored. Software tomography [15] parti-
tions a monitoring task (such as testing) into many small
subpieces that are distributed to multiple sites; for instance,
testing might be performed at client sites. An enabling tech-
nology for software tomography is continuous evolution of
software after deployment, which permits addition and re-
moval of probes, instrumentation, or other code while soft-
ware is running remotely.

3. Model of developer behavior

Regression testing notifies a developer that an error has
been introduced. If the developer was not already aware of
the error, then he or she has the opportunity to correct it im-
mediately or to make a note of it, rather than being surprised
to discover it at a later time when the code is no longer fresh
in his or her mind. (Notification is useful not only in cases
where the developer wrongly believes that there is no er-
ror, but in cases where the developer believes there may be
an error, but doesn’t know which test fails, or why it fails.)
If the developer was already aware of the error, then the no-
tification confirms the developer’s beliefs but does not af-
fect his or her behavior. The notification is more useful in
the former case, where the error was introduced inadver-
tently or unknowingly, than in the latter case, where the er-
ror was introduced intentionally or knowingly.

Assessing the usefulness of continuous testing for real
development projects requires distinguishing between the
two situations. Querying for the developer’s beliefs regard-
ing how many and which tests may be failing is distract-
ing and tedious, affecting developer behavior and degrad-
ing quality of the answers.

Our approach is to unobtrusively observe developer be-
havior, then to infer, from developer actions, whether the
developer believed a regression error to be present. This ap-
proach does not affect developer behavior, nor does it suf-
fer from developer mis-reporting. The inferred beliefs are
not guaranteed to be an accurate characterization of the de-
veloper’s mental state; however, they do match our intuition
about, and experience with, software development.

This section describes two models of developer behav-
ior. Thesynchronous modeldescribes the behavior of a de-
veloper who only gets test feedback by running the suite
and waiting for it to complete before continuing devel-
opment. Thesafe asynchronous modelextends the syn-
chronous model to describe developer behavior when test
feedback on the current version of the code may be pro-
vided without the developer’s explicit invocation during de-
velopment (such as when the developer is using continuous
testing). (We do not here consider an unsafe asynchronous
model, in which a developer continues developing while
tests run in the background on an old version of the code.)
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Each model is a nondeterministic finite state machine.
States indicate developer goals and beliefs about the ab-
sence or presence of regression errors; events (edges be-
tween states) are actions by the developer or the develop-
ment environment. The synchronous model is a special case
of the asynchronous model in which no notifications of test
failures are ever received without explicit test invocation.

Both models have resemblances to the TOTE (Test-
Operate-Test-Exit) model of cognitive behavior [12]. In the
TOTE model, plans consist of an Image of the desired
result, a Test that indicates whether the result has been
reached, and Operations intended to bring reality closer to
the Image. Here, running the test suite is the Test, changing
the code to make it work is the Operation, and a success-
ful test run allows Exit. The test suite is an externally com-
municated Image of the developer’s desired behavior for the
program.

A model of developer behavior can be used in two dif-
ferent ways: observationally and predictively. When used
observationally, events (developer behavior and facts about
the state of the code) drive the model into states that indi-
cate the developer’s beliefs. When used predictively, both
states and actions are replayed into a model in order to in-
fer developer behavior under different conditions. This pa-
per uses the synchronous model both observationally and
predictively, and the asynchronous model predictively.

Section 3.1 informally describes the synchronous model
and the environment that it assumes. Section 3.2 presents
the synchronous model for a test suite containing a single
test. Section 3.3 extends the model to a test suite contain-
ing more than one test. Section 3.4 describes the safe asyn-
chronous model.

3.1. Assumptions and terminology

The synchronous model applies to developers using a
“guess-and-check” testing strategy. The developer changes
the source code until he or she believes that the software is
passing (theguessstage), then runs the test suite and waits
for completion (thecheckstage). If the test suite fails, the
developer has inadvertently introduced a regression error.
The developer iteratively tries to fix the error and runs the
tests, until no errors remain. Then the developer resumes
changing the source code. We believe that this methodol-
ogy is followed by many developers in practice. More rel-
evantly, it was followed in our case study. Our models also
account for the possibility that developers are following a
test-first methodology such as Extreme Programming [2], in
which a developer knowingly augments a working test suite
with a failing test case, and then fixes the code to make the
test pass.

The model assumes that the developer maintains an au-
tomated test suite that tests (part of) the software system’s
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Figure 1. Nondeterministic finite-state automaton (NFA)
for the synchronous model of developer behavior with a
test suite consisting of a single test (Section 3.2).

behavior. The developer may modify the source code or the
test suite at any point in time. It is possible that the tests
may be incomplete or incorrect with respect to some exter-
nal specification of the program behavior, but these kinds
of errors are not modeled. Our model ignores all points at
which a test is unrunnable — for instance, due to a compi-
lation error. A runnable test is eitherfailing or passing, de-
pending on what would happen if the test were run at that
instant using the developer’s current view of the code, in-
cluding modifications made in unsaved editor buffers. A test
that throws an unexpected runtime error is counted as fail-
ing.

3.2. Synchronous model for a single test

The nondeterministic finite-state automaton (NFA)
shown in Figure 1 models the synchronous develop-
ment process with respect to a single test case. The NFA
has five states:

stable The test is passing, and the developer knows it.
The developer is refactoring, adding new functional-
ity, working on an unrelated part of the code, or not
developing.

editing The developer has temporarily caused the test to be
failing, and knows it. The developer is in the middle of
an edit that is intended to make the test work again.

ignorance A regression error has been unknowingly intro-
duced. The test is failing, but the developer does not
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know it. The developer continues to act as if the test is
passing.

test-waiting The developer has started the test suite, and is
waiting for it to finish.

fixing The developer knows (from a test failure) that a re-
gression error has been introduced, and is working to
fix it.

In the absence of continuous testing, six observable
events map to transitions between the states in the model:

add test The test is first added to the test suite. This puts
the model in thestableor fixing state, depending on
whether the test is passing or failing. (For simplicity,
Figures 1 and 2 omit these events.)

run tests The developer starts running the test suite.
test fail The test suite reports that the test has failed, to-

gether with details of the failure.
test passThe test suite reports that the test has passed.
err The developer (intentionally or inadvertently) intro-

duces an error, making an edit that causes the previ-
ously passing test to fail.

fix The developer (intentionally) fixes an error, making an
edit that causes the previously failing test to pass.

The synchronous model forbids some plausible behav-
iors. For example, it lacks a state corresponding to the sit-
uation in which the code is passing, but the developer be-
lieves it is failing. Although such a state would bring some
symmetry to the model, we observed it to be very rare, and
it does not capture any behavior that we wanted to consider
in this research. As another example, thefix event always
occurs with the developer’s full knowledge. In reality, a re-
gression error might be accidentally fixed, but we believe
that such an event is uncommon and any such error is un-
likely to be a serious one. As a third and final example, a de-
veloper only bothers to run the test suite when unsure about
whether (some) tests fail, or when the developer believes
that the tests pass and wishes to double-check that belief.
The developer does not intentionally make a code change
that introduces a specific regression error and then run the
test suite, but without even trying to correct the error. (Note
that this situation of causing an existing test to fail is quite
different than augmenting the test suite with a new test that
initially fails: we specially handle adding new failing tests,
which is a common practice in test-first methodologies such
as Extreme Programming.)

The reason for these restrictions to the model is two-fold.
First, they make the model more closely reflect actual prac-
tice. Second, they enable resolution of nondeterminism. In
Figure 1, theerr event may happen with or without the de-
veloper’s knowledge, transitioning from thestablestate into
either editing or ignorance. (This also explain the differ-
ence between theediting andfixing states.) The nondeter-
minism is resolved by whether the developer fixes the error

before the next time the tests are run: afix event is inter-
preted as meaning that the developer knew that an error had
been introduced. Arun testsevent is interpreted as mean-
ing that the developer thought there was no error the whole
time.

3.3. Model for multiple tests

The model for a test suite containing multiple tests is
built by combining the model for each individual test in the
suite. Its state is determined as follows:

• If any test is inignorance, so is the combined model.

• Otherwise, if any test is infixing, so is the combined
model.

• Otherwise, if any test is intest-waiting, so is the com-
bined model.

• Otherwise, the combined model is instable.

The multiple-test model has noediting state: nondeter-
minism is introduced and resolved at the level of individual
tests.

The exact point when the model leaves thetest-waiting
state depends on the operation of the test harness that runs
the test suite. If the harness waits until the end of all test-
ing to give details about the success or failure of individ-
ual tests, then the model stays in thetest-waitingstate un-
til the end of the entire suite run. If, however, the harness
reports information on failures as soon as they occur, the
model could immediately transition fromtest-waitingto fix-
ing, on the assumption that the developer could immediately
begin working on the new error before waiting for the tests
to complete. For a passing run of the suite, we assume that
the developer waits to see whether all tests have passed be-
fore continuing work. This indicates that even without intro-
ducing continuous testing, changes to a test suite or test har-
ness may impact the speed of development. This notion is
familiar from test selection and prioritization research; we
explore this idea further in Section 5.3.

3.4. Safe asynchronous model

This section presents a model of developer behavior in
an environment including continuous testing, which imme-
diately displays feedback to the developer when a test fails.
We use this model to predict the effectiveness of continu-
ous testing.

The model of Figure 2 differs from that of Figure 1 only
in adding anotify failing transition. This transition happens
when the development environment notifies the developer
that a particular test is failing, thereby ending the devel-
oper’s ignorance about that error. If the notification happens
in the editing state, it is confirmatory rather than provid-
ing new information — like to a word processor’s grammar
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Figure 2. Nondeterministic finite-state automaton (NFA)
for the continuous testing model of developer behavior
with a test suite consisting of a single test (Section 3.4).

checker flagging a subject-verb agreement error after the
user changes the subject, when the user intended to change
the verb next as part of a single logical edit.

Just as different test harnesses can cause different delays
before thetests failevent, different test harnesses can cause
different delays before thenotify failingevent.

The multi-test model is built from the single-test model
as described in Section 3.3.

4. Experimental methodology

Using the model of developer behavior introduced in
Section 3, we were able to define precisely the kinds of
wasted time we wished to reduce (Section 4.1), develop
an infrastructure for measuring them (Section 4.2), and ap-
ply this infrastructure to two development projects (Sec-
tion 4.3).

4.1. Measured quantities

The key quantity that we measure is wasted time. We
posit two varieties of wasted time: test-wait time and re-
gret time.Test-wait timeis the entire time spent in the test-
wait state — reducing this time, all other things being equal,
should lead to faster software development.Regret timeis
extra time that is wasted tracking down and fixing errors
that could have been prevented on the spot with instant
feedback, and fixing code based on a faulty assumption.
Therefore, regret time manifests itself as increasedfix time,
the amount of working time between learning of an error
and correcting it (see Figure 3). Some fix time is unavoid-
able: regret time must be inferred fromignorance time, the
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Figure 3. Definitions of ignorance time and of fix time.
The diagram shows the transitions that occur when an
error is inadvertently introduced, discovered, and then
fixed. This diagram is based on the multiple-tests model
of Section 3.3, which has noeditingstate.

amount of working time spent between introducing an error
and becoming aware of it.1 The relationship between igno-
rance time and regret time may be computed for a particular
development project (as we do in Section 5.1) by averaging
over many observed instances to assign constants in a sub-
linear polynomial function. We calculate wasted time using
a baseline of the predicted fix time for the minimum igno-
rance time observed, which is the lowest ignorance time for
which it seems valid to make a prediction. This is a conser-
vative estimate, and likely underestimates the possible ben-
efits of continuous testing. To review, for a single error:

1. ignorance time = observed time in the ignorance state

2. predicted fix time =k1∗ ignorance timek2

3. regret time = predicted fix time[ignorance time]− pre-
dicted fix time[minimum observed ignorance time]

4. wasted time = regret time+ test-wait time

To normalize test-wait time and regret time across
projects, we express them as a percentage of the to-
tal time worked on the project. We estimated the total
time worked by assuming that every five-minute inter-
val in which the source code was changed or tests run
was five minutes of work, and no work was done dur-
ing any other times. This also applies to measuring igno-
rance time and fix times.

4.2. Implementation

We collected and analyzed data using two custom soft-
ware packages that we implemented:delta-capture and
delta-analyze.

1 As a simplification, we assume that the contribution of ignorance time
to wasted time applies only to the immediately following fix time in-
terval.
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delta-capture monitors the source code and test suite,
recording changes and actions to a log.delta-capture in-
cludes editor plug-ins that capture the state of in-memory
buffers (in order to capture the developer’s view of the
code), and a background daemon that notes changes that oc-
cur outside the editor. The developer’s test harness is modi-
fied to notifydelta-capture each time the tests are run.

A capture pointis a point in time at which a change has
been captured. The interval between two consecutive cap-
ture points is adelta. The granularity of deltas is config-
urable by duration of time or number of keystrokes. A cap-
ture point also occurs immediately after each save and be-
fore any run of the test suite.

delta-analyze processes data collected bydelta-
capture in order to compute wasted time and determine
how the programmer would have fared with a differ-
ent testing strategy or development environment. First,
delta-analyze performs replay: it recreates the devel-
oper’s view of the source code and tests at each capture
point, and runs each test on the recreated state. Sec-
ond, delta-analyze uses the replay output, along with
model of Section 3, to determine the state of the suite and
to predict developer behavior, such as fix times.delta-

analyze’s parameters include:

• A test-frequency strategy indicating how often the de-
veloper runs the test suite (see Section 5.2).

• A test-prioritization strategy that determines the order
of synchronous tests run in the test harness and how the
results are communicated to the developer (see Sec-
tion 5.3).

• A continuous testing strategy (possibly none) that de-
termines the order of asynchronous tests run during de-
velopment (see Section 5.4).

4.3. Target programs and environments

We used an early version ofdelta-capture to monitor
the remainder of the development of the tools of Section 4.2.
The monitored development included a command-line in-
stallation interface, robustness enhancements, and code re-
structuring fordelta-capture, and the creation ofdelta-
analyze from scratch. Some of the code and test suite
changes were in response to user comments from the 6 de-
velopers being monitored; this paper reports only data from
the one developer who was working on the delta tools them-
selves, however. (Less data or lesser-quality data is avail-
able from the other half-dozen developers.) The developer
used a test-first methodology. The test cases were not inten-
tionally ordered in an attempt to catch errors early.

Because of different development environments, we sep-
arate the data into two groups and analyze them separately.
ThePerl datasetconsisted of the development in Perl 5.8 of
delta-capture and an early version ofdelta-analyze. The

Attribute Perl Java
lines of code 5714 9114
total time worked (hours) 22 22
total calendar time (weeks) 9 3
total test runs 266 116
total capture points 6101 1634
total number of errors 33 12
average time between tests (minutes) 5 11
average test run time (secs) 16 3
mean ignorance time (secs) 218 1014
min ignorance time (secs) 16 20
median ignorance time (secs) 49 157
max ignorance time (secs) 1941 5922
mean fix time (secs) 549 1552
min fix time (secs) 12 2
median fix time (secs) 198 267
max fix time (secs) 3986 7086
max delta (secs) 15 60

Figure 4. Statistics about the Perl and Java datasets.

Perl tools were based on a shared library, and shared a sin-
gle test suite. This project used theTest::Unit test harness
and the Emacs development environment. TheJava dataset
consisted of a rewrite of most ofdelta-analyze in Java 1.4,
using the JUnit test harness and the Eclipse development en-
vironment.

Table 4 shows statistics for the two monitored projects.
Recall that time worked is based on five-minute intervals
in which code changes were made. On average, the devel-
oper ran the Perl test suite every 5 minutes and the (faster)
Java test suite every 11 minutes. The more frequent Perl
test suite runs result from the developer’s use of the Perl
test suite to check the code’s syntax as well as its function-
ality. The Eclipse environment provides real-time feedback
about compilation errors, so the developer did not need to
run the test suite to learn of syntax errors, type and inter-
face mismatches, and similar problems.

5. Experiments

The data collected in the case studies of Section 4 al-
lowed us to determine that a correlation exists between ig-
norance time and fix time (Section 5.1). This allowed us
to compute the total wasted time for each project, which
was 10% of total development time for the Perl project, and
15% for the Java project. We then used our developer be-
havior model predictively to evaluate three techniques for
reducing this wasted time: more or less frequent testing by
the developer (Section 5.2), test suite ordering and other test
harness changes (Section 5.3), and continuous testing (Sec-
tion 5.4).
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Figure 5. Scatter plot and best-fit line for fix time vs. ig-
norance time. Axes are log-scale, and the best-fit line is
plotted.

5.1. Effect of ignorance time on fix time

Figure 5 plots the relationship between ignorance time
and subsequent fix time. The plot uses the the multiple-test
model of Section 3.3: if a change breaks multiple tests, the
error introduced by that change is represented only once.

The figures also show the best-fit line relating ignorance
time and fix time (the positive correlation has over 95% con-
fidence in each case, supporting our hypothesis that reduc-
ing the ignorance time will speed development). A line on a
log-log plot represents a polynomial relationship; the result-
ing polynomials are sub-linear (degree< 1; concave down).
This relationship fits both the data and our intuition: the dif-
ference between 5 and 10 minutes of ignorance is more sig-
nificant than the difference between 55 and 60 minutes of
ignorance.

The relationship between ignorance time and fix time
permits prediction of the impact on development time of
changes to the development process. In particular, a tool
that reduces ignorance time is expected to save the differ-
ence between the average fix time for the original ignorance
time and the average fix time for the new ignorance time.
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Figure 6. Wasted time as a function of testing frequency.
Wasted time is the sum of test-wait time and regret time.
The graphs show how increasing or decreasing the test-
ing frequency by a multiplicative test frequency factor
TFF affects wasted time.

Thus, we can fill in the constants in the formula for pre-
dicted fix time given in Section 4.1, as shown in Figure 5.

We treat the Perl dataset and the Java dataset separately
because the different development environments, program-
ming languages, and problem domains make errors easier
or harder to introduce and to fix, yielding different relation-
ships between ignorance time and fix time. Our subsequent
experiments use the appropriate relationship to predict the
effect of changes to the development process. As an exam-
ple, for the Perl dataset, the relationship predicts that errors
with an ignorance time of one minute take 3 minutes to cor-
rect, whereas errors with an ignorance time of one hour take
13 minutes to correct. For the Java dataset, the correspond-
ing fix times are 2 minutes and 49 minutes.

5.2. Frequency of testing

Section 5.1 showed that ignorance time is correlated with
fix time: reducing ignorance time should reduce fix time.
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Developers do not need a tool to obtain this benefit: they
can simply run their tests more often to catch more errors
more quickly, at the expense of more test-wait time. (Con-
tinuous testing is like very frequent test execution, but with-
out the test-wait penalty.) Running tests less often would
involve the opposite trade-off. We investigated whether de-
velopers would be better off overall (and how much bet-
ter off they would be) by increasing or decreasing the fre-
quency at which they run tests. We simulated these behavior
changes by adding and removingtest points, which are cap-
ture points at which a run of the test suite was recorded.

Figure 6 shows the effect on wasted time as a devel-
oper tests more or less frequently. The test frequency fac-
tor TFF is the ratio of the number of simulated test suite
runs to the number of actual test case runs.TFF = 1 corre-
sponds to the observed developer behavior. ForTFF < 1,
we removed random test points; according to our model,
test cases in the ignorance state at the time of a removed
test point remain in that state until the next intact test point.
For TFF > 1, we added random capture points to the ac-
tual test points; according to our model, when one of these
new test points is encountered, any errors then in ignorance
are transitioned into the fixing state. As always, regret time
is computed from ignorance time using the formula given
in Section 4.1, with constants derived from the data in Sec-
tion 5.1.

As expected, increasing test frequency increases test-
wait time, and decreases regret time. In the Perl dataset,
the developer chose a fairly good frequency for testing, but
could have reduced wasted time by 31% by testing twice
as often. In the Java dataset, the developer could have en-
joyed 82% less wasted time by running the tests 5 times
as frequently — every 2 minutes instead of every 11 min-
utes. Here, a faster test suite and different development style
mean that the increased test-wait time that results from more
frequent testing is insignificant in comparison to the regret
time, at least over the frequencies plotted.

5.3. Test prioritization and reporting

Changes to the test harness may save overall develop-
ment time by reducing test-wait time. There are two related
factors to consider. First is how long the test harness takes to
discover an error, and second is how long the harness takes
to report the error to the developer. Time for the harness to
discover the error depends on the order in which tests are
run. Figure 7 lists the test prioritization strategies that we
experimentally evaluated. Time for the harness to report the
error depends on its reporting mechanism. We considered
three scenarios.

Full suite: The text harness runs to completion before re-
porting any results. This is the default behavior for the

Suite order: Tests are run in the order they appear in
the test suite, which is typically ordered for human
comprehensibility, such as collecting related tests to-
gether, or is ordered arbitrarily.

Round-robin: Like the suite order, but after every de-
tected change, restart testing at the test after the most
recently completed test. This is relevant only to con-
tinuous testing, not synchronous testing.

Random: Tests are run in random order, but without rep-
etition.

Recent errors: Tests that have failed most recently are
ordered first.

Frequent errors: Tests that have failed most often (have
failed during the greatest number of previous runs)
are ordered first.

Quickest test: Tests are ordered in increasing runtime;
tests that complete the fastest are ordered first.

Failing test: The quickest test that fails, if any, is ordered
first. This (unrealistic, omniscient) ordering repre-
sents the best that a perfect test prioritization strategy
could possibly achieve. (Even better results might be
achieved by introducing new, faster tests and priori-
tizing them well; see Section 6.1.)

Figure 7. Test case prioritization strategies used in the
experiments of Sections 5.3 and 5.4.

Perl Test::Unit harness. With this reporting mecha-
nism, test prioritization is irrelevant.

Real-time: The test harness reports failures as they oc-
cur. This is the default behavior for the Java JUnit har-
ness as integrated into Eclipse. Whenever a prioritiza-
tion strategy listed in Figure 7 is mentioned, it is im-
plicit that the harness reports failures in real time.

Instantaneous:All tests are run, and all failures are re-
ported, instantaneously. With this reporting mecha-
nism, test prioritization is irrelevant. This scenario rep-
resents the unachievable ideal.

Figure 8 shows, for each test harness and prioritization
listed above, the effect of using it in terms of test-wait time,
ignorance time, regret time, total wasted time (the sum of
test-wait time and regret time), and improvement. Improve-
ment is reported as reduction of wasted time and as a per-
centage reduction from the baseline measurement of wasted
time.

For the Perl dataset, the recent errors test prioritization
strategy dominated other achievable test prioritizations. In
other words, the developer tended to break the same tests
over and over. To our surprise, the frequent errors test prior-
itization strategy performed poorly. We speculate that this is
because often a particularly difficult error persists for many
test executions, thus dominating this metric due to test runs
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Perl dataset:
Test Order Test-wait Regret Wasted Improvement
Full Suite 0.055 0.044 0.100 0.000 0.0%
Random 0.038 0.042 0.080 0.020 19.6%
Frequent Errors 0.037 0.042 0.078 0.021 21.2%
Round-robin 0.029 0.041 0.071 0.029 28.9%
Suite Order 0.029 0.041 0.071 0.029 28.9%
Quickest Test 0.028 0.040 0.068 0.032 32.1%
Recent Errors 0.018 0.041 0.059 0.041 41.0%
Failing Test 0.018 0.041 0.059 0.041 41.1%
Instantaneous 0.000 0.039 0.039 0.060 60.5%

Java dataset:
Test Order Test-wait Regret Wasted Improvement
Full Suite 0.005 0.145 0.150 0.000 0.0%
Frequent Errors 0.004 0.145 0.149 0.002 1.0%
Round-robin 0.004 0.145 0.149 0.001 1.1%
Suite Order 0.004 0.145 0.149 0.001 1.1%
Recent Errors 0.004 0.145 0.148 0.002 1.4%
Quickest Test 0.003 0.145 0.145 0.003 1.9%
Random 0.004 0.142 0.147 0.004 2.5%
Failing Test 0.003 0.142 0.145 0.005 3.6%
Instantaneous 0.000 0.142 0.142 0.009 5.7%

Figure 8. Effect of test harness and prioritization on the
synchronous testing methodology, for the Perl and Java
datasets. Each column is a fraction of total time (ex-
cept percent improvement, which is based on the wasted
time). Wasted time is the sum of test-wait time and re-
gret time.

while in thefixingstate, but may not be representative of re-
gression errors discovered in theignorancestate.

For the Java dataset, none of the test prioritization strate-
gies helped very much — they improved overall time by less
than 1% and reduced wasted time by less than 4%. The rea-
son is that the tests already ran very fast; little benefit could
be had by reordering them.

5.4. Continuous testing

Using the same methodology as in Section 5.3, we eval-
uated the effect of various continuous testing techniques.
Wheneverdelta-capture detects a change to the program
or its tests (in other words, at each capture point that is not
a test point), we simulate running tests until the next cap-
ture point. The full test suite may not be able to complete
in this period, and we ignore any partially completed tests.
This simulates a continuous testing environment that, ev-
ery time the source is changed, restarts the test suite on the
new version of the system, if the source is compilable. The
same prioritization strategies listed in Figure 7 are used to
indicate results in Figure 9. “None” indicates that continu-
ous testing is not used; nonotify-failingevents occur.

Perl dataset:
Testing Strategy Test-wait Regret Wasted Improvement
Full Suite 0.055 0.044 0.100 0.000 0.0%
Random 0.038 0.002 0.040 0.060 60.2%
Frequent Errors 0.037 0.003 0.039 0.060 60.5%
Suite Order 0.029 0.003 0.032 0.070 67.8%
Round-robin 0.029 0.000 0.030 0.070 70.0%
Quickest Test 0.028 0.001 0.030 0.070 70.3%
Recent Errors 0.018 0.000 0.018 0.082 82.0%
Failing Test 0.017 0.000 0.018 0.082 82.4%
Instantaneous 0.000 0.000 0.000 0.100 100.0%

Java dataset:
Testing Strategy Test-wait Regret Wasted Improvement
Full Suite 0.005 0.145 0.150 0.000 0.0%
Random 0.004 0.000 0.004 0.146 97.2%
Round-robin 0.004 0.000 0.004 0.146 97.3%
Suite Order 0.004 0.000 0.004 0.146 97.3%
Frequent Errors 0.004 0.000 0.004 0.146 97.3%
Recent Errors 0.004 0.000 0.004 0.147 97.7%
Quickest Test 0.003 0.000 0.003 0.147 98.0%
Failing Test 0.003 0.000 0.003 0.148 98.1%
Instantaneous 0.000 0.000 0.000 0.150 100.0%

Figure 9. Effect of continuous testing on wasted time.
Each column is a fraction of total time (except percent
improvement, which is based on the wasted time). Syn-
chronous tests are executed at the same frequency used
by the developer, using the same test harness strategy as
the continuous testing strategy.

Continuous testing using the recent-errors test prioritiza-
tion reduces wasted time in the Perl project by 80%, and
overall development time by more than 8%, as shown in the
last two columns of Figure 9. The recent-errors test prior-
itization is nearly as good as the omniscient “failing test”
strategy that runs only the fastest test that fails. Even using
the (arbitrary) suite order saves a respectable 6.75% of de-
velopment time. The frequent-errors prioritization performs
nearly as badly as random ordering.

The improvement for the Java dataset is even more dra-
matic: Continuous testing improves development time by
14–15%, reducing wasted time by over 97%, regardless of
the prioritization strategy, taking us near our conservative
predicted limit for development speed-up from improved
testing techniques. The prioritization strategies are essen-
tially indistinguishable, because the test suite is quite small.
We speculate that the greater gain for the Java dataset is
due to the fact that the developer ran tests relatively infre-
quently. Section 5.2 showed that the developer could have
reduced wasted time by 81% simply by running the tests
more frequently. Together, these results indicate that con-
tinuous testing may have a substantial positive effect on de-
velopers with inefficient testing habits, and a noticeable ef-
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fect even on developers with efficient testing habits.

6. Conclusion

6.1. Status and future work

We are currently setting updelta-capture monitoring
for several additional software projects, which will help us
to determine whether and how our results generalize to ad-
ditional programmers, to larger projects and test suites, and
to different development environments and styles.

Based on the encouraging results reported in this paper,
we have integrated continuous testing plug-ins into both
Eclipse and Emacs. Both environments unobtrusively in-
dicate the existence of regression errors (via the Eclipse
task list and the Emacs mode line) and permit the devel-
oper to click on the indicator to obtain more information
about the errors. The plug-ins implement a variety of poli-
cies for recognizing when a change is complete, because
testing an incomplete change could result in false positives.
The Eclipse plug-in performs testing whenever the devel-
oper saves a file, and the Emacs plug-in performs testing
whenever there is a sufficiently long pause; both plug-ins
operate only if the code compiles correctly. We plan to use
these plug-ins to perform both case studies, in which we ob-
serve how programmers interact with and benefit from envi-
ronments including continuous testing, and also controlled
experiments, in which separate developers (most likely col-
lege undergraduates) will perform a given task with and
without the benefit of continuous testing.

We have also implemented an enhancement to the Perl
Test::Unit test harness that has a real-time reporting mech-
anism and implements the Recent Errors test prioritization,
based on the results in Section 5.3. This has been used
in further development work ondelta-capture and has
proven very useful.

More feedback is not always better: an interface that pro-
vides too much information (particularly low-quality infor-
mation) might interrupt, distract, and overload the devel-
oper, perhaps even to the point of retarding productivity.
We believe that continuous testing can be implemented in
a way that allows developers to take advantage of unob-
trusive notification without being overwhelmed by it. In a
survey of 29 experienced COBOL programmers, Hanson
and Rosinski [6] found that they fell into two groups (of
approximately equal size) regarding their tool preferences.
One group preferred a larger, more integrated set of inter-
acting tools; the other preferred to have fewer, more dis-
tinct, and less interrelated tools. This suggests that even if
not all programmers embrace integration of continuous test-
ing into their development environment, it will be valuable
to at least some. Preliminary experience with our proto-
type suggests that many programmers appreciate continu-

ous testing; we plan to perform additional studies to learn
more.

Because our overall goal is to provide feedback, we in-
tend to experiment with additional test prioritization strate-
gies. Strategies based on code coverage seem particularly
promising. After a developer edits a procedure, only tests
that execute that procedure need to be re-run. This may
greatly reduce the number of candidate tests, enabling get-
ting to failing ones more quickly. Among other things, we
will evaluate how much further prioritization can reduce ig-
norance and test-wait time, which are already fairly small
even with simple prioritization techniques. We also must
evaluate whether coverage information remains valid or
useful as programs evolve.

Some test cases take a long time to run; this is particu-
larly true of system or end-to-end tests. An environment that
must wait for such tests to complete will not give the im-
pression of instantaneous testing, even if it prioritizes test
cases perfectly. Therefore, in addition to test prioritization,
we are actively investigatingtest factoringto introduce new
test cases that are smaller and faster. Test factoring deter-
mines how a system test uses a particular component, then
creates unit tests for the component based on that usage. If
(only) the component has recently changed, the unit test is
just as effective as the system test, but more efficient. The
unit tests can be made yet more efficient by eliminating re-
dundancies.

6.2. Contributions

We have introduced the idea of continuous testing —
using excess CPU cycles to test programs while they are be-
ing edited — as a feedback mechanism that allows develop-
ers to know more confidently the outcome of their changes
to a program. Most significantly, it can inform them at an
early stage of errors that might otherwise be detected later
during development, when they would be more difficult and
expensive to correct.

We have presented a conceptual model for investigat-
ing the usefulness of continuous testing and an experimen-
tal framework that implements the model. We ran experi-
ments to evaluate the impact on development time of vari-
ous continuous testing strategies. Together with additional
results that verify that early detection of errors saves time
overall, the results indicate that continuous testing has the
potential to improve development, reducing overall devel-
opment (programming and debugging) time by 8–15% in
our case study. These are improvements to the critical re-
source in development: human time. Furthermore, the time
saved is among the most annoying to developers: problems
that could have been easily corrected earlier but grow in se-
riousness due to lack of attention. There is also promise that
by increasing the usefulness of test suites, continuous test-
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ing will allow for a greater return on the investment of time
put into producing tests.

In addition to evaluating continuous testing strategies,
we have evaluated the development time reduction that
could be achieved with a variety of test prioritization strate-
gies. We have also shown how to assess whether a developer
is running tests too frequently, too infrequently, or at just
the right frequency. These techniques are in themselves ef-
fective: increasing test frequency for the Java dataset could
reduce wasted development time by 81%, and a more ef-
fective test prioritization could produce a 41% reduction
in wasted time for the Perl dataset. Our experiments also
show which test prioritization techniques are most effective
for developers in their daily practice; previous studies typi-
cally considered running regression tests just once, when a
new version of a software system was complete. Continu-
ous testing combines the best aspects of both test frequency
and test prioritization. This is a promising field for further
investigation, through additional monitoring, controlled ex-
periments, and creation of effective new development tools.
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