
Michael Ernst, page 1

Predicting problems caused 
by component upgrades 

Michael Ernst
MIT Lab for Computer Science

http://pag.lcs.mit.edu/~mernst/

Joint work with Stephen McCamant



Michael Ernst, page 2

An upgrade problem

1. You are a happy user of Stucco Photostand

2. You install Microswat Monopoly

3. Photostand stops working

Why?

• Step 2 upgraded winulose.dll

• Photostand is not compatible with the new 

version



Michael Ernst, page 3

Outline

The upgrade problem

Solution:  Compare observed behavior

Capturing observed behavior

Comparing observed behavior (details)

Example:  Sorting and swap

Case study:  Currency

Conclusion



Michael Ernst, page 4

Upgrade safety

System S uses component C

A new version C’ is released

Might C’ cause S to misbehave?

(This question is undecidable.)



Michael Ernst, page 5

Previous solutions

Integrate new component, then test

• Resource-intensive

Vendor tests new component

• Impossible to anticipate all uses

• User, not vendor, must make upgrade decision

• (We require this)

Static analysis to guarantee identical or 
subtype behavior

• Difficult and inadequate



Michael Ernst, page 6

Behavioral subtyping

Subtyping guarantees type compatibility

• No information about behavior

Behavioral subtyping [Liskov 94] guarantees 
behavioral compatibility

• Provable properties of supertype are provable 
about subtype

• Operates on human-supplied specifications

• Ill-matched to the component upgrade problem



Michael Ernst, page 7

Behavioral subtyping is 
too strong and too weak

Too strong:

• OK to change APIs that the application does not call

• … or other aspects of APIs that are not depended upon

Too weak:

• Application may depend on implementation details

• Example:

• Component version 1 returns elements in order

• Application depends on that detail

• Component version 2 returns elements in a different order

• Who is at fault in this example?  It doesn’t matter!



Michael Ernst, page 8

Outline

The upgrade problem

Solution:  Compare observed behavior

Capturing observed behavior

Comparing observed behavior (details)

Example:  Sorting and swap

Case study:  Currency

Conclusion





Michael Ernst, page 9

Features of our solution

• Application-specific

• Can warn before integrating, testing

• Minimal disruption to the development process

• Requires no source code

• Requires no formal specification

• Warns regardless of who is at fault

• Accounts for internal and external behaviors

Caveat emptor:  no guarantee of (in)compatibility!



Michael Ernst, page 10

Run-time behavior 
comparison

Compare run-time behaviors of components

• Old component, in context of the application

• New component, in context of vendor test suite

Compatible if the vendor tests all the 

functionality that the application uses

Consider comparing test suites

• “Behavioral subtesting”



Michael Ernst, page 11

Reasons for behavioral 
differences

Differences between application and test suite 

use of component require human judgment

• True incompatibility

• Change in behavior might not affect application

• Change in behavior might be a bug fix

• Vendor test suite might be deficient

• It may be possible to work around the 

incompatibility



Michael Ernst, page 12

Operational abstraction

Abstraction of run-time behavior of component

Set of program properties – mathematical 

statements about component behavior

Syntactically identical to formal specification



Michael Ernst, page 13

Outline

The upgrade problem

Solution:  Compare observed behavior

Capturing observed behavior

Comparing observed behavior (details)

Example:  Sorting and swap

Case study:  Currency

Conclusion





Michael Ernst, page 14

Dynamic invariant detection

Goal:  recover invariants from programs

Technique:  run the program, examine values

Artifact:  Daikon

http://pag.lcs.mit.edu/daikon

Experiments demonstrate accuracy, usefulness



Michael Ernst, page 15

Goal:  recover invariants

Detect invariants (as in asserts or specifications)

• x > abs(y)

• x = 16*y + 4*z + 3

• array a contains no duplicates

• for each node n, n = n.child.parent

• graph g is acyclic

• if  ptr  null then  *ptr > i



Michael Ernst, page 16

Uses for invariants

• Write better programs [Gries 81, Liskov 86]

• Document code

• Check assumptions:  convert to assert

• Maintain invariants to avoid introducing bugs

• Locate unusual conditions 

• Validate test suite:  value coverage

• Provide hints for higher-level profile-directed 

compilation [Calder 98]

• Bootstrap proofs [Wegbreit 74, Bensalem 96]



Michael Ernst, page 17

Ways to obtain invariants

• Programmer-supplied

• Static analysis:  examine the program text 
[Cousot 77, Gannod 96]

• properties are guaranteed to be true

• pointers are intractable in practice

• Dynamic analysis:  run the program

• complementary to static techniques



Michael Ernst, page 18

Dynamic invariant detection

Look for patterns in values the program computes:

• Instrument the program to write data trace files

• Run the program on a test suite

• Invariant engine reads data traces, generates potential 

invariants, and checks them

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect

invariants



Michael Ernst, page 19

Checking invariants

For each potential invariant:

• instantiate
(determine constants like a and b in y = ax + b)

• check for each set of variable values

• stop checking when falsified

This is inexpensive:  many invariants, each cheap



Michael Ernst, page 20

Improving invariant detection

Add desired invariants: implicit values, 

unused polymorphism

Eliminate undesired invariants:  unjustified 

properties, redundant invariants, 

incomparable variables

Traverse recursive data structures

Conditionals:  compute invariants over 

subsets of data (if  x>0  then  yz)



Michael Ernst, page 21

Outline

The upgrade problem

Solution:  Compare observed behavior

Capturing observed behavior

Comparing observed behavior (details)

Example:  Sorting and swap

Case study:  Currency

Conclusion





Michael Ernst, page 22

Testing upgrade 
compatibility

1. User computes operational abstraction of 
old component, in context of application

2. Vendor computes operational abstraction 
of new component, over its test suite

3. Vendor supplies operational abstraction 
along with new component

4. User compares operational abstractions

• OAapp for old component

• OAtest for new component



Michael Ernst, page 23

New operational abstraction 
must be stronger

Approximate test:  OAtest  OAapp

OA consists of precondition and postcondition 

Per behavioral subtyping:

• Preapp  Pretest

Posttest  Postapp

Sufficient, but not necessary

Preapp Pretest

PosttestPostapp



Application Test suite

 

goal

known



Michael Ernst, page 24

Comparing
operational abstractions

Sufficient but not necessary:

Preapp  Pretest

Posttest  Postapp

Sufficient and necessary:

Preapp  Pretest

Preapp & Posttest  Postapp

x is even x is an integer

x’ = x + 1x’ = x + 1

x’ is odd



Application
increment

test suite

 



Michael Ernst, page 25

Outline

The upgrade problem

Solution:  Compare observed behavior

Capturing observed behavior

Comparing observed behavior (details)

Example:  Sorting and swap

Case study:  Currency

Conclusion





Michael Ernst, page 26

Sorting application

// Sort the argument into ascending order

static void

bubble_sort(int[] a) {

for (int x = a.length - 1; x > 0; x--) {

// Compare adjacent elements in a[0..x]

for (int y = 0; y < x; y++) {

if (a[y] > a[y+1])

swap(a, y, y+1);

}

}

}



Michael Ernst, page 27

Swap component

// Exchange the two array elements at i and j

static void

swap(int[] a, int i, int j) {

int temp = a[i];

a[i] = a[j];

a[j] = temp;

}



Michael Ernst, page 28

Upgrade to swap component

// Exchange the two array elements at i and j

static void

swap(int[] a, int i, int j) {

a[i] ^= a[j];

a[j] ^= a[i];

a[i] ^= a[j];

}



Michael Ernst, page 29

Compare abstractions
a != null

0 <= i < size(a[])-1

1 <= j <= size(a[])-1

i < j

j == i + 1

a[i] == a[j-1]

a[i] > a[j]

a’[i] == a[j]

a’[j] == a[i]

a’[i] == a’[j-1]

a’[j] == a[j-1]

a’[i] < a’[j]

a != null

0 <= i <= size(a[])-1

0 <= j <= size(a[])-1

i != j

a’[i] == a[j]

a’[j] == a[i]

bubble_sort

application
swap test suite





 



Michael Ernst, page 30

Compare abstractions
a != null

0 <= i < size(a[])-1

1 <= j <= size(a[])-1

i < j

j == i + 1

a[i] == a[j-1]

a[i] > a[j]

a’[i] == a[j]

a’[j] == a[i]

a’[i] == a’[j-1]

a’[j] == a[j-1]

a’[i] < a’[j]

a != null

0 <= i <= size(a[])-1

0 <= j <= size(a[])-1

i != j

a’[i] == a[j]

a’[j] == a[i]

bubble_sort

application
swap test suite





 

Preapp  Pretest



Michael Ernst, page 31

Compare abstractions
a != null

0 <= i < size(a[])-1

1 <= j <= size(a[])-1

i < j

j == i + 1

a[i] == a[j-1]

a[i] > a[j]

a’[i] == a[j]

a’[j] == a[i]

a’[i] == a’[j-1]

a’[j] == a[j-1]

a’[i] < a’[j]

a != null

0 <= i <= size(a[])-1

0 <= j <= size(a[])-1

i != j

a’[i] == a[j]

a’[j] == a[i]

bubble_sort

application
swap test suite





 

Preapp & Posttest  Postapp



Michael Ernst, page 32

Compare abstractions
a != null

0 <= i < size(a[])-1

1 <= j <= size(a[])-1

i < j

j == i + 1

a[i] == a[j-1]

a[i] > a[j]

a’[i] == a[j]

a’[j] == a[i]

a’[i] == a’[j-1]

a’[j] == a[j-1]

a’[i] < a’[j]

a != null

0 <= i <= size(a[])-1

0 <= j <= size(a[])-1

i != j

a’[i] == a[j]

a’[j] == a[i]

bubble_sort

application
swap test suite





 

Upgrade succeeds



Michael Ernst, page 33

Another sorting application

// Sort the argument into ascending order

static void

selection_sort(int[] a) {

for (int x = 0; x <= a.length - 2; x++) {

// Find the smallest element in a[x..]

int min = x;

for (int y = x; y < a.length; y++) {

if (a[y] < a[min])

min = y;

}

swap(a, x, min);

}

}



Michael Ernst, page 34

Compare abstractions

a != null

0 <= i < size(a[])-1

i <= j <= size(a[])-1

a[i] >= a[j]

a’[i] == a[j]

a’[j] == a[i]

a’[i] <= a’[j]

a != null

0 <= i <= size(a[])-1

0 <= j <= size(a[])-1

i != j

a’[i] == a[j]

a’[j] == a[i]

selection_sort

application
Test suite





 



Michael Ernst, page 35

Compare abstractions

a != null

0 <= i < size(a[])-1

i <= j <= size(a[])-1

a[i] >= a[j]

a’[i] == a[j]

a’[j] == a[i]

a’[i] <= a’[j]

a != null

0 <= i <= size(a[])-1

0 <= j <= size(a[])-1

i != j

a’[i] == a[j]

a’[j] == a[i]

selection_sort

application
Test suite





 

Upgrade fails



Michael Ernst, page 36

Outline

The upgrade problem

Solution:  Compare observed behavior

Capturing observed behavior

Comparing observed behavior (details)

Example:  Sorting and swap

Case study:  Currency

Conclusion





Michael Ernst, page 37

Currency case study

Application:  Math-Currency

Component:  Math-BigInt (versions 1.40, 1.42)

Both from Comprehensive Perl Archive 

Network

Our technique is needed:  a wrong version of 

BigInt induces two errors in Currency



Michael Ernst, page 38

Downgrade from
BigInt 1.42 to 1.40

(Why downgrade?  Fix bugs, porting.)

Inconsistency is discovered:

• In 1.42, bcmp returns -1, 0, or 1

• In 1.40, bcmp returns any integer

Do not downgrade without further examination

• Application might do (a <=> b) == (c <=> d)

(This change is not reflected in the documentation.)



Michael Ernst, page 39

Upgrade from
BigInt 1.40 to 1.42

Inconsistency:

• In 1.40,   bcmp($1.67, $1.75) 0

• In 1.42,   bcmp($1.67, $1.75) -1

Our system did not discover this property …

… but it discovered differences in behavior of 

other components that interacted with it

Do not upgrade without further examination



Michael Ernst, page 40

Outline

The upgrade problem

Solution:  Compare observed behavior

Capturing observed behavior

Comparing observed behavior (details)

Example:  Sorting and swap

Case study:  Currency

Conclusion



Michael Ernst, page 41

Getting to Yes:
Limits of the technique

Rejecting an upgrade is easier than approving it

• Application postconditions may be hard to prove

• Can check the reason for the rejection

Key problem is limits of the theorem prover

Adjust grammar of operational abstractions

• Stronger or weaker properties may be provable

• Weak properties may depend on strong ones



Michael Ernst, page 42

Implementation status

• Operational abstractions are automatically 

generated (by the Daikon invariant detector)

• In Currency case study, operational 

abstractions were compared by hand

• Operational abstractions are automatically 

compared (by the Simplify theorem prover)

• Requires background theory for each property



Michael Ernst, page 43

Contributions

New technique for early detection of upgrade problems

Compares run-time behavior of old & new components

Technique is

• Application-specific

• Pre-integration

• Lightweight

• Source-free

• Specification-free

• Blame-neutral

• Output-independent

• Unvalidated



Michael Ernst, page 44

Questions?


