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ABSTRACT
We present a new, automatic technique to assess whether replac-
ing a component of a software system by a purportedly compatible
component may change the behavior of the system. The technique
operates before integrating the new component into the system or
running system tests, permitting quicker and cheaper identification
of problems. It takes into account the system’s use of the compo-
nent, because a particular component upgrade may be desirable in
one context but undesirable in another. No formal specifications
are required, permitting detection of problems due either to errors
in the component or to errors in the system. Both external and in-
ternal behaviors can be compared, enabling detection of problems
that are not immediately reflected in the output.

The technique generates an operational abstraction for the old
component in the context of the system and generates an opera-
tional abstraction for the new component in the context of its test
suite; an operational abstraction is a set of program properties that
generalizes over observed run-time behavior. If automated logical
comparison indicates that the new component does not make all the
guarantees that the old one did, then the upgrade may affect sys-
tem behavior and should not be performed without further scrutiny.
In case studies, the technique identified several incompatibilities
among software components.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement; F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning about Programs—Pre- and post-
conditions, Mechanical verification; D.2.4 [Software Engineer-
ing]: Software/Program Verification
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1. INTRODUCTION
Software is too brittle. It fails too often, and it fails unexpectedly.

The problem is often the use of software in unexpected or untested
situations, in which it does not behave as intended or desired [36,
9]. It is impossible to test software in every possible situation in
which it might be used; in fact, it is usually impossible even to
foresee every such situation.

We seek to mitigate and prevent problems resulting from unan-
ticipated interactions among software components. In particular,
our goal is to enhance the reliability of software upgrades by pre-
dicting upgrades that may cause system failure or misbehavior, as
might occur when a supposedly compatible upgrade is used in a
situation for which it was not designed or tested.

The key question that we seek to answer is, “Will upgrading a
component, which has been tested by its author, cause a system
that uses the component to fail?” In order to reduce costs by de-
tecting problems early in the upgrade process, we wish to answer
this question before integrating the new component into the system
or fielding and testing the new system (though such testing is also
advisable); therefore, the question must be answered based on the
past behavior of the system and the component author’s own tests.
Because a particular upgrade may be innocuous or desirable to one
user but disastrous to another, the upgrade decision must be based
on the component’s use in a particular system; the decision cannot
be made without knowing the system-specific context. Finally, the
upgrade process should warn about errors in the component (a new
version violates its specification), errors in the application (it relies
on behavior that is not part of the component’s specification), and
errors in which blame is impossible to assign (for example, because
there is no formal specification).

Our approach is to compare the observed behavior of an old com-
ponent to the observed behavior of a new component, and permit
the upgrade only if the behaviors are compatible, modulo irrele-
vant properties of the execution environment. Our method issues
a warning when the behaviors of the new and old components are
incompatible, but lack of such a warning is not a guarantee of cor-
rectness, nor is its presence a guarantee that the program’s opera-
tion would be incorrect.

The two key techniques that underlie our methodology are for-
mally capturing observed behaviors and comparing those behaviors
via logical implication. We capture observed behavior via dynamic
detection of likely program invariants [13, 14], which generalizes
over program executions to produce anoperational abstraction.
An operational abstraction is a set of mathematical properties de-
scribing the observed behavior. An operational abstraction is syn-
tactically identical to a formal specification — both describe pro-
gram behavior via logical formulae over program variables — but
an operational abstraction describes actual program behavior and
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// Sort the argument into ascending order
static void
bubble_sort(int[] a) {

for (int x = a.length - 1; x > 0; x--) {
for (int y = 0; y < x; y++) {

if (a[y] > a[y+1])
swap(a, y, y+1);

}
}

}

Figure 1: A sorting method that usesswap.

can be generated automatically. In practice, formal specifications
are rarely available, because they are tedious and difficult to write,
and when available they may fail to capture all of the properties on
which program correctness depends.

Our technique is as follows. Suppose you wish to replace an old
component by a new component, and the old component is used
in a particular system. (The “component” can be any separately-
developed unit of software, such as a library or dynamically loaded
object. We refer to the system that uses the component as the “ap-
plication”.) Generate an operational abstraction for the old com-
ponent, running in the context of the system. Also generate an
operational abstraction for the new component, running in the con-
text of the test suite used to validate it. Both of these steps may
be performed in advance. Now, perform the upgrade only if the
new component’s abstraction is stronger than the old component’s
abstraction, after accounting for properties of the execution context
that are maintained by the old component. In other words, perform
the upgrade if the new component has been verified (via testing)
to perform correctly (i.e., as the old component did) for at least as
many situations as the old component was ever exposed to.

A key advantage of our proposed technique is that it does not
require omniscient foresight: programmers need not predict every
possible use to which their software might be put. It is highly likely
that some users will apply software components in situations or en-
vironments that programmers did not have in mind when design-
ing, implementing, or testing the component. Using our upgrade
technique, a user is warned when a new component has not been
tested in an environment like the user’s, or if the developer has in-
advertently changed the behavior in the user’s environment; either
of these situations could be the case even if the developer consci-
entiously tests the component in many other situations.

The remainder of this paper is organized as follows. Section 2 il-
lustrates our technique by means of a simple example. Section 3 de-
tails our approach to detecting component incompatibilities. Sec-
tion 4 describes case studies that suggests that the technique may be
useful in practice, and Section 5 provides further perspective on the
results. Section 6 surveys related work, and Section 7 concludes.

2. SORTING EXAMPLE
This section gives a simple example to illustrate our approach.

2.1 The problem
Consider the sorting routine of Figure 1 as an application, and

the swap subroutine of Figure 2 as a component it uses. Sup-
poseswap is supplied by a third-party vendor and is specified
to exchange the two array elements at indicesi andj. Together,
these Java methods correctly sort integer arrays into ascending or-
der. Now suppose that the vendor releases version 2 ofswap, as
shown in Figure 3. The component vendor asserts that the new
version has been tested to meet the same specification as the pre-
vious version (perhaps using the same test suite as was used for

// Exchange the two array elements at i and j
static void
swap(int[] a, int i, int j) {

int temp = a[i];
a[i] = a[j];
a[j] = temp;

}

Figure 2: Version 1 of a method that swaps two array elements.

// Exchange the two array elements at i and j
static void
swap(int[] a, int i, int j) {

a[i] = a[i] ˆ a[j]; // bitwise XOR
a[j] = a[j] ˆ a[i];
a[i] = a[i] ˆ a[j];

}

Figure 3: Version 2 of a method that swaps two array elements.

the previous version). As the application’s author, should you take
advantage of this upgrade? In particular, will yourbubble sort
application still work correctly with the newswap routine? Our
technique automatically deduces the answer: yes, the upgrade is
safe.

Now, consider a different author whose sorting application, as
shown in Figure 4, also works correctly with the original version
of theswap component. Should this author perform the same up-
grade? In this case, the answer is no: the upgradedswap routine
would cause this sorting application to malfunction severely, and
should not be installed without a change either to it or to the appli-
cation. Our technique automatically determines that this upgrade,
for this application, is dangerous.

The next two sections describe how our technique reaches these
conclusions.

2.2 Upgrading bubble sort
Before upgrading, the application developer constructs an oper-

ational abstraction describing how the old component works when
called by the application, using an automated tool such as Daikon
(Section 6.3). Figure 5 shows the abstraction generated forswap as
used by the bubble sort. Figures 5, 6, and 7 show actual output from
our system, though for brevity we have used a more compact nota-
tion and omitted a number of properties concerning subsequences
of the arraya.

When the vendor releases a new version of the component, the
vendor also supplies an operational abstraction describing the new
component’s behavior over the vendor’s test suite. Sinceswap
is not specified to work fora = null or for i = j, the vendor
did not test the component for such values. The vendor’s abstrac-
tion (Figure 6) captures the behavior ofswap by guaranteeing that
a′[i] = a[j] and a′[j] = a[i], subject to preconditions such as
i 6= j.

Before installing the upgrade, the application developer uses an
automated tool to compare the operational abstractions of the new
component (as exercised by its test suite) and the old component
(as exercised by the application). The application developer de-
sires the new component to have the same postconditions as the old
component, because other parts of the application may depend on
those properties. Roughly speaking, the upgrade is safe to install if
the component’s abstraction logically implies the application’s ab-
straction, showing that the component has been tested to perform as
the application expects in the contexts where the application uses
it. (Section 3.1 explains this test in detail.)
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// Sort the argument into ascending order
static void
selection_sort(int[] a) {

for (int x = 0; x <= a.length - 2; x++) {
int min = x;
for (int y = x; y < a.length; y++) {

if (a[y] < a[min])
min = y;

}
swap(a, x, min);

}
}

Figure 4: Another sorting method that usesswap.

Preconditions forswap Postconditions forswap
a 6= null
0 ≤ i < size(a)− 1
1 ≤ j ≤ size(a)− 1
i < j
j = i + 1
a[i] > a[j]

a′[i] = a[j]
a′[j] = a[i]
a′[i] = a′[j − 1]
a′[j] = a[j − 1]
a′[i] < a′[j]

Figure 5: The operational abstraction for swap (version 1), in
the context ofbubble sort . Variable a′ represents the state
of the array a after the method is called.

The test has two parts: ensuring that the component precondi-
tion holds and ensuring that the application postcondition holds.
In our example, the preconditions that the application establishes
(Figure 5) imply those that the new component requires (Figure 6);
for example,j = i + 1 ⇒ i 6= j. This means that the contexts in
which the new component has been tested are a superset of those
in which the application uses the component. On their own, the
component postconditions (from its test suite) do not imply the ap-
plication postconditions: for instance, the propertya′[i] < a′[j]
is not true in the test suite. However, this property is implied by
the application precondition together with the component’s tested
behavior. In this example, the postconditiona′[i] < a′[j] is im-
plied by the preconditiona[i] > a[j], along with the fact that the
elements at positionsi andj are swapped, as captured by the test
postconditionsa′[i] = a[j] anda′[j] = a[i]. Similar reasoning,
easily performed by an automatic theorem prover, establishes all
the other application postconditions.

The technique concludes that the upgrade is safe, up to the limits
of the computed operational abstraction. In other words, bubble
sort can use the new implementation ofswap.

2.3 Upgrading selection sort
The author of the selection sort application can apply the same

process. Figure 7 shows the operational abstraction forswap (ver-
sion 1), in the context ofselection sort .

When the application developer compares this abstraction with
that supplied by the vendor (Figure 6), the logical comparison fails.
In particular, the new component’s preconditioni 6= j is not estab-
lished by the application. This suggests that the new component
has not been tested in the way thatselection sort uses it, so
the selection sort should not use the newswap.

In fact, testing would show that the newswap, when used with
the selection sort, overwrites elements of the array with zeros when-
everswap is called (contrary to its specification) to swap an ele-
ment with itself. In this example, the reason for the mismatched
abstraction, the special casei = j, also points out how the applica-
tion could be fixed to work correctly with the new component: by
checking thatx 6= min before callingswap.

Preconditions forswap Postconditions forswap
a 6= null
0 ≤ i ≤ size(a)− 1
0 ≤ j ≤ size(a)− 1
i 6= j

a′[i] = a[j]
a′[j] = a[i]

Figure 6: The operational abstraction for swap (version 2), in
the context of the vendor’s test suite.

Preconditions forswap Postconditions forswap
a 6= null
0 ≤ i < size(a)− 1
0 ≤ j ≤ size(a)− 1
i ≤ j
a[i] ≥ a[j]

a′[i] = a[j]
a′[j] = a[i]

Figure 7: The operational abstraction for swap (version 1), in
the context ofselection sort .

2.4 Who is at fault?
We have presented a scenario in which the author of selection

sort is at fault for not obeying the specification ofswap — though
the selection sort happened to work fine with the first implementa-
tion of swap. Given the same code, one could also imagine that
the specification ofswap allowed an element to be swapped with
itself, in which case the fault for the bug would lie with the vendor
rather than the application developer. Or it may be that no careful
specification exists at all (perhaps the documentation is ambigu-
ous), so that the assignment of blame is unclear. Since the code is
the same, our example would proceed identically in all these cases,
and the dangerous upgrade would still be cautioned against, and
prevented or fixed.

3. DETECTING INCOMPATIBILITIES
This section gives a method for detecting incompatibilities be-

tween the behavior of the old version of a component and the be-
havior of the new version, by comparing abstractions (summaries)
of the component’s execution. (Section 6.3 describes the technique
for obtaining operational abstractions.) The method consists of four
steps.

(1) Before an upgrade, when the application is running with the
older version of a component, the system automatically computes
an operational abstraction from a representative subset (perhaps all)
of its calls to the component. This may be done either online, to
avoid recording and storing all the inputs and outputs, or offline,
requiring minimal CPU resources at system run time — whichever
is more convenient. The result of this step is a formal mathematical
description of those facets of the behavior of the old component
that are used by the system. This abstraction depends both on the
implementation of the component and on the way it is used by the
application.

(2)Before distributing a new version of a component, the compo-
nent vendor computes the operational abstraction of the new com-
ponent’s behavior as exercised by the vendor’s test suite. This ab-
straction can be created as a routine part of the testing process. This
step results in a mathematical description of the successfully tested
aspects of the component’s behavior.

(3) The vendor ships to the customer both the new component
and its operational abstraction. The customer may either trust the
accuracy of the abstraction, or may verify it in the following way.
The customer uses the abstraction as an input to specification-based
test suite generation [32, 10, 7, 26], computes an operational ab-
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straction for the resulting test suite, and compares the two abstrac-
tions for inconsistencies.

(4) The customer’s system automatically compares the two oper-
ational abstractions, to test whether the new component’s abstrac-
tion is stronger than the old component’s abstraction. (Our def-
inition of “strength” appears in Section 3.1.) Success of the test
suggests that the new component will work correctly wherever the
system used the old component.

If the test does not succeed, the system might behave differently
with the new component, and it should not be installed without
further investigation. Further analysis could be performed (perhaps
with human help) to decide whether to install the new component.
In some cases, analysis will reveal that a serious error was avoided
by not installing the new component. In other cases, the changed
behavior might be acceptable:

• The change in component behavior might not affect the cor-
rect operation of the application.

• It might be possible to work around the problem by modify-
ing the application.

• The changed behavior might be a desirable bug fix or en-
hancement.

• The component might work correctly, but the vendor’s test-
ing might have insufficiently exercised the component, thus
producing an operational abstraction that was too weak.

3.1 Comparing abstractions
This section describes the test performed over operational ab-

stractions to determine whether a new component may replace an
old one, and explains why it is more appropriate than alternative
conditions that are stronger or weaker.

Let A be the operational abstraction describing the behavior of
the old version of a component working in an application, and let
T be the operational abstraction describing the behavior of the new
version in its test suite.A is composed of preconditionsApre and
postconditionsApost, and likewise forT . T andA are subsets of
all the true statements about the tested behavior of the component
and the application’s use of it, limited to the grammar of the op-
erational abstraction.T approximates the specification of the new
component, whileA approximates the old specification restricted
to the functionality used by the application. Our correctness argu-
ments are limited by this approximation. Our technique claims that
the new component may be safely substituted for the old one in the
application if and only if

Apre ⇒ Tpre and (Apre ∧ Tpost) ⇒ Apost . (1)

3.1.1 Derivation of our condition
Our goal is to verify that the application will behave as it used

to. This will be that case if, provided that the application’s precon-
ditions hold before each call to the component, its postconditions
hold afterward.; in other words, we want thatApre ⇒ Apost.

We must concludeApre ⇒ Apost based on the knowledge that
the test abstraction accurately describes the behavior of the new
component, i.e., thatTpre ⇒ Tpost. Furthermore, we impose
the side condition that the application’s correct behavior must be
achieved only by using the behavior of the component that was
tested, since it is inherently unsafe to depend on code that has never
been tested. The application’s uses of the component are a subset
of the tested uses exactly whenApre ⇒ Tpre. Therefore, we are
looking for a condition guaranteeing exactly that

((Tpre ⇒ Tpost) ⇒ (Apre ⇒ Apost)) ∧ (Apre ⇒ Tpre) .

This formula is equivalent to (1).

preA Apost

Tpre Tpost

Old

Component
New

Component

Figure 8: The behavioral subtyping rule. A new component
whose specification guaranteesTpre ⇒ Tpost may replace an
old component whose specification guaranteedApre ⇒ Apost

(dashed), ifApre ⇒ Tpre and Tpost ⇒ Apost (solid). Arrows
represent both program control flow and logical implication be-
tween specifications. This rule is sufficient but too strong for
validating component upgrades. Section 3.1 presents our alter-
nate rule.

3.1.2 Alternative conditions
Several conditions similar to ours have been suggested for other

applications [38]. We compare ours to those that are most similar,
concluding that the alternatives are either too strong or too weak
for our purpose.

A slightly simpler (and stronger) condition than ours is used as
part of the definition of behavioral subtyping (see Section 6.1):

Apre ⇒ Tpre and Tpost ⇒ Apost . (2)

As schematically illustrated in Figure 8, this condition precisely
captures the operational intuition of replacing the old component
with a new one (in Zaremski and Wing’s terminology, “plug-in
match”) in guaranteeing the correct operation of the application.
When the application executes, before the first use of the compo-
nent, the application preconditionApre holds, so by the first impli-
cation,Tpre holds. According to the component’s tested behavior,
Tpre ⇒ Tpost, soTpost holds. Then, by the second implication,
Apost holds, so the application’s behavior remains the same.Apre

then holds before the next call to the component, and so on for each
subsequent call to the component, so that at each point the behavior
of the application is the same.

Conditions (1) and (2) differ whenTpost holds, but neitherApre

nor Apost does. The possibility of such a situation would prohibit
an upgrade according to (2), but not under our rule. An application
may use only a subset of a component’s tested behavior, so there
might be possible executions of the component that are incompat-
ible with the application’s abstraction. Equivalently, we must take
into account information about the particular way an application
uses a component when checking that the behavior it needs is pre-
served, which corresponds to the addition ofApre to the second
implication in our condition (1). For example, suppose that the
component is an increment routine, and the old and new versions
are behaviorally identical. Further suppose that the application hap-
pens to only increment even integers, whereas the component was
tested with both even and odd inputs. ThenTpre andTpost might
bex is an integerandx′ = x + 1, while Apre andApost would in-
cludex is evenandx′ is oddrespectively. Ifx = 5 andx′ = 6, the
increment routine’s tested abstraction would be satisfied, but both
the pre- and post-conditions of the application’s abstraction would
be violated. However, our technique must allow an upgrade to this
behaviorally-identical component.

As seen in Section 3.1.1, our condition can also be understood
as a strengthening of a weak upgrade condition,

(Tpre ⇒ Tpost) ⇒ (Apre ⇒ Apost) . (3)

This formula, “generalized match” in Zaremski and Wing’s termi-
nology, corresponds directly to the intuitive notion that the tested
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abstraction, which is an implication between pre- and postcondi-
tions, must be logically as strong as the application abstraction.
However, this condition differs from (1) in its treatment of precon-
dition violations. With this weaker rule, the fact that the component
was never tested in some context where the application used it is not
in itself a reason to reject an upgrade; it simply makes it more dif-
ficult to prove any needed aspects of the component’s behavior in
that context. For instance, suppose that an application used an old
version of a component which took any non-zero integer as an ar-
gument, so thatApre is x 6= 0. Further suppose that the behavior of
the component on negative values was well-defined but difficult to
characterize as an operational abstraction, so thatApost described
only the behavior for positive arguments, sayx > 0 ⇒ x′ = x.
Then, consider replacing this component with a new one tested only
on positive inputs, but verified to work just as the old one did in that
case (so thatTpre andTpost arex > 0 andx′ = x respectively).
While the weaker condition would allow this upgrade, our condi-
tion (1) would prohibit it, because the new component was tested
in fewer circumstances than the old one was used in. Our condi-
tion errs on the side of safety in prohibiting uses that are either
not tested or are not captured in the operational abstraction. This
safety is desirable in light of imperfect operational abstractions and
non-functional properties like termination and exceptions.

Logically, our condition falls between the two alternatives above:
it is strictly weaker than the first, and strictly stronger than the sec-
ond. It is not among the conditions classified by Zaremski and
Wing [38]; their terminology might call it “application-guarded
plug-in match.”

3.2 Implementation of comparison
Of the four steps in our technique, the first three can be per-

formed with existing tools. (We accomplished the first two using
the Daikon dynamic invariant detector.) As part of this research,
we implemented a tool to perform the final step, which is publicly
available as part of the Daikon distribution.

Our tool uses the Simplify automatic theorem prover [28, 8] to
evaluate the logical comparison formula described in Section 3.1.
The tool translates the operational abstractions into Simplify’s in-
put format, pushes all of the assumptions onto Simplify’s back-
ground stack, and queries it regarding each conclusion property.
Each class of property must be defined so that Simplify can reason
about it (the basic properties of arithmetic and ordering are built in
to Simplify). Most properties can be defined by rewriting them in
first-order logic with uninterpreted function symbols representing
operations like sequence indexing. For the most complicated prop-
erties, we supplemented Simplify with lemmas. For instance, one
lemma states that a sequencea is lexicographically less than a se-
quenceb if they have initial subsequencesa[0..i− 1] = b[0..i− 1]
that match, followed by an elementa[i] < b[i]. Because these
lemmas are general, they need only be created once, when a new
property is added to the abstraction’s grammar. So far, we have had
to write 30 lemmas, less than one per property in the grammar of
our abstractions. Because the Daikon invariant detector generates
simple properties, most of the implications Simplify must check are
trivial. As shown in Figure 9, checking each property takes only a
fraction of a second.

3.3 Meta-comparison
Our technique may fail to prove equation 1 of Section 3.1 even

when an upgrade is behavior-preserving. Such failures might be
the result of insufficient testing, a theorem prover weakness, or an
inadequate grammar of the operational abstraction (for further dis-
cussion, see Section 5.1). We proposemeta-comparisonto work

around such problems. If our technique does not approve an up-
grade from an old component to a new component, then it considers
an upgrade from the old component to itself. Such an upgrade is al-
ways behavior-preserving. However, the theorem prover might not
be powerful enough to verify some condition, or a property that is
required to prove the condition might not appear in the operational
abstraction (because of limitations of the test suite or of the invari-
ant detector). Any theorem-proving failure that occurs only with
the new component certainly represents a behavioral difference. If
the theorem-proving failures for the self-upgrade are identical to
the theorem-proving failures for the real upgrade, then those for
the real upgrade may be as innocuous as those for the self-upgrade.
Such failures represent an intermediate ground in which the tech-
nique was unable to support or refute the safety of an upgrade, and
should lead to an appropriate intermediate level of scrutiny before
the upgrade is applied. We did not use meta-comparison in any of
the case studies reported in Section 4.

4. CASE STUDIES
We assessed the effectiveness of our approach by case studies

involving pairs of Perl modules.

4.1 Currency case study
The first case study concerns code for manipulating monetary

quantities.

4.1.1 Subject programs
In the first case study, the component isMath::BigFloat

(BigFloat for short), a Perl module for arbitrary-precision float-
ing point arithmetic that operates on numbers larger than the 32- or
64-bit formats provided in hardware. (BigFloat is bundled in a
distribution, named Math-BigInt, comprising approximately 3500
lines of code, plus documentation and tests. The distribution also
contains theMath::BigInt module for arbitrary-precision inte-
ger arithmetic, in terms of whichBigFloat is implemented, plus
several supporting modules. The modules within the distribution
have their own version numbers, but for clarity we will always re-
fer to the distribution version numbers.)

The application that usesBigFloat is a separately authored
module,Math::Currency . Currency supports arithmetic un-
der the conventions of monetary quantities, including special treat-
ment of rounding and locale-specific output formats.Currency
usesBigFloat to implement its underlying arithmetic operations
on money quantities, taking particular advantage ofBigFloat ’s
decimal, rather than binary, representation of fractions, in order to
avoid rounding errors.

There are at least six bugs in various versions ofBigFloat and
its supporting modules that would lead to incorrect results being
produced by the most recent version (1.39) ofCurrency , two of
which are exposed by our case study. The author ofCurrency
may have been aware of up to four of them:Currency 1.39
avoids those four by specifying that it should only be used with
BigFloat version 1.49 or later. For the purposes of the study,
we disabled this explicit check. Supplying metadata that specifies
acceptable versions of a component can be effective in preventing
some errors. However, such a dependence can only be found af-
ter system-scale testing, and relying on manual marking can mean
some problems aren’t caught, such as two that were fixed only in
versions 1.51 and 1.55 respectively.

We investigated two pairs of versions ofBigFloat — 1.40 with
1.42 (1.41 was not available), and 1.47 with 1.48 — to determine
whether an upgrade from the earlier to the later version of the pair
was permissible. We also consider a downgrade in the opposite
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Lines Unsafe Props Checking
Module Upgrade changed method checked time (sec)

Math::BigFloat 1.40→1.42 25 bcmp() 171 0.91
Math::BigFloat 1.42→1.40 25 bcmp() 163 1.00
Math::BigFloat 1.47→1.48 163 — 1130 4.77
Math::BigFloat 1.48→1.47 163 — 1130 4.59

Date::Simple 1.03→2.01 243 new() 12 1.04
Date::Simple 1.03→2.03 243 new() 12 1.29
Date::Simple 2.01→2.03 6 — 12 0.95
Date::Simple 2.01→1.03 243 new() 12 0.95
Date::Simple 2.03→1.03 243 new() 12 0.95
Date::Simple 2.03→2.01 6 — 12 0.94

Figure 9: Results of Perl module case studies. Changed lines
include methods not exercised by our applications, but exclude
documentation and tests. If no method is (potentially) unsafe,
then the upgrade is judged to be behavior-preserving. Tim-
ings include translation of the properties into Simplify’s input
format and the running time of Simplify, on a 1.1 GHz AMD
Athlon.

direction. A downgrade might be desirable because of a bug in a
later version, or might occur as a result of porting an application to
a system that has an older installed version of a component.

4.1.2 Floating-point comparison
Between versions 1.40 and 1.42, three changes were made to

BigFloat , all affecting thebcmp comparison routine. Two of
these changes were bug fixes, correcting problems that caused in-
correct results from currency operations. One bug caused distinct
amounts having the same number of whole dollars to be considered
equal, while another caused some unequal values of the same order
of magnitude to have the wrong ordering.

The third change narrowed the behavior ofbcmp: The new ver-
sion of bcmp always returns−1 or 1 when its first argument is
less (respectively, greater) than its second argument; by contrast,
the old version ofbcmp returns an arbitrary negative (respectively,
positive) number. Both versions ofbcmp return 0 when that their
arguments are equal. This interface change was not reflected in
the documentation: both before and after the change,BigFloat ’s
documentation indicated thatbcmp could return any negative or
positive value, while Perl’s documentation specifies that the<=>
operator, whichbcmp overloads, always returns−1, 0, or 1.

Our approach concludes that neither an upgrade from 1.40 to
1.42 nor a downgrade from 1.42 to 1.40 is behavior-preserving.
Having described the differences between the versions above, we
now describe how our technique and tools discover those differ-
ences and conclude that both components are incompatible with
one another. For our case study, we replaced the test suite dis-
tributed withBigFloat (which tests the basic routines with only
a few dozen pairs of inputs) with simple randomized tests of sin-
gle operators on larger varieties of input, and also exercisedCur-
rency with a simple randomized script.

The downgrade is (correctly) judged as incompatible for the fol-
lowing reason. The new component’s abstraction restricts the com-
parison routine’s output range (return ∈ {−1, 0, 1}), but no corre-
sponding restriction appears in the abstraction generated from the
old component, so the replacement is not compatible. For instance,
an application that worked correctly with a later version ofBig-
Float might compare the output ofbcmp directly to a literal1
value, or check whether two pairs of numbers had the same order-
ing relationship with an expression of the form($a <=> $b)
== ($c <=> $d) . These constructions would give incorrect re-
sults when used on a system where an earlier version ofBigFloat
was installed. Our tool does not rule out an upgrade based on the

restrictions onbcmp’s range: the new component’s properties are
stronger than the old component’s properties.

Our tool also (correctly) advises that the upgrade is not behavior-
preserving, but for a different reason. The behavior changes it dis-
covers are side effects of fixing a comparison bug in 1.40 and ear-
lier versions. Specifically, the old comparison routine treated (for
example) $1.67 and $1.75 as equal because both values were in-
advertently truncated to 1. Because of an otherwise unrelated bug
in the right shift operation, this integer truncation converted values
less than a dollar into a floating-point value with a corrupt man-
tissa, represented as an empty array rather than an array containing
only a zero. Our comparison rejects the upgrade because it can tell
that the application, using the old version ofBigFloat , called the
comparison routine with these malformed values, but that the test
suite with the new version does not.

While the change to the return value of the comparison oper-
ator caused our tool to caution against a downgrade (unless fur-
ther analysis indicates that the application does not depend on the
more restricted behavior), the bug fix results in cautions against an
upgrade. The bug fixes do make the two components incompati-
ble, but the changes are improvements, and typically such changes
are desirable. In the absence of a programmer-supplied specifica-
tion (the presence of which, along with the operational abstraction,
would have indicated the bug long before!), it is impossible to know
whether a change is desirable. In both cases, our tool outputs a
list of program properties it cannot prove; these are the behavior
changes that should be further investigated.

4.1.3 Floating-point arithmetic
Between versions 1.47 and 1.48, theBigFloat multiplication

routine changed, primarily to reduce its use of temporary values.
(We did not verify the behavior-preservation of the other changes to
this version.) Though much of the code in the method was replaced,
our tool was able to verify that these changes were behavior-pre-
serving with respect to how the module was used byCurrency .
Most of the needed properties were verified without human inter-
vention. We did have to slightly modify our testing script, how-
ever, to work around a deficiency in the Daikon invariant detector’s
handling of certain Perl global variables. We modified the tests
(notBigFloat itself) to pass the default precision as an argument
rather than requiring a runtime symbol table lookup to determine
the class in which the precision should be looked up. We also added
four predicates, which are hints that help Daikon to detect condi-
tional program properties (these are discussed further in Section
5.1.1). Conditional properties are needed to capture properties of
the method’s behavior that are true only for a subset of its possible
inputs: for instance, the multiplication routine performs differently
depending on whether it receives an explicit argument specifying
rounding, and whether or not one of its arguments in zero.

4.2 Date case study
For our second case study, the component isDate::Simple ,

a module for calendar calculations, and the application isDate::
Range::Birth , which computes the range of birthdays of peo-
ple whose age would fall into a given range on a given date. We
compared three versions ofSimple — 1.03, 2.01, and 2.03 — and
the most recent available version (0.02) ofBirth . Simple 1.03
consists of approximately 140 lines of code, while versions 2.01
and 2.03 consist of about 280 lines. InSimple , we examined all
of the methods used byBirth (the constructor and three accessor
methods), creating our own randomized tests. For our application,
we supplemented the small set of tests supplied with theBirth
module by adding four tests of invalid inputs and five test cases us-

292



ing a larger variety of correct inputs. The generated abstractions
include uses ofSimple both directly byBirth and calls via a
third moduleDate::Range .

Comparing the three versions in the context of this application,
our tool concludes that an upgrade or a downgrade between ver-
sions 2.01 and 2.03 would be safe. The tool warns that moving from
1.03 to a release with major version number 2, or vice versa, is po-
tentially unsafe. An upgrade is judged unsafe because of a change
in the return value of the constructor: in version 1.03, the construc-
tor never returns a time represented as a negative value, while in
versions 2.01 and 2.03 it does. Similarly, a downgrade is judged
unsafe because in versions 2.01 and 2.03 the constructor never re-
turned a time represented as zero, but it does in version 1.03. These
behavior changes correspond to a bug in version 1.03: it uses an in-
terface to the Cmktime function to convert times into an internal
representation of seconds since the Unix epoch, but the behavior of
mktime for years before 1970 is incompletely specified. On some
platforms, including the one we used for this experiment,mktime
fails on dates before 1970, which in Perl is signified by returning
a special null valueundef . However,Simple fails to check for
this error condition, and instead the value is treated as a zero, caus-
ing all dates prior to 1970 to be represented as December 31, 1969
(or January 1, 1970, in time zones east of UTC).

In this case study, our random tests of the Date-Simple compo-
nent expose its buggy treatment of pre-1970 dates. Most likely, the
Simple author was either unaware of this problem (perhaps be-
cause it did not occur on his platform) or would have considered
use of the component for pre-1970 dates invalid.

5. DISCUSSION
Our approach uses test suites as proxies for specifications; it

could be called “behavioral subtesting” by analogy with behavioral
subtyping. Our technique can be thought of as a refinement of the
simple idea of directly comparing the test cases to the calls made
by application. If the application’s calls are a subset of those in the
vendor’s test suite (and the outputs are the same or are sufficiently
similar), then the system with the new component will work ev-
erywhere that the system with the old component was ever used.
Furthermore, the system with the new component is likely to work
in new situations that are similar to the old situations. Compar-
ing abstractions is more realistic than comparing all the underlying
calls, though. Operational abstractions are usually more compact
than the set of calls they abstract over, they leave out details that
might be confidential or proprietary to the user or vendor, and they
capture the common aspects of similar calls so that not every appli-
cation call must exactly match a call in the test suite.

Our method is conservative in that it warns about all detected
incompatibilities between versions. We expect that this is not a se-
rious disadvantage in practice. In many cases the technique helps
to avoid breaking a system by indicating an undesired component
change. Even when the change is not catastrophic, the technique
can warn about potential changes in application behavior that users
might want to avoid. It can indicate why, in terms of differing
properties of component behavior, an application behaves differ-
ently than before (even if the previous behavior was mistakenly
believed to be correct). Alternately, the operational abstraction can
help users understand that the change is an improvement and in-
crease their confidence in it.

5.1 Limits of abstraction comparison
Though the case studies described in section 4 are relatively

small, we believe that performance problems do not represent the
main threats to the scalability of the technique. Dynamic invari-

ant detection can construct operational abstractions efficiently [14],
and we have found empirically that abstractions can also be effi-
ciently compared. Instead, the key challenge for our technique is
to avoid spuriously rejecting upgrades given the variety of behavior
found in real programs.

5.1.1 Finding and proving implications
When a tested component has several discrete modes of oper-

ation, of which an application uses only a subset, the tested ab-
straction often needs a conditional property to express this special
case. For instance, if the tested component computes the absolute
value of an input, but the application only gives negative values for
that input, the application will have the propertiesx < 0 (in the
prestate) andx′ = −x (in the poststate). To prove the latter, the
tested component abstraction needs to contain a conditional prop-
erty such as(x ≤ 0) ⇒ (x′ = −x).

The Daikon invariant detector can find conditional properties,
but it requires hints in the form of predicates specifying how to sub-
divide its input into classes in which conditional facts might hold.
(The left-hand side of implications discovered from such subsets is
either the supplied predicate, or another property that was discov-
ered to hold on the same subset.) Daikon has heuristics to generate
some predicates, and others can be found by a static analysis of
program source code, by clustering of program data points, and
by several other techniques [12, 11]. For the bubble sort exam-
ple of Section 2.1, statistical clustering found the relevant predicate
(whetheri was less than or greater thanj in the swapping rou-
tine). Further work is also needed in pruning the set of conditional
invariants produced, since their processing increases running time
and the probability of false positives (properties that are false in
general but are not falsified by a given test suite).

5.1.2 Testing is required
Because our technique characterizes a component in terms of

the way it is tested (by its vendor) and used (by an application), the
technique requires both tests and uses of the component.

The technique presumes that the vendor considers the behavior
exhibited during testing to be correct; the technique is aimed at de-
tecting behavioral differences that seem acceptable in isolated test-
ing but are inappropriate in a particular context. Component testing
is already performed in practice; our technique simply distills its
results so that they can be verified by a component’s users. Other
research has demonstrated that the number of tests needed to pro-
duce accurate operational abstractions is comparable to that needed
to achieve traditional goals such as statement or branch coverage,
and that tests that generate accurate abstractions can be automati-
cally minimized to reduce their running time [17].

The technique only advises about the safety of future component
uses that are similar to past uses by the application, as captured by
the operational abstraction. (Thus, the application operational ab-
straction should represent all the ways that the application typically
exercises the component.) If a user runs the application in a new
domain, then the application may invoke the component in ways
that the application never used it before. In such a situation, there
is no guarantee about how either the old or the new component
would behave, so users are no worse off with the new component.

5.1.3 Limitations of the abstraction grammar
The effectiveness of our technique is limited by the grammar

of properties that can be recognized by the abstraction generation
tool. Any tool is oblivious to program properties outside its gram-
mar. In practice, our tool often recognizes another property that is
related to, or a side effect of, the particular behavior change that
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a programmer might cite as the bug. A complete description of
the problematic behavior might be a complex logical expression,
but often Daikon’s grammar of mainly simple expressions includes
one that separates correct from incorrect behavior. (This can be
seen in the examples of Sections 4.1.2 and 4.2.)

A related danger is that the grammar captures a special case
property in an application’s behavior, but not a more general fact
about the component’s tested behavior that is needed to prove it.
Intuitively, the abstraction tool’s grammar needs to be closed under
a kind of special-case intersection. For instance, we encountered
such a problem when examining a variant of the example in Sec-
tion 2.1, trying to prove that selection sort could be upgraded to
a version of swap that was tested to behave correctly when swap-
ping an element with itself. Previously, Daikon had considered ar-
ray subsequences whose first index was at the start of the array, or
whose final index was at the end. To completely capture the fact
that only the two elements specified as arguments to swap are mod-
ified, we needed to enhance Daikon to also consider subsequences
in the middle of an array.

We believe that if the abstraction grammar is “closed” in this
sense of not missing properties related to ones it contains, it can be
effective at both rejecting and approving upgrades. For instance,
the example of Section 2.1 works just as well without any subse-
quence properties: our tool is unable to prove more complex prop-
erties of the program’s behavior, but it does not have to because
the properties to check are also correspondingly simpler. In prac-
tice, the technique can accurately predict whether an upgrade will
be safe using only a finite subset of the possible true properties of
a program.

6. RELATED WORK
Our technique builds on previous work that formalized the no-

tion of component compatibility. Our work differs in that it charac-
terizes a system based on its runtime behavior, rather than a user-
written specification. Our research is complemented by other tech-
niques which, once an upgrade is deemed safe, can be used to per-
form it with minimal disruption. This section also discusses how to
generate an operational abstraction.

6.1 Static safety checks
Strongly typed object-oriented programming languages, such as

Java, use subtyping to indicate when component replacement is
permitted. If type-checking succeeds and a variable has declared
typeT , then it is permissible to supply a run-time value of any type
T ′ such thatT ′ v T : that is,T ′ is eitherT or a subtype ofT .
Such an execution is guaranteed not to result in a type error. The
subtype relationship requires contravariance of argument types and
covariance of result types [33, 3, 6]. However, type-checking is
insufficient, because an incorrect result can still have the correct
type.

One approach to verifying the preservation of semantic proper-
ties across an upgrade is for the programmer to express those prop-
erties in a formal specification. This is the principle of behavioral
subtyping [1, 25]: typeT ′ is a behavioral subtype of typeT if for
every propertyφ(t) provable about objectst of type T , φ(t′) is
provable about objectst′ of typeT ′. Recently, tools have become
available to enable writing and checking such properties [35, 24,
23, 16].

In practice, the requirement of behavioral subtyping is both too
strong and too weak for use in validating a software upgrade. Like
any condition that pertains only to a component and not the way it

is used, the requirement is too strong for applications that use only
a subset of the component’s functionality. If a system only uses half
of the APIs provided by a component, then the system remains cor-
rect even if the vendor makes incompatible changes in the behavior
of the unused APIs. This inadequacy of the behavioral subtyping
rule implies that the decision about whether to upgrade must be
made independently for each application, based on its own use of
the component. Our approach differs from behavioral subtyping in
that it accounts for distinct uses of the component.

Formal specifications are also too weak for validating a software
upgrade. Specifications abstract over the component’s behavior, but
a system may inadvertently depend on a fact about the implementa-
tion of a component version that is omitted in the specification. For
example, suppose that a component’s interface includes an iterator
that is specified to return the elements of a collection, and that the
old component happens to return the elements in order. It would be
easy for the system to inadvertently depend on this property. The
new version of the component may feature performance improve-
ments — for instance, it might store the collection in a hash table,
causing the iterator to return elements in an arbitrary order. The
system as a whole would malfunction when using the new compo-
nent. (This weakness is distinct from the limitation that any system
of automatic verification has properties about which it cannot rea-
son, which affects both our technique and ones based on the verifi-
cation of human-written specifications.)

Ideally, a technique like the one we describe could be used with
hand-written specifications in the place of operational abstractions.
However, not only would the component specification need to be
proved to describe the component’s actual behavior, the applica-
tion would have to correctly specify the particular component be-
haviors it relied on for its correctness. Creating and proving such
comprehensive specifications would likely be too difficult and time-
consuming for most software projects.

Zaremski and Wing’s specification matching [38] gives a frame-
work of relations that generalize behavioral subtyping, and they
indicate uses for many of the resulting relations, one of which is
substituting a component for another. Zaremski and Wing use a
proof assistant in manually verifying a few specification compar-
isons; by contrast, we use a theorem prover to automatically com-
pare more comprehensive operational abstractions. They consid-
ered only programmer-written specifications, and their framework
does not include the test performed by our technique. Our com-
parison formula (Section 3.1) differs from theirs by “guarding”, or
restricting the behavior compared, to the subset of behaviors used
by a particular application. Section 3.1.2 relates our test to the two
most similar ones among those they define.

Formulas with the same structure as the one we suggest have
been used in proving that a specification for a particular data rep-
resentation correctly implements an abstract specification, which is
the problem of data refinement or data reification. For instance in
the VDM tradition [21], proof obligations analogous to our condi-
tions (with the addition of a function mapping concrete instances
to abstract ones) are called the “domain rule” and the “result rule”.

In the absence of specifications, one might also attempt to stat-
ically verify that two versions of a component produce the same
output for any input. However, such checking is generally only
possible when the versions are related by simple code transforma-
tions [37]. For instance, techniques based on symbolic evaluation
can verify the correctness of changes made by an optimizing com-
piler, such as common subexpression elimination [27]. If a pro-
gram change was subtle enough to require human expertise in its
application, though, it is probably too subtle to be proved sound
automatically.
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6.2 Performing upgrades
It is sometimes possible to substitute incompatible components

by wrapping them in code that translates procedure names, converts
data (for instance, via an intermediate abstract representation [18,
20]), or fixes bugs. (Even compatible components may require up-
dates to data structures or other parts of the system.) Our work
notifies humans of the need to cope with such incompatibilities.

Many researchers have investigated how to perform upgrades in
a running system. One approach is to quiesce or “passivate” the
system, in order to emulate halting and restarting it [19, 2, 31];
another is to run multiple versions of a component simultaneously
(Segal [34] surveys techniques). Distributed systems offer special
challenges [4, 5]; for instance, quiescing and simultaneous upgrade
are impossible. Our work addresses the complementary, and less
investigated, problem of when the upgrade is permissible.

6.3 Generating operational abstractions
To derive an operational abstraction from the operation of a pro-

gram on a test suite, we use Daikon, a tool that dynamically detects
likely invariants. Dynamic invariant detection [13, 14] conjectures
likely invariants from program executions by instrumenting the tar-
get program to trace the variables of interest, running the instru-
mented program, and generalizing the observed values. These con-
jectured invariants form an operational abstraction. In the Daikon
implementation of dynamic invariant detection, the generalization
step uses an efficient generate-and-test algorithm to winnow a set of
possible properties; Daikon reports to the programmer those prop-
erties that it tests to a sufficient degree without falsifying them.
Daikon works with programs written in C, Java, Perl, and IOA, and
with input from several other sources. Daikon is available from
http://pag.lcs.mit.edu/daikon/ .

Daikon detects invariants at specific program points such as pro-
cedure entries and exits; each program point is treated indepen-
dently. The properties reported by Daikon encompass numbers
(x ≤ y, y = ax + b), collections (x ∈ mytree, mylist is sorted),
pointers (node = node.child .parent), and conditionals (if p 6=
null then p.value > x). Daikon incorporates static analysis, sta-
tistical tests, logical inference, and other techniques to improve its
output [15].

Generation of operational abstractions from a test suite is un-
sound: the properties are likely, but not guaranteed, to hold in gen-
eral. As with other dynamic approaches such as testing and pro-
filing, the accuracy of the inferred invariants depends in part on
the quality and completeness of the test cases. When a reported
invariant is not universally true for all possible executions, then it
indicates a property of the program’s context or environment or a
deficiency of the test suite. In many cases, a human or an auto-
mated tool can examine the output and enhance the test suite, but
this paper does not address that issue. Previous research has shown
that the generated operational abstractions tend to be of good qual-
ity: they often match human-written formal specifications [13, 14]
or can be proved correct [29, 30], and even lesser-quality output
forms a partial specification that is nonetheless useful [22], because
it is much better than nothing.

7. CONCLUSION
We have presented a new technique to assess whether replacing a

component of a software system by a purportedly compatible com-
ponent may change the behavior of the system. This is necessary
because component authors cannot foresee (nor test for) all uses to
which their components may be put. The key idea is to compare the
run-time behavior of the old component in the context of the system
with the run-time behavior of the new component in the context of

its own test suite. The components may be exchanged if the new
one’s tested run-time behavior is logically stronger (according to a
novel test we have introduced) than the old one’s run-time behavior
in the system. The behaviors are captured and compared as op-
erational abstractions, which are formal mathematical descriptions
that generalize over observed program executions.

This technique has a number of positive attributes that comple-
ment other approaches for determining the suitability of an up-
grade. The technique is application-specific: it can indicate that
an upgrade is safe for one client but unsafe for a different client.
The technique does not require integrating the new component into
the system or running system tests, permitting earlier and cheaper
detection of incompatibilities. The technique requires no manual
effort by the component vendor, nor by the system integrator (ex-
cept perhaps to investigate a reported incompatibility). Developers
and users are not required to write or prove formal specifications.
The technique is blame-neutral: it warns of incompatibilities re-
gardless of whether the component vendor or the application devel-
oper is at fault, or if blame is impossible to assign unambiguously.
The technique does not depend purely on input–output behavior
nor on an oracle indicating correct behavior: where appropriate,
it can also take advantage of other interfaces or of internal behav-
ior. However, the technique works even without any access to the
component source code.

Preliminary case studies suggest that the technique effectively
identifies some incompatibilities in software components, permit-
ting informed decisions about whether to perform an upgrade.
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