
Early Identification of Incompatibilities
in Multi-component Upgrades

Stephen McCamant and Michael D. Ernst

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge MA USA
smcc@csail.mit.edu, mernst@csail.mit.edu

Abstract. Previous work proposed a technique for predicting problems
resulting from replacing one version of a software component by another.
The technique reports, before performing the replacement or integrating
the new component into a system, whether the upgrade might be prob-
lematic for that particular system. This paper extends the technique
to make it more applicable to object-oriented systems and real-world
upgrades. First, we extend the theoretical framework to handle more
complex upgrades, including components with internal state, callbacks,
and simultaneous upgrades of multiple components. The old model is a
special case of our new one. Second, we show how to handle four real-
world situations that were not addressed by previous work: non-local
state, non-determinism, distinguishing old from new incompatibilities,
and lack of test suites. Third, we present a case study in which we up-
grade the Linux C library, for 48 Unix programs. Our implementation
identified real incompatibilities among versions of the C library that af-
fected some of the programs, and it approved the upgrades for other
programs that were unaffected by the changes.

1 Introduction

A frequent cause of software failures is the use of software in unexpected or
untested situations, in which it does not behave as intended or desired. Such
problems are inevitable because it is impossible to foresee, much less to test, every
possible situation in which software might be used. As one example, consider a
software system that successfully uses a component. A supposedly compatible
software upgrade may cause system failure or misbehavior if the system uses the
new component in a manner for which it was not designed or tested. Even if the
component developer conscientiously tests the component in many situations,
the new component may not have been tested in an environment like the user’s,
or the developer may have inadvertently changed the behavior in the user’s
environment.

This paper builds on previous research [15] that seeks to identify unantici-
pated interactions among software components, before the components are ac-
tually integrated with one another. The approach is to compare the observed

1



behavior of an old component to the observed behavior of a new component,
and permit the upgrade only if the behaviors are compatible, for the way that
the component is used in an application. The method issues a warning when the
behaviors of the new and old components are incompatible, but lack of such a
warning is not a guarantee of correctness, nor is its presence a guarantee that
the program’s operation would be incorrect.

The two key techniques that underlie the method are formally capturing
observed behaviors and a test that compares those behaviors via logical implica-
tion. The observed behavior is captured via dynamic detection of likely program
invariants [9], which generalizes over program executions to produce an opera-
tional abstraction. An operational abstraction is a set of mathematical proper-
ties describing the observed behavior. An operational abstraction is syntactically
identical to a formal specification —both describe program behavior via logical
formulas over program variables— but an operational abstraction describes ac-
tual program behavior and can be generated automatically. In practice, formal
specifications are rarely available, because they are tedious and difficult to write
and verify, and when available they may fail to capture all of the properties on
which program correctness depends.

The previous technique has a number of positive qualities. It is application-
specific, so it can indicate that an upgrade is safe for one client but unsafe for
a different client. It operates before integrating the new component into the
system (perhaps even before deciding whether to purchase the new component!)
or running system tests. It is automated and does not require writing or proving
formal specifications. It issues warnings for errors made by either the component
vendor or the component client, and it does not require the vendor to have any
knowledge of client behavior. It does not require an oracle indicating correct
behavior, and it does not require access to source code.

However, the previous technique suffers a number of shortcomings, which we
address in this paper. Most seriously, the upgrade model is overly simplistic: it is
more applicable to functional than to object-oriented programs. It assumes that
the upgrade involves a single module being upgraded, that the system interacts
with the module only by calling it, and that each such call is independent. No ac-
commodation is made for simultaneous upgrades of multiple components, or for
components that keep internal state or make callbacks, as is common in object-
oriented frameworks. Furthermore, in applying the technique to a real-world
component, we discovered four circumstances that arise in practice and that
require extensions to the technique. The previous technique is too permissive
(it issues too few warnings) when a component’s behavior depends on non-local
state. The previous technique is too restrictive (it issues too many warnings)
when procedure results are non-deterministic (or depend on unavailable facts),
when test suites are insufficient, and when pre-existing apparent incompatibili-
ties are present that did not prevent correct system behavior in the past. This
paper addresses all of these issues, so its technique covers the essence of objects.
The paper also describes a case study in which we upgraded the Linux C library
and observed the predicted and actual effects on 48 Unix programs.

2



The remainder of this paper is organized as follows. Section 2 outlines the
technique for detecting incompatibilities, in the simplest case of upgrading a
single component that is called by the rest of the system. Section 3 extends the
framework to accommodate more sophisticated interactions between upgraded
components and the system. Section 4 gives examples of the more sophisticated
interactions and shows how our implementation handles them. Section 5 fur-
ther extends the technique to handle non-local state, lack of test suites, non-
determinism, and pre-existing incompatibilities. Section 6 describes our case
studies with the C library and 48 Unix programs. Section 7 discusses related
work, and Section 8 concludes.

2 Overview: Upgrading a Component

This section describes our upgrade-checking technique in outline. For simplicity
of exposition, we describe the case of a single component. Suppose that there
is a complete software system, the application, that includes a separately devel-
oped module, the component. The component may be a library of procedures, a
collection of classes, or a formally packaged component in the sense of COM or
CORBA; we assume only that it is used according to some procedure call inter-
face. The application is observed to function properly with some version of the
component, and we ask whether it will still function correctly if that component
is replaced by a different version.

The method consists of four steps.
(1) Before an upgrade, when the application is running with the older ver-

sion of a component, a tool automatically computes an operational abstraction
from a representative subset (perhaps all) of its calls to the component. Our
implementation computes this abstraction using the Daikon tool [9]. The result
of this step is a formal mathematical description of those facets of the behavior
of the old component that are used by the system. This abstraction depends
on both the implementation of the component and the way it is used by the
application.

(2) Before distributing a new version of a component, the component ven-
dor computes the operational abstraction of the new component’s behavior as
exercised by the vendor’s test suite. This abstraction can be created as a routine
part of the testing process. The result of this step is a mathematical description
of the successfully tested aspects of the component’s behavior.

(3) The vendor supplies the new component’s operational abstraction (with
respect to its test suite) to the customer.

(4) The customer’s system automatically compares the two operational ab-
stractions, to test whether the new component’s abstraction is stronger than the
old component’s abstraction. The test determines whether the new component
has been verified (via testing) to perform correctly (i.e., as the old component
did) for at least as many situations as the old component was ever exposed to.
The specific test is described formally in Sect. 3. Our implementation performs
this checking using the Simplify automatic theorem prover [5]. (Additional imple-

3



mentation details appear in a technical report [16].) Success of the test suggests
that the new component will work correctly wherever the system used the old
component.

If the test does not succeed, the system might behave differently with the
new component, and it should not be installed without further investigation.
The tool reports the incompatibility in terms of specific procedure preconditions
and postconditions. Further analysis could be performed (perhaps with human
help) to decide whether to install the new component. In some cases, analysis
will reveal that a serious error was avoided by not installing the new component.
In other cases, the changed behavior might be acceptable:

– The change in component behavior might not affect the correct operation of
the application.

– It might be possible to work around the changed behavior by modifying the
application.

– The changed behavior might be a desirable bug fix or enhancement.
– The component might work correctly, but the vendor’s testing might have

insufficiently exercised the component, thus producing an operational ab-
straction that was too weak to indicate that the upgrade would perform
compatibly.

3 Upgrades Involving Many Modules

The comparison technique described in [15] is appropriate for upgrades of a single
component, containing a single procedure that is called from the rest of a system.
It can easily be generalized to a component with several independent procedures
(by checking the safety of an upgrade to each procedure independently), or
an upgrade to several cooperating components that are called by the rest of
a system (by treating the components as a single entity for the purposes of an
upgrade). More complicated situations that arise in object-oriented systems, such
as components with state, components that make callbacks, or a simultaneous
upgrade to two components that communicate via the rest of a system, require
a more sophisticated approach. This section describes a model that generalizes
the formulation and consistency condition for a single component as used by
a single application. We consider systems to be divided into modules grouping
together code that interacts closely and is developed as a unit. Such modules
need not match the grouping imposed by language-level features such as classes
or Java packages, but we assume that any upgrade affects one or more complete
modules.

Our approach to upgrade safety verification takes advantage of the modular
structure: we attempt to understand the behavior of each module on its own.
Unlike many specification-based methods, however, the approach is not merely
compositional, starting from the behavior of the smallest structures and com-
bining information about them to predict or verify the behavior of the entire
system. For our purpose of searching for differences in behavior, we examine
each module of a running system to understand its workings in the context of

4



the system, but conversely we also summarize the behavior of the rest of the
system, as it was observed by that module. By combining these forms of infor-
mation, we can predict problems that occur either when a module’s behavior
changes, or when the behavior that the system requires of a module goes beyond
what the module has demonstrated via testing.

3.1 Relations Inside and Among Modules

Given a decomposition of a system into modules, we model its behavior with
three types of relations. Call and return relations represent how modules are
connected by procedure calls and returns. Internal data-flow relations represent
the behavior of individual modules, in context: that is, the way in which each
output of the module potentially depends on the module’s inputs. External sum-
mary relations represent a module’s observations of the behavior of the rest of
the system: how each input to the module might depend on the behavior of the
rest of the system and any previous outputs of the module.

Call and return relations. Roughly speaking, each module is modeled as a
black box, with certain inputs and outputs. When module A calls procedure f in
module B, the arguments to f are outputs of A and inputs to B, while the return
value and any side effects on the arguments are outputs from B and inputs to A.
In the module containing a procedure f, we use the symbol f to refer to the input
consisting of the values of the procedure’s parameters on entrance, and f ′ to
refer to the output consisting of the return value and possibly-modified reference
parameters. We use fc and fr for the call to and return from a procedure in the
calling module. Collectively, we call these moments of execution program points.
All non-trivial computation occurs within modules: calls and returns simply
represent the transfer of information unchanged from one module to another.
Each tuple of values at an fc is identical to some tuple at f , and likewise for f ′

and fr.

Internal data-flow relations. Internal data-flow relations connect each output
of a module to all the inputs to that module that might affect the output value. In
a module M , M(v|u1, . . . , uk) is the data-flow relation from inputs u1 through uk

to an output v. As a degenerate case, an independent output M(v) is one whose
value is not affected by any input to the module. A constant-valued output would
be independent. An independent output might also be influenced by interactions
not captured by our model: it might be the output of a pseudo-random number
generator, or it might come from a file.

Conceptually, this relation is a set of tuples of values at the relevant inputs
and at the output, having the property that on some execution of the output
point, the output values might be those in the tuple, if the most recent values at
all the inputs have their given values. Because each variable might have a large or
infinite domain, it would be impractical or impossible to represent this relation by
a table. Instead, our approach summarizes it by a set of logical formulas that are

5



f f

g

f

g h

f.x is even f.x > g.a f.x = 2 · g.a + h.c
f.y ≤ 42 g.b = 2 · f.y g.b < f.y < h.d

Fig. 1. Examples of data-flow relations over one, two, and three program points.

(observed to be) always true over the input and output variables. The values that
satisfy these formulas are a superset of those that occurred in a particular run.
This representation is not merely an implementation convenience. Generalization
allows our technique to declare an upgrade compatible when its testing has been
close enough to its use, without demanding that it be tested for every possible
input.

The technique must be extended slightly to capture the fact that data-flow
relationships may hold only after certain executions of the input points. A flow
edge from an input u to an output v does not imply that every execution of
u is followed by some execution of v: for instance, u might be the entry point
of a procedure that calls another procedure at v under some circumstances but
not others. (Object-oriented dispatch is an example of such a situation; also
see Sect. 4.3.) To keep track of when u might be followed by v, our technique
computes a property φ that held on executions of u that were followed by exe-
cutions of v, but did not hold on executions of u that were followed by another
execution of u without an intervening v. Such a property is used to guard the
statements describing a relationship between u and v; in other words, we write
those properties as implications with φ as the antecedent.

External summary relations. External summary relations are in many ways
dual to internal data-flow relations. Summary relations connect each input of
a module to all of the module outputs that might feed back to that input via
the rest of the system. In a module M , we refer to the summary relation from
outputs u1 through uk to an input v as M(v|u1, . . . , uk). As a degenerate case,
an independent input M(v) is one not affected by any outputs. The line over the
M is meant to suggest that while this relation is calculated with respect to the
interface of M , it is really a fact about the complement of M —that is, all the
other modules in the system.

Graphical representation. In explaining which conditions must be checked to
assess the safety of an upgrade, it is helpful to represent the relational description
of modules as a directed graph, in which nodes correspond to program points
(module inputs and outputs). Each relation corresponds to zero or more edges,
from each input to the output for a data-flow relation, and from each output to
the input for a summary relation. We call the edges so created data-flow edges
and summary edges, respectively. If an input or output is independent, then the

6



relation is associated directly with the relevant node. Also, procedure calls and
returns are represented by edges in the direction of control flow. Figure 1 shows
our representation of relations. For examples of this graphical model, see Figs. 2,
6, and 10.

3.2 Considering an Upgrade

So far, we have described a model of the behavior of a modular system. For each
module, its external summary relations represent assumptions about how the
module has been used, and subject to those assumptions, its internal data-flow
relations describe its behavior. Now, suppose that one or more modules in the
system are replaced with new versions. We presume that each new module has
been tested, and that in the context of this test suite new sets of data-flow and
summary relations have been created. Under what circumstances do we expect
that the system will continue to operate as it used to, using the new components
in place of their previous versions? We replace the models of old components
with models created during testing, and must check that this upgraded model is
consistent. The key is obeying the summary relations.

In short, we must check that the assumptions embodied in each external sum-
mary relation are preserved: both those in the new component (so we know that
the component will only be used in ways that exercise tested behavior) and those
in the other modules (so we know that the rest of the system will continue to be-
have as expected). Each summary relation summarizes the relationship between
zero or more outputs and an input, which might be mediated by the interaction
of many other relations in the system. The summary relation will be obeyed if
every tuple of values consistent with the rest of the relations in the system is al-
lowed by the summary; in other words, if its abstraction as a formula is a logical
consequence of the combination of all the other relevant relation formulas. The
system as a whole will behave as expected if all of the summary relations can
be simultaneously satisfied given all the data-flow relations. For each summary
relation, we construct a logical combination of the relevant data-flow relations,
describing the states in which the data flow relations could simultaneously be
satisfied. If this combination logically entails the summary relation, we can be
confident that the summary relation will hold in the upgraded program.

Our algorithm for computing a consistency condition has two purposes. First,
it determines how to connect data-flow relations to model a system’s control flow.
One might expect control flow modeling to be straightforward: for instance, se-
quential execution of code simply corresponds to conjunction of the correspond-
ing flow relations. However, control flow join points (which occur at procedure
entrances) require disjunction, or equivalently in our approach, the distribution
of checking obligations over multiple paths. This construction of a consistency
condition is similar in effect to the construction of verification conditions to
check whether a program satisfies properties based on its implementation, as
by weakest precondition / strongest postcondition predicates [7, 10] or symbolic
evaluation [19]. However, we operate at the granularity of modules rather than
of statements.

7



Second, the consistency condition includes only data-flow relations that might
play a role in checking a summary relation, when deciding which assumptions
to supply to a theorem prover. This is just an optimization, but it is an im-
portant one because automatic theorem provers are generally not effective at
ignoring irrelevant hypotheses. This aspect of our technique resembles a back-
ward slice [26]; our use of a functional representation that combines control flow
with data dependence is reminiscent of the slicing algorithm of [8].

Feasible subgraphs. To describe which relations must be checked to verify
that a summary relation holds, we define the concept of a feasible subgraph for a
given summary relation. Roughly, a feasible subgraph captures a subset of system
execution over which a summary relation should hold. A summary relation may
have many corresponding feasible subgraphs. An upgrade is safe if it allows each
summary relation to hold over every corresponding feasible subgraph.

To obtain a single feasible subgraph for a given summary relation, use the
following backward marking algorithm on the graph describing the relations
of a system. (This algorithm, similar to a form of context-free language graph
reachability [22], is given merely to clarify the concept. It could be extended into
a search algorithm that produces all feasible subgraphs, but below we discuss
techniques for more efficient implementation.)

Starting with no nodes marked and no relations in the subgraph, mark the
input of the given summary relation. Then, until no more nodes can be marked,
repeat the following:

(a) If the output of a data-flow relation is marked, mark all the corresponding
input nodes, and add the relation to the feasible subgraph.

(b) If the return value input node of a procedure return edge is marked, mark
the exit point output node.

(c) If a procedure entry input node is marked, and a return node connected to
the same procedure’s exit output node is marked, then mark the procedure
call output node for that procedure in the module with the return node.

(d) If a procedure entry input node is marked, and none of the corresponding
call nodes or any of the return nodes connected to the same procedure’s exit
output node are marked, then choose one procedure call node connected to
the entry and mark it.

The above algorithm describes a feasible subgraph as consisting only of data-flow
relations (including independent outputs). One might also imagine including call
and return edges, but we will adopt the convention that the identity between
formal parameters and actual arguments entailed by the call edges, and the
similar identity for return values, are represented implicitly by giving the same
names to both sets of variables.

For a summary relation to be satisfied in an upgraded system, it must be
guaranteed by each possible corresponding feasible subgraph. Representing each
relation as a logical formula that must hold over certain variables, we can express

8



this consistency condition for a summary relation M0(v0|u1, . . . , uk) as

∧

feasible G
for M0(v0|u1,...,uk)





 ∧

Mi(vi|...)∈G

Mi(vi| . . .)

 ⇒ M0(v0|u1, . . . , uk)


 (1)

In other words, for each feasible subgraph, the conjunction of the formulas rep-
resenting data-flow relations in the subgraph must imply the formula for the
summary relation.

A direct evaluation of the consistency condition for an upgrade, as described
in the previous paragraph, would be potentially inefficient, performing unneces-
sary logical comparisons. In the worst case, there may be exponentially many
feasible subgraphs, but it is not necessary to evaluate each one individually.
Three techniques can be used to evaluate an upgrade’s safety more efficiently.
First, if all of the relations that should be checked to verify a summary rela-
tion are unchanged since the previous version of the system, they do not need
to be rechecked. Second, if the subgraph to be checked has a smaller subgraph
that corresponds to a summary relation that has already been checked, an im-
plementation can substitute that summary relation for the conjunction of those
subgraph relations, since it has already been verified to be a consequence of
them. If this implication is verified, then the summary relation is satisfied. If
this implication fails, an implementation should fall back to using the conjunc-
tion of the data-flow relations, since they may be logically stronger than the
summary. Such double checking should be rare in practice. Third, the feasible
subgraphs for a summary relation may share some data-flow relations. Rather
than evaluate each subgraph separately, the conjunctions for subgraphs that
share relations can be combined into a single formula by eliminating repeated
conjuncts and combining the remaining conjuncts as disjuncts, according to the
identity

(A ∧ C ⇒ D) ∧ (B ∧ C ⇒ D) ⇐⇒ ((A ∨B) ∧ C ⇒ D) .

This merging of feasible subgraphs is an important optimization to reduce the
total number of graphs that must be evaluated.

The relation model as described is context-insensitive. A single relation in-
cludes information about all the inputs that might influence an output, even if
some of them are mutually exclusive, as the different call sites of a procedure are:
any particular time a procedure is invoked, its results depend upon the values at
only one of its call sites. If there really is a difference in the behavior in different
contexts, such context sensitivity can still be represented internally to the rela-
tion by using logical formulas that are conditional. For instance, when properties
are discovered using the Daikon dynamic invariant detection tool, Daikon can
search separately for properties that hold on the subsets of input values corre-
sponding to distinct call sites, and express those differences as properties that
are conditional on the values of the inputs.

A related imprecision of this model is that a single feasible subgraph cannot
separately represent distinct traversals of a data-flow edge. If a procedure is used

9



in different ways by two distinct modules within a single feasible subgraph, or
if two procedures in different modules are mutually recursive, the consistency
condition may contain a contradiction. A partial solution would be to duplicate
a module to separate distinct uses, but duplication can potentially be expensive,
it is inapplicable in the case of recursion, and simple duplication will be incorrect
if multiple using modules interact via state in the duplicated module.

3.3 Special Case: Upgrading a Functional Procedure

The upgrade condition for a system of two modules and a single procedure in one
module called from the other [15] is a special case of the more general framework
described in this section.

Consider a system with two modules, U and C, where C is a third-party
component that defines a procedure f, and U calls f. Further, suppose that each
call to f is independent. In our model, C would have an independent input C(f)
describing the preconditions of f, and a data-flow relation C(f ′|f) describing
the postconditions of f, both based on the vendor’s testing of C. Conversely, U
has an independent output U(f) of preconditions describing how it calls f, and
a summary relation U(f ′|f) describing the postconditions it expects from the
call.

Our technique claims that the new component may be safely substituted for
the old one in the application if and only if

U(f) ⇒ C(f) and (U(f) ∧ C(f ′|f)) ⇒ U(f ′|f) .

Our original reasons for choosing this formula, and its relation to alternative
formulas, are explained in [15]; it is also the result given by the algorithm of
Sect. 3.2. Chen and Cheng [4] prove formally, using a relational semantics, that
this condition is the weakest (most general) condition on a component that is
guaranteed to preserve application behavior. This formula is similar to, but more
general than, the classic substitutability condition of behavioral subtyping [1,
14], used to check that objects of a subtype are a safe replacement for supertype
objects. In our notation, the condition that behavioral subtyping imposes on a
single functional method is that

U(f) ⇒ C(f) and C(f ′|f) ⇒ U(f ′|f) .

4 Examples of Upgrades

The framework for upgrade safety checks described in Sect. 3 generalizes that
of [15] to be applicable to more complex software systems, including object-
oriented systems. The new framework is more general in three aspects: it can
model modules with state and multiple interacting procedures, it can model in-
teractions between modules in which procedure calls are made in both directions,
and it applies to systems with more than two modules. The following subsec-
tions illustrate these capabilities with simple concrete examples of each of these

10



set ENTERset CALL

set RETURN set EXIT

get CALL

get RETURN

get ENTER

get EXIT

Module A Module C
Procedure
call/return relation

Summary relation

Data−flow relation

Independent output

Independent input

Fig. 2. A system with a module C whose procedures share state.

A(sc) ⇒ C(s)

A(sc) ∧ C(s′|s) ⇒ A(sr|sc)

A(gc) ⇒ C(g)

A(sc) ∧A(gc) ∧ C(g′|s, g) ⇒ A(gr|sc, gc)

Fig. 3. Consistency conditions, derived from equation 1 of Sect. 3.2, for the system
shown in Fig. 2; s and g represent the set and get procedures.

public class C {

private int private_x;

int set(int x) { int get() {

private_x = x; return private_x + 1;

return 0; // success }

}

}

Fig. 4. Source code for a module with the structure of C from Fig. 2.

A(sc): s.x is even C(s): s.x is an integer

A(sr|sc): s′.return = 0 C(s′|s): s′.return = 0

A(gc): true C(g): true

A(gr|sc, gc): g′.return = s.x + 1 C(g′|s, g): g′.return = s.x + 1
g′.return is odd

Fig. 5. Operational abstractions for A and C as in Fig. 2. Variables are prefixed ac-
cording to the procedure they belong to. For instance, s′.return is the return value of
set, while g′.return is the return value of get.

new possibilities. In each case, the determination of which relationships to check
was made automatically using a implementation of the unoptimized algorithm
described in Sect. 3.2; an abstraction including the properties shown was discov-
ered by the Daikon tool; and the verification of all of the required properties,
including ones not shown, was performed by the Simplify automatic theorem

11



sort ENTERsort CALL

compare ENTER

compare EXIT

sort EXITsort RETURN

Module A

compare CALL

compare RETURN

Module C

Fig. 6. A system with a module C that calls back to the using module A.

A(sc) ⇒ C(s)

A(sc) ∧ C(cc|s, cr) ∧A(c′|c) ⇒ A(c|sc, c
′)

A(sc) ∧ C(cc|s, cr) ∧A(c′|c) ⇒ C(cr|cc)

A(sc) ∧ C(cc|s, cr) ∧A(c′|c) ∧ C(s′|s, cr) ⇒ A(sr|sc, c
′)

Fig. 7. Consistency conditions, derived from equation 1 of Sect. 3.2, for the system
shown in Fig. 6; s and c represent the sort and compare procedures.

public class A {
private static class MyCompare

implements Compare {
public int compare(int x, int y) {

return (x > y) ? 1 : (x < y) ? -1 : 0;
}

}
...

obj.sort(employee_ids, new MyCompare());
...

}

public class C {
void sort(int[] a, Compare comp) {
for (int i = a.length - 1; i > 0; i--)

for (int j = 0; j < i; j++)
if (comp.compare(a[j], a[j+1]) > 0) {

int temp = a[i];
a[i] = a[j];
a[j] = temp;

}
}

}

Fig. 8. Source code for a module C and part of a module A with the structure shown
in Fig. 6.

A(sc): ∀i ∈ s.a: i ≥ 1000 C(s): ∀i ∈ s.a: i ≥ −231

A(c|sc, c
′): c.x, c.y ∈ s.a C(cc|s, cr): c.x, c.y ∈ s.a

c.x, c, y ≥ 1000

A(c′|c): c′.return ∈ {−1, 0, 1} C(cr|cc): c′.return ∈ {−1, 0, 1}
c′.return < c.x, c.y

A(sr|sc, c
′): ∀i ∈ s′.a: i ∈ s.a C(s′|s, cr): ∀i ∈ s′.a: i ∈ s.a
∀i ∈ s.a: i ∈ s′.a ∀i ∈ s.a: i ∈ s′.a
∀i ∈ s′.a: i ≥ 1000

Fig. 9. Operational abstractions for A and C as in Fig. 6.

12



prover. The verification, requiring the proof of hundreds of properties, took a
total of less than one second for each example. For brevity, we show shortened
operational abstractions with a representative fraction of the actual properties.
We also do not show the complete code, nor do we show the necessary test suites
for the applications or the new modules.

4.1 Modules with Internal State

Figures 2 and 4 show a system in which one module, C, provides two procedures
whose behavior is interdependent: the result of get depends on the previous call
to set. Such dependencies often arise when methods share state in an object
instance, but our approach is independent of how the state is recorded. To model
this dependency, a data-flow edge connects the entrance of the set procedure to
the exit of the get procedure; symmetrically, we presume that module A expects
this relationship, as indicated by the summary edge connecting the call of set
and the return of get. For the upgrade of module C to be behavior preserving, the
four implications shown in Fig. 3 must hold. For instance, consider a behavior-
preserving upgrade to C, which has been well-tested on its own, but suppose
that module A happens to only call set with even integers. The operational
abstractions shown in Figure 5 describe this situation, and it can be seen that
the conditions in Fig. 3 do hold. For instance, consider the last condition: if s.x
is even, and g′.return = s.x + 1, then g′.return will be odd.

4.2 Modules with Callbacks

Figure 8 shows source code from a system in which A calls C’s sort procedure,
which calls back to the compare procedure defined in A. Figure 6 models this
system conservatively with respect to changes in C, by including each possi-
ble data-flow edge in C and corresponding summary edge in A: the arguments
passed to compare might depend on the results of the previous call, as well as
the arguments to sort, and the results of sort potentially depend not only on
its arguments but also on the results of the most recent call to compare. Here
the callback is encapsulated in an object, but the same model could describe
a callback passed by a function pointer. A change to this system is behavior-
preserving only if the implications shown in Fig. 7 hold. For instance, the left-
hand column of Fig. 9 gives an operational abstraction for A, which sorts only
four-digit employee identification numbers. The right-hand column gives an op-
erational abstraction for a well-tested behavior-preserving upgrade to C — for
instance, a change to the sorting algorithm. Note that not all of the possible
relations corresponding to edges in Fig. 6 were observed: for instance, calls to
compare were not inter-dependent. Again, we can easily see that conditions of
Fig. 7 hold. Considering the last line, if every element of s.a is at least 1000, and
every element of s′.a is also a member of s.a, then every element of s′.a is also
at least 1000.

13



4.3 More Than Two Modules

Figure 12 shows an excerpt of pseudocode from a client-server system for per-
forming simple arithmetic. Modules R and M each perform two calculations in
response to requests dispatched by module D. These services are used by two
modules U and P , making a system of five modules with the structure shown
in Fig. 10. In this example, the dispatch is performed explicitly, but a similar
model could be used for dynamic dispatch as in an object-oriented language,
given the sets of potential method targets. The conditions needed to verify the
behavioral compatibility of a change to this system are shown in Fig. 11 (each
condition containing a disjunction was formed by combining the conditions for
two feasible subgraphs). Now, suppose that we wish to upgrade module U , and
the new version U2 requires a new version R2 of module R, in which the behavior
of the rounding operation has changed to round negative values toward negative
infinity rather than toward zero. Because the change to R is incompatible, both
modules must be replaced simultaneously. A similar simultaneous upgrade would
be needed whenever two components, say a producer and a consumer of data,
change the format they use without a change to the module mediating between
them.

calc ENTER

calc EXIT

f CALL

f RETURN

f CALL

f RETURN

f ENTER

f EXIT

Module D
Module M

Module R

Module P

Module U

mcalc ENTER

mcalc EXIT

Fig. 10. A system consisting of five modules.

By checking the conditions of Fig. 11 using the operational abstractions
shown in Fig. 13 (with the new R2 and U2), we can see that such an upgrade
will be behavior preserving. U2 will function correctly because R2 provides the
functionality it requires, and P will function correctly because the functionality
it uses (on non-negative integers only) was unchanged. The data-flow edges in
D from f to cc and mc show an application of the guarding technique described
in Sect. 3: observe that the corresponding properties in Fig. 13 are implications
whose antecedents are properties over a variable of f .

14



(U(fc) ∨ P (fc)) ⇒ D(f)

(U(fc) ∨ P (fc)) ∧D(cc|f) ⇒ R(c)

(U(fc) ∨ P (fc)) ∧D(Mc|f) ⇒ M(m)

(U(fc) ∨ P (fc)) ∧D(cc|f) ∧R(c′|c) ⇒ D(cr|cc)

(U(fc) ∨ P (fc)) ∧D(mc|f) ∧M(m′|m) ⇒ D(mr|mc)

U(fc) ∧D(cc|f) ∧R(c′|c) ∧D(mc|f) ∧M(m′|m) ∧D(f ′|f, cr, mr) ⇒ U(fr|fc)

P (fc) ∧D(cc|f) ∧R(c′|c) ∧D(mc|f) ∧M(m′|m) ∧D(f ′|f, cr, mr) ⇒ P (fr|fc)

Fig. 11. Consistency conditions, derived from equation 1 of Sect. 3.2, for the system
shown in Fig. 10. f , c, and m represent the f, calc, and mcalc procedures respectively.

public class D { // Dispatches to M or R
static int f(String op, int input) {

if (op.equals("double")
|| op.equals("triple"))

return M.mcalc(op, input);
else if (op.equals("increment")

|| op.equals("round"))
return R.calc(op, input);

}
}

public class R { // Rounds or increments
static int calc(String op, int input) {
if (op.equals("round"))

// In version 2, changed to:
// return 10 * Math.floor(input / 10.0);
return 10 * (input / 10);

else if (op.equals("increment"))
return input + 1;

}
}
public class M { // Multiplies by 2 or 3

static int mcalc(String op, int input) {
if (op.equals("double"))

return 2 * input;
else if (op.equals("triple"))

return 3 * input;
}

}

Fig. 12. Java-like pseudocode for modules D, R, and M as in Fig. 10.

U(fc): f.o ∈ {d, i, r} D(f): f.o ∈ {d, i, r, t}
P (fc): f.i ≥ 0, f.o ∈ {i, r, t}

D(cc|f): f.o ∈ {i, r} ⇒ (f.o = c.o, f.i = c.i) R(c): c.o ∈ {i, r}
D(mc|f): f.o ∈ {d, t} ⇒ (f.o = m.o, f.i = m.i) M(m): m.o ∈ {d, t}

R(c′|c): c.o = r⇒ c′.return ≡ 0 (mod 10) D(cr|cc): c.o = r⇒ c′.return ≡ 0 (mod 10)
c.o = i⇒ c′.return = c.i + 1 c.o = i⇒ c′.return = c.i + 1
c.i ≥ 0 ⇒ c′.return ≥ 0

M(m′|m): m.o = d⇒ m′.return = 2 ·m.i D(mr|mc): m.o = d⇒ m′.return = 2 ·m.i
m.o = t⇒ m′.return = 3 ·m.i m.o = t⇒ m′.return = 3 ·m.i

D(f ′|f, cr, mr): f.o ∈ {i, r} ⇒ f ′.return = c′.return U(fr|fc): f.o = d⇒ f ′.return = 2 · f.i
f.o ∈ {d, t} ⇒ f ′.return = m′.return f.o = i⇒ f ′.return = f.i + 1

f.o = r⇒ f ′.return ≡ 0 (mod 10)

P (fr, fc): f.o = i⇒ f ′.return = f.i + 1
f.o = r⇒ f ′.return ≡ 0 (mod 10)
f.o = t⇒ f ′.return = 3 · f.i
f ′.return ≥ 0

U2(fc): f.o ∈ {d, i, r} R2(c): c.o ∈ {i, r}
R2(c

′|c): c.o = r⇒ c′.return ≡ 0 (mod 10) U2(fr|fc): f.o = d⇒ f ′.return = 2 · f.i
c.o = r⇒ c′.return ≤ c.i f.o = i⇒ f ′.return = f.i + 1
c.o = i⇒ c′.return = c.i + 1 f.o = r⇒ f ′.return ≡ 0 (mod 10)
c.i ≥ 0 ⇒ c′.return ≥ 0 f.o = r⇒ f ′.return ≤ f.i

Fig. 13. Operational abstractions for modules in Fig. 10. The arguments op and input

are abbreviated o and i, and the values double, increment, round, and triple are ab-
breviated to their initial letters. The abstractions labeled U2 and R2 represent potential
upgrades to the U and R modules respectively.

15



5 Enhancements to the Upgrade Technique

We have developed several additional enhancements that make the upgrade tech-
nique more effective in validating upgrades to complex software systems. These
techniques are general solutions to specific problems that we encountered while
running our tools to evaluate upgrades of the C library (Sect. 6). This sec-
tion describes four improvements: a change to make more information about a
program’s behavior available to our system, which improves its accuracy; two
techniques that indicate which detected behavioral differences are most relevant
to upgrade safety; and a technique to avoid the need for a large test suite.

5.1 Including Non-local State Information

In order to conclude that an upgraded module will still produce the desired
outputs, our technique must capture, on at least a superficial level, how those
outputs are a function of inputs. Sometimes, the inputs that determine a sub-
routine’s behavior are not all supplied as parameters or as object fields. For
instance, in the Unix system-call interface, functions like open and close cre-
ate and destroy stateful ‘file descriptor’ objects that are actually small integer
indices into a table that exists only in the kernel.

This sort of extra information can be thought of as residing in virtual fields.
The program’s own (pure) accessor methods are one source of contents for such
fields. Additionally, we used annotations to indicate values that should be virtual
fields, for instance associating the file-descriptor pseudo-datatype with fstat, a
function that returns a variety of information about a file.

5.2 Distinguishing Non-deterministic Differences

Section 5.1 describes how our technique can work on software whose behavior is
determined by information elsewhere in the programming system. In some cases,
however, a program’s behavior may depend on information that is completely
inaccessible. For example, such non-determinism is often associated with errors.

Suppose that a return value, thrown exception, or side effect representing an
error occurred during testing but never in an application’s use. Then our tech-
nique would reject an upgrade, unless it could demonstrate that the application
could never induce the erroneous behavior (as the application never had while
using the old component). It is reasonable to establish this for a divide-by-zero
error— say, if the application never passes in a zero value. However, other faults
are effectively non-deterministic. It is not reasonable to predict a ‘disk full’ error
by considering the hard disk’s previous state as an input to every ‘write file’
operation. Failures that result from a physical fault like a broken cable or dust
on a floppy disk are completely unpredictable.

For such effectively non-deterministic failures, we assume that if they never
occurred with the old component, they will never occur with the new component
either. This is unsound, but effective in practice. Our technique determines what
results represent such failures by examining language features such as exceptions
and error codes, possibly augmented by annotations.

16



5.3 Highlighting Cross-version Incompatibilities

When our technique issues a warning, the warning might be an indication of a
behavioral difference (or use of undefined functionality) between the two versions
of the component. On the other hand, the upgrade may be a valid, behavior-
preserving upgrade, but the warning results from insufficient testing, an inade-
quate grammar of the operational abstraction, or a theorem proving weakness.

This section proposes a post-processing technique that aims to distinguish
between cases where our technique does not have enough information to verify
that an upgrade is safe, and when it has some particular information that implies
an upgrade might be unsafe. Classifying warnings permits users or tools to focus
on those that are most likely to result from a behavioral difference.

The postprocessing step first considers a self-upgrade from the old module to
itself. Such an ‘upgrade’ is always behavior-preserving, but our technique might
still fail to verify the upgrade’s safety. Any warning is a false alarm, and is
likely to also be issued for the real upgrade. By contrast, a warning that occurs
only with the new module, but not the old, certainly represents a behavioral
difference, a cross-version incompatibility. Our technique highlights these cross-
version warnings for the user’s immediate consideration. (An earlier version of
this idea was mentioned in [15], under the name ‘meta-comparison’, but not
developed, implemented, or evaluated.)

This postprocessing is effective no matter whether the abstractions describ-
ing the old component version are derived from the old or new versions of the
component test suite. The operational abstraction most likely to be available for
the old module is one based on the test suite current at the time of its release;
in our scenario, it would have been supplied along with the old module. If the
test suite has changed, however, better results can be obtained by testing the
old module version with the new version’s test suite. Using the new test suite
with the old module allows the technique to better compensate for deficiencies
existing only in the new test suite, or common to the application and the old
test suite.

5.4 Using Other Applications as a Test Suite

Extensive testing is an important part of software engineering, but not all soft-
ware has a large formal test suite, nor are operational abstractions from those
formal test suites necessarily available to users considering an upgrade. When
an organized test suite is unavailable, the role of the ‘test suite’ in our technique
can instead be played by other applications. For each application, we use as the
‘test suite’ all uses of the new component by all of the other available applica-
tions. Analogous to the ‘late adopter’ practice of letting one’s colleagues use a
new software version first, this is effective if the other uses of the component are
both sufficiently extensive and sufficiently similar to the uses of the application
in question. In addition to being useful to users, this technique lets us run exper-
iments even in the absence of formal test suites. However, the testing achieved
in this way is still less comprehensive than the results of formal testing, so the

17



technique of Sect. 5.3 should also be used, to reduce the number of warnings
that indicate only insufficient testing.

6 Case Studies

In order to test our techniques, we performed case studies of upgrading a large
software component, the Linux C library. On Unix systems a single library, tradi-
tionally named libc, provides the C standard library functions, wrappers around
the low-level system calls, and miscellaneous utility functions. Most Linux sys-
tems use version 2 of the GNU C library [11], which provides a large shared
library that is dynamically linked with virtually every system executable.

The authors of the GNU C library attempt to maintain compatibility, espe-
cially backward compatibility, between releases. Each procedure or global vari-
able in the library is marked with the earliest library version it is compatible
with, the library contains multiple versions of some procedures, and the static
and dynamic linkers enforce that appropriate versions are used. This mecha-
nism assists with maintaining compatibility and avoiding incompatibility, but it
is insufficient. We subverted this check, and added a small number of stubs to
our instrumentation library to simulate functions missing from older versions.
Our experiments demonstrate that libraries marked as incompatible can be used
without error by most applications, but also that in some cases differences be-
tween procedures marked with the same version can cause errors.

Our experiments use unmodified binary versions of applications and the li-
brary. We capture an application’s use of the library via dynamic interposition:
a stub library wraps each function call (approximately 1000 in all), and records
the arguments to and results from each invocation.

6.1 A Compatible C Library Upgrade

The Linux C library implements a stable API and attempts to maintain com-
patibility between versions. To see how well our technique validates large, but
relatively safe upgrades, we compared versions 2.1.3 and 2.3.2 of the C library,
as they were used by 48 programs from version 7.3 of the standard Red Hat
Linux distribution.

We chose a suite of 48 commonplace applications, including many of the ap-
plications that the authors use in everyday work. These include a number of large
graphical applications such as text editors and a web browser, games, interface
accessories, text-based application programs, and utility programs. Application
usage is represented by 20 minutes of scripted and recorded human usage, which
exercises the programs in a fashion typical of daily use. The programs performed
correctly, in all visible respects, with both library versions.

Because the (largely volunteer) authors of the GNU C library have provided
only a limited formal test suite, the role of the ‘test suite’ in our case studies is
instead played by the other applications, as described in Sect. 5.4. The subject
programs called 199 instrumented library procedures. Because our technique

18



0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

P
er

ce
nt

 o
f u

si
ng

 p
ro

gr
am

s 
w

ar
ne

d

Procedures

0

2

4

6

8

10

0 10 20 30 40 50

False positives

Verified warnings

N
um

be
r 

of
 w

ar
ni

ng
s

Programs

Fig. 14. Reported incompatibilities between C library versions 2.1.3 and 2.3.2. On the
left, for 66 procedures whose behavior did not change, the percentage of the programs
that used that procedure for which a behavioral difference warning was reported (false
positives). On the right, the number of warnings produced per program. Unshaded bars
show incompatibilities that we have verified by hand. Shaded bars show warnings that
are probably false positives.

requires procedures to be tested by several clients, we restricted our attention
to the 76 procedures that were used by 4 or more of the subject programs.

For the 76 procedures, our tool correctly warns of behavior differences in 10
of them and correctly approves 57 upgrades as having unchanged behavior. For
9 procedures, the tool warns (incorrectly, we believe) that the behavior differs
for at least one application.

Our comparison technique discovers 10 genuine behavioral differences be-
tween the library versions; for the application programs that we examined, these
differences appear to be innocuous. For example, the dirent structure returned
by readdir holds information about an entry in a directory and contains a field
named d_type. In version 2.1.3, this field was always zero, while in version 2.3.2
it took on a variety of values between 0 and 12. Our tool also reports a number
of behavioral differences arising from the members of the FILE structure used
by standard IO routines such as fopen and fclose. Because the definition of
this structure is visible to user-written code, examining its members is conser-
vative, but the differences our technique finds are not relevant to programs that
correctly treat the structure as opaque.

The 9 false positive incompatibility warnings are summarized in on the left
in Fig. 14. The two tallest bars correspond to tcgetattr and select. When
tcgetattr is applied to a file descriptor that is not a terminal, it copies over
a returned structure from uninitialized memory, causing spurious properties to
be detected over these values. For select, two expected properties fail to hold:
one bounding a return value indicating the number of microseconds left to wait
when the procedure returns, and one concerning a field that our tools treats
as an integer, though in fact it is part of a bit vector in which some bits are
meaningless. On average, a user of our tool checking this C library upgrade for
one of these applications would need to examine 2.69 failing procedures; of these

19



reports, 0.75 would be spurious, and the remaining 1.94 would represent real
differences, which upon examination do not affect the application in question.
The distribution of numbers of procedures flagged for different programs is shown
on the right in Fig. 14. As would be expected, larger applications have more
potential for incompatibility: the two programs with the most warnings were
Netscape Communicator and GNU Emacs.

6.2 C Library Incompatibilities

We used our technique to examine two incompatible changes made by the au-
thors of the GNU C library. Coincidentally, both relate to procedures that op-
erate on representations of time; of course, our technique is not limited to such
procedures. These procedures were not considered in the experiment described
in Sect. 6.1 because they were used by too few of those programs, though one of
the differences exists between the versions considered there.

The mktime procedure The mktime procedure converts date and time values
specified with separate components (year through seconds) into a single value
of type time_t, which is traditionally a signed integer counting seconds since
the 1970 ‘epoch’. If the time cannot be so represented, mktime returns −1. Be-
fore April 2002, the GNU mktime converted dates between 1901 and 1970 into
negative time_t values. In April of 2002, the C library maintainers concluded
that this behavior was in conflict with the Single Unix Specification [25] (the
successor to POSIX), and changed mktime to instead return −1 for any time
before the epoch. (Though this change was not incorporated into version 2.2.5
of the library as released by the GNU maintainers, it was adopted by Red Hat
in the version of the library distributed with Red Hat 7.3, which is also labeled
as version 2.2.5. This incompatibility, between two versions with the same label,
underscores the dangers of relying on developers to label incompatibilities by
hand.)

To see how our technique observed this change, we compared the behavior of
the mktime procedure in the version of the C library on a Red Hat 7.3 workstation
(Red Hat version 2.2.5-43), and in a freshly compiled version of 2.2.5 as released
by its maintainers. Our subject programs were date, emacs, gawk, pax, pdfinfo,
tar, touch, and wget; for each program, the library was considered to be tested
by the remaining programs, as described in Sect. 5.4.

Our tool reports that this upgrade to mktime would not be safe for any of the
programs we examined. Though the correct behavior of mktime is too complex
to be described in the grammar of our operational abstraction generation tool,
our technique does discover differences between the old and new behaviors of
mktime. Specifically, when mktime completes successfully, it updates several fields
of the supplied time structure, but when it returns an error, these fields remain
uninitialized. The new version of mktime gives these uninitialized values for pre-
1969 dates when the old version did not. Because of this phenomenon, our tool
reports that a number of properties involving these fields will not hold using

20



the upgraded version of mktime. In the applications we tested, the change to
mktime’s functionality does cause user-visible functionality to be reduced. For
instance, date with the new library refuses to operate on dates between 1901
and 1970 which would be accepted when running with the old library. This error
has the same underlying cause as one discovered in a previous case study of Perl
modules [15]; however, this manifestation is completely different and its effects
were discovered in a different way and in different programs.

The utimes procedure The C library’s utimes procedure updates the last-
modification and last-access timestamps on a file. The interface of utimes allows
these times to specified by a two integers counting seconds and microseconds. Our
version of the Linux kernel stores file timestamps with one-second granularity, so
the C library must convert the times to a whole number of seconds. During the
summer of 2003, this time conversion was changed from truncation to rounding.
This change was incompatible with other Unix programs: for instance, rounding
up caused the touch command to give files a timestamp in the future, which in
turn caused make to exit with an error message. After wide distribution of this
library, including in the Debian Linux development distribution, the change was
reverted in response to user complaints.

Our technique recognized this change. We compared the behavior of the sys-
tem 2.2.5 version of the C library with that of a version from the development
CVS repository as of September 1st, 2003. Our subject programs were the stan-
dard utilities cp, emacs, mail, pax, and touch; for cp, mail, and touch, we used
more recent versions (from the Debian development distribution). We wrote a
short script to exercise each program’s use of utimes; for each program, we used
the other four as the test suite.

Our tool reports that an upgrade to the C library version with the round-to-
nearest behavior would be unsafe for all five of the applications we considered.
For each application, it reports that the new library fails to guarantee a property
that the old one did, namely that the last-access timestamp of the affected file
in seconds, after the call to utimes, should equal the seconds part of the new
access timestamp passed to utimes. Note that the timestamps of the file are not
arguments to utimes; they are found using the stat procedure as a virtual field
of the filename, as discussed in Sect. 5.1.

7 Related Work

Our technique builds on previous work that formalized the notion of component
compatibility, and complements other techniques that attempt to verify the cor-
rectness of multi-component systems. Our work differs in that it characterizes a
system based on its observed behavior, rather than a user-written specification,
and it is applicable in more situations.

21



7.1 Subtyping and Behavioral Subtyping

Strongly typed object-oriented programming languages, such as Java, use sub-
typing to indicate when component replacement is permitted [23, 2, 3]. If type-
checking succeeds and a variable has declared type T , then it is permissible to
supply a run-time value of any type T ′ such that T ′ v T : that is, T ′ is either T
or a subtype of T . However, type-checking is insufficient, because an incorrect
result can still have the correct type.

One approach to verifying the preservation of semantic properties across an
upgrade is for the programmer to express those properties in a formal specifica-
tion. This is the principle of behavioral subtyping [1, 14]: type T ′ is a behavioral
subtype of type T if for every property φ(t) provable about objects t of type T ,
φ(t′) is provable about objects t′ of type T ′.

In practice, the requirement of behavioral subtyping is both too strong and
too weak for use in validating a software upgrade. Like any condition that per-
tains only to a component and not the way it is used, the requirement is too
strong for applications that use only a subset of the component’s functionality.
Formal specifications are also too weak because a system may inadvertently de-
pend on a fact about the implementation of a component version that is omitted
(perhaps intentionally) from the specification.

7.2 Specification Matching

Zaremski and Wing generalize behavioral subtyping to consider several varieties
of matching between specifications [28]. Such comparisons can be used for a
number of purposes in which the question to be answered is, broadly, whether
one component can be substituted for another. Most previous research, however,
has focused on retrieving components from a database, to facilitate reuse [21,
24].

Though they considered a large number of possible comparison formulas,
Zaremski and Wing omitted the one that we adopted for our single-component
upgrade [15]. Formulas equivalent to the single-component formula have been
used for reuse (sometimes called the “satisfies” match [21]) and in work building
on behavioral subtyping [6]. Also, in the VDM tradition [12], proof obligations
analogous to the condition (with the addition of a function mapping concrete
instances to abstract ones) and called the “domain rule” and the “result rule”
are used to demonstrate that a concrete specification correctly implements an
abstract specification. To our knowledge, no previous work considers all the
issues raised by the multi-module model introduced in this paper, or uses the
same formula that it does.

Ours is also not the first attempt to automate the comparison of specifica-
tions with theorem proving technology. Zaremski and Wing use a proof assistant
in manually verifying a few specification comparisons [28]. Schumann and Fis-
cher use an automated theorem prover with some specialized preprocessing [24].
By comparison, the operational abstractions we automatically verify are signifi-
cantly larger than the hand-written specifications used in previous work, though
the individual statements in our abstractions are mostly simple.

22



7.3 Other Component-Based Techniques

The use of black-box components in systems construction increases the need for
automatically checkable representations of component behavior. Technically, our
approach is most closely related to techniques based on behavioral subtyping;
their use in the component-based context is well summarized by [13]. A more
common approach has been to abstract component behavior with finite state
representations such as regular languages [20] or labeled transition systems [17].
Like our operational abstractions, such representations can be automatically
checked to determine if one component can be substituted for another. The
kinds of failure found by the different techniques are complementary, though.
Finite-state techniques excel at checking properties that are simple, but global;
for instance that a file must always be opened before being read. Our operational
abstractions can capture a richer set of properties, including infinite state ones,
but only as they are localized to the pre- or postconditions on a particular inter-
face. Incorporating temporal properties into our framework might be a fruitful
direction for future work.

7.4 Avoiding Specifications

Ideally, a technique like the one we describe could be used with hand-written
specifications in the place of operational abstractions. However, not only would
the component specification need to be proved to describe the component’s ac-
tual behavior, the application would have to correctly specify the particular
component behaviors it relied on. Creating and proving such comprehensive
specifications would likely be too difficult and time-consuming for most software
projects.

In the absence of specifications, one might also attempt to statically ver-
ify that two versions of a component produce the same output for any input.
However, such checking is generally only possible when the versions are related
by simple code transformations [27]. For instance, techniques based on symbolic
evaluation can verify the correctness of changes made by an optimizing compiler,
such as common subexpression elimination [18]. If a program change was subtle
enough to require human expertise in its application, it is probably too subtle
to be proved sound automatically.

8 Conclusion

We have provided a technique for predicting problems resulting from behavioral
differences among purportedly compatible versions of software components. The
technique runs before the new versions are integrated or system tests are run. It
logically compares two subsets of behavior: tested behavior and behavior used
by an application. The technique is based on a rich component model, capturing
many situations common in object-oriented frameworks, such as multiple simul-
taneous upgrades, shared state, callbacks, and indirect communication through

23



the system. The logical test generalizes that used by previous work, subsuming
the previous test as a special case. We also extended the technique to situations
that arise in real-world code: non-local state, apparent non-determinism, innocu-
ous pre-existing incompatibilities, and lack of test suites. We have implemented
all these enhancements, enabling us to perform a case study of upgrading the
Linux C library in 48 Unix programs. Our tool approved upgrades of most parts
of the library, indicated genuine behavioral differences, and had a low false posi-
tive rate. Furthermore, it also identified several differences that led to user-visible
errors.

References

1. America, P., van der Linden, F.: A parallel object-oriented language with inheri-
tance and subtyping. In: Conference on Object-Oriented Programming, Systems,
Languages, and Applications and 4th European Conference on Object-Oriented
Programming (OOPSLA/ECOOP ’90), Ottawa, Canada (1990) 161–168

2. Black, A., Hutchinson, N., Jul, E., Levy, H., Carter, L.: Distributed and abstract
types in Emerald. IEEE Transactions on Software Engineering 13 (1987) 65–76

3. Cardelli, L.: A semantics of multiple inheritance. Information and Computation
76 (1988) 138–164

4. Chen, Y., Cheng, B.H.C.: A semantic foundation for specification matching. In:
Foundations of Component-Based Systems. Cambridge University Press, New
York, NY (2000) 91–109

5. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, HP Labs, Palo Alto, CA (2003)

6. Dhara, K.K., Leavens, G.T.: Forcing behavioral subtyping through specification
inheritance. In: Proceedings of the 18th International Conference on Software
Engineering, Berlin, Germany, IEEE Computer Society Press (1996) 258–267

7. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18 (1975) 453–457

8. Ernst, M.D.: Practical fine-grained static slicing of optimized code. Technical
Report MSR-TR-94-14, Microsoft Research, Redmond, WA (1994)

9. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering 27 (2001) 1–25 A previous version appeared in ICSE ’99,
Proceedings of the 21st International Conference on Software Engineering, pages
213–224, Los Angeles, CA, USA, May 19–21, 1999.

10. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact ver-
ification conditions. In: Proceedings of the 28th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, London, UK (2001) 193–205

11. Free Software Foundation: GNU C library (2003) http://www.gnu.org/software/
libc/libc.html.

12. Jones, C.B.: Systematic Software Development using VDM. Second edn. Prentice
Hall (1990)

13. Leavens, G.T., Dhara, K.K.: Concepts of behavioral subtyping and a sketch of
their extension to component-based systems. In: Foundations of Component-Based
Systems. Cambridge University Press, New York, NY (2000) 113–135

14. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems 16 (1994) 1811–1841

24



15. McCamant, S., Ernst, M.D.: Predicting problems caused by component upgrades.
In: Proceedings of the 10th European Software Engineering Conference and the
11th ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Helsinki, Finland (2003) 287–296

16. McCamant, S., Ernst, M.D.: Predicting problems caused by component upgrades.
Technical Report 941, MIT Laboratory for Computer Science, Cambridge, MA
(2004) Revision of first author’s Master’s thesis.

17. Moisan, S., Ressouche, A., Rigault, J.P.: Behavioral substitutability in component
frameworks: A formal approach. In: Proceedings of the 2003 Workshop of Specifi-
cation and Verification of Component Based Systems, Helsinki, Finland. (2003)

18. Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, Vancouver, BC, Canada (2000) 83–94

19. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler.
In: Proceedings of the ACM SIGPLAN’98 Conference on Programming Language
Design and Implementation, Montreal, Canada (1998) 333–344

20. Nierstrasz, O.: Regular types for active objects. In: Proceedings of the Eighth
Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, ACM Press (1993) 1–15

21. Penix, J., Alexander, P.: Toward automated component adaptation. In: Proceed-
ings of the 9th International Conference on Software Engineering and Knowledge
Engineering (SEKE-97), Madrid, Spain, June 18-20, 1997. (1997)

22. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, CA (1995)
49–61

23. Schaffert, C., Cooper, T., Bullis, B., Kilian, M., Wilpolt, C.: An introduction to
Trellis/Owl. In: Conference on Object-Oriented Programming Systems, Languages
and Applications, Portland, OR, USA (1986) 9–16

24. Schumann, J., Fischer, B.: NORA/HAMMR: Making deduction-based software
component retrieval practical. In: Proceedings of the 1997 International Conference
on Automated Software Engineering (ASE ’97), Lake Tahoe, California. (1997)
246–254

25. The Open Group, ed.: The Single UNIX Specification, Version 3. The Open Group
(2003) http://www.unix.org/version3/.

26. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3 (1995) 121–189

27. Yang, W., Horwitz, S., Reps, T.: A program integration algorithm that accom-
modates semantics-preserving transformations. ACM Transactions on Software
Engineering and Methodology 1 (1992) 310–354

28. Zaremski, A.M., Wing, J.M.: Specification matching of software components. ACM
Transactions on Software Engineering and Methodology 6 (1997) 333–369

25


