
25

HAMPI: A Solver for Word Equations over Strings, Regular
Expressions, and Context-Free Grammars

ADAM KIEZUN, Brigham and Women’s Hospital / Harvard Medical School
VIJAY GANESH, Massachusetts Institute of Technology
SHAY ARTZI, IBM T.J. Watson Research Center
PHILIP J. GUO, Stanford University
PIETER HOOIMEIJER, University of Virginia
MICHAEL D. ERNST, University of Washington

Many automatic testing, analysis, and verification techniques for programs can be effectively reduced to a
constraint-generation phase followed by a constraint-solving phase. This separation of concerns often leads
to more effective and maintainable software reliability tools. The increasing efficiency of off-the-shelf con-
straint solvers makes this approach even more compelling. However, there are few effective and sufficiently
expressive off-the-shelf solvers for string constraints generated by analysis of string-manipulating programs,
so researchers end up implementing their own ad-hoc solvers.

To fulfill this need, we designed and implemented HAMPI, a solver for string constraints over bounded string
variables. Users of HAMPI specify constraints using regular expressions, context-free grammars, equality
between string terms, and typical string operations such as concatenation and substring extraction. HAMPI

then finds a string that satisfies all the constraints or reports that the constraints are unsatisfiable.
We demonstrate HAMPI’s expressiveness and efficiency by applying it to program analysis and automated

testing. We used HAMPI in static and dynamic analyses for finding SQL injection vulnerabilities in Web
applications with hundreds of thousands of lines of code. We also used HAMPI in the context of automated
bug finding in C programs using dynamic systematic testing (also known as concolic testing). We then
compared HAMPI with another string solver, CFGAnalyzer, and show that HAMPI is several times faster.
HAMPI’s source code, documentation, and experimental data are available at http://people.csail.mit.

edu/akiezun/hampi1.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software Program Verification—For-
mal methods; D.2.5 [Software Engineering]: Testing and Debugging—Testing tools

General Terms: Verification, Algorithms, Reliability, Security

Additional Key Words and Phrases: String constraints, word equations, regular languages, context-free
languages, concolic testing, program analysis

ACM Reference Format:
Kiezun, A., Ganesh, V., Artzi, S., Guo, P. J., Hooimeijer, P., and Ernst, M. D. 2012. HAMPI: A solver for word
equations over strings, regular expressions and context-free grammars. ACM Trans. Softw. Eng. Methodol.
21, 4, Article 25 (November 2012), 28 pages.
DOI = 10.1145/2377656.2377662 http://doi.acm.org/10.1145/2377656.2377662

Professor David Rosenblum handled the reviewing process for this article.
A. Kiezun and V. Ganesh contributed equally to the work.
Corresponding author’s address: A. Kiezun; email: akiezun@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1049-331X/2012/11-ART25 $15.00

DOI 10.1145/2377656.2377662 http://doi.acm.org/10.1145/2377656.2377662

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:2 A. Kiezun et al.

1. INTRODUCTION

Many automatic testing [Cadar et al. 2006; Sen et al. 2005; Godefroid et al. 2005],
analysis [Gulwani et al. 2008; Xie and Aiken 2005], and verification [Jackson and
Vaziri 2000; Clarke et al. 2004] techniques for programs can be effectively reduced to
a constraint-generation phase followed by a constraint-solving phase. This separation
of concerns often leads to more effective and maintainable tools. Such an approach to
analyzing programs is becoming more effective as the efficiency of off-the-shelf con-
straint solvers for Boolean SAT [Moskewicz et al. 2001] and other theories [de Moura
and Bjørner 2008; Ganesh and Dill 2007] continues to increase. Most of these solvers
are aimed at propositional logic, linear arithmetic, or the theory of bit-vectors.

Many programs (e.g., Web applications) take string values as input, manipulate
them, and then use them in sensitive operations such as database queries. Analy-
ses of string-manipulating programs in techniques for automatic testing [Emmi et al.
2007; Godefroid et al. 2008a; Bjørner et al. 2009], verifying correctness of program
output [Shannon et al. 2007], and finding security faults [Fu et al. 2007; Wassermann
et al. 2008] produce string constraints, which are then solved by custom string solvers
written by the authors of these analyses. Writing a custom solver for every applica-
tion is time-consuming and error-prone, and the lack of separation of concerns may
lead to systems that are difficult to maintain. Thus, there is a clear need for an effec-
tive and sufficiently expressive off-the-shelf string-constraint solver that can be easily
integrated into a variety of applications.

To fulfill this need, we designed and implemented HAMPI, a solver for constraints over
bounded string variables. HAMPI constraints express membership in bounded regular
and context-free languages, substring relations, and equalities/disequalities over string
terms.

String terms in the HAMPI language are constructed out of string constants, bounded
string variables, concatenation, and extraction operations. Regular expressions and
context-free grammar terms are constructed out of standard regular expression oper-
ations and grammar productions, respectively. Atomic formulas in the HAMPI language
are equality over string terms, the membership predicate for regular expressions and
context-free grammars, and the substring predicate that takes two string terms and
asserts that one is a substring of the other. Given a set of constraints, HAMPI out-
puts a string that satisfies all the constraints, or reports that the constraints are
unsatisfiable.

HAMPI is designed to be used as a component in testing, analysis, and verification
applications. HAMPI can also be used to solve the intersection, containment, and equiv-
alence problems for bounded regular and context-free languages.

A key feature of HAMPI is bounding of regular and context-free languages. Bounding
makes HAMPI different from custom string-constraint solvers commonly used in testing
and analysis tools [Emmi et al. 2007]. As we demonstrate in our experiments, for
many practical applications, bounding the input languages is not a handicap. In fact,
it allows for a more expressive input language that enables operations on context-free
languages that would be undecidable without bounding. Furthermore, bounding makes
the satisfiability problem solved by HAMPI more tractable. This difference is analogous
to that between model-checking and bounded model-checking [Biere et al. 2003].

As one example application, HAMPI’s input language can encode constraints on SQL
queries to find possible injection attacks, such as:

Find a string v of at most 12 characters, such that the SQL query “SELECT msg
FROM messages WHERE topicid=v" is a syntactically valid SQL statement,
and that the query contains the substring “OR 1=1".

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:3

Note that “OR 1=1" is a common tautology that can lead to SQL injection attacks. HAMPI

either finds a string value that satisfies these constraints or answers that no satisfying
value exists. For the above example, the string “1 OR 1=1" is a valid solution.

HAMPI Overview. HAMPI takes four steps to solve input string constraints.

(1) Normalize the input constraints to a core form, which consists of expressions of
the form v ∈ R or v /∈ R, where v is a bounded string variable, and R is a regular
expression.

(2) Translate core form string constraints into a quantifier-free logic of bit-vectors. A
bit-vector is a bounded, ordered list of bits. The fragment of bit-vector logic that
HAMPI uses allows standard Boolean operations, bit comparisons, and extracting
subvectors.

(3) Invoke the STP bit-vector solver [Ganesh and Dill 2007] on the bit-vector con-
straints.

(4) If STP reports that the constraints are unsatisfiable, then HAMPI reports the same.
Otherwise, STP will generate a satisfying assignment in its bit-vector language, so
HAMPI decodes this to output an ASCII string solution.

Experimental Results Summary. We ran four experiments to evaluate HAMPI. Our
results show that HAMPI is efficient and that its input language can express string
constraints that arise from real-world program analysis and automated testing tools.

(1) SQL Injection Vulnerability Detection (static analysis). We used HAMPI in a static
analysis tool [Wassermann and Su 2007] for identifying SQL injection vulner-
abilities. We applied the analysis tool to 6 PHP Web applications (total lines
of code: 339,750). HAMPI solved all constraints generated by the analysis, and
solved 99.7% of those constraints in less than 1 second per constraint. All solutions
found by HAMPI for these constraints were less than 5 characters long. These exper-
iments bolster our claim that bounding the string constraints is not a handicap.

(2) SQL Injection Attack Generation (dynamic analysis). We used HAMPI in Ardilla,
a dynamic analysis tool for creating SQL injection attacks [Kiezun et al. 2009b].
We applied Ardilla to 5 PHP Web applications (total lines of code: 14,941). HAMPI

successfully replaced a custom-made attack generator and constructed all 23
attacks on those applications that Ardilla originally constructed.

(3) Input Generation for Systematic Testing. We used HAMPI in Klee [Cadar et al. 2008],
a systematic-testing tool for C programs. We used HAMPI to constrain the search
space of Klee so that it could achieve higher coverage. We applied Klee to 3 pro-
grams with structured input formats (total executable lines of code: 4,100). We used
HAMPI to generate constraints that specify legal inputs to these programs. HAMPI’s
constraints eliminated all illegal inputs, improved the line-coverage by up to 2×
overall (and up to 5× in parsing code), and discovered 3 new error-revealing inputs.

(4) Performance Comparison. We compared HAMPI’s performance to CFGAnalyzer, a
solver for bounded versions of decision problems on context-free grammars [Ax-
elsson et al. 2008]. HAMPI was, on average, 6.8 times faster than CFGAnalyzer
on 100 grammar-intersection problems (taken randomly from a set of student
submissions for verbally-described grammars).

1.1. CONTRIBUTIONS

We make the following contributions in this article.

(1) We present a decision procedure (solver) for constraints over bounded string vari-
ables, supporting regular language membership, context-free language member-
ship, equality between string terms, and typical string operations.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:4 A. Kiezun et al.

Fig. 1. Fragment of a PHP program that displays messages stored in a MySQL database. This program is
vulnerable to an SQL injection attack. Section 2 discusses the vulnerability.

(2) We introduce HAMPI, an open-source implementation of the decision procedure.
HAMPI’s format for context-free grammars and regular expressions is as expressive
as that of widely-used tools such as Yacc/Lex; in fact, we have written a script
that transforms a Yacc specification to HAMPI format. Also, our colleague Devdatta
Akhave wrote a script that translates Perl Compatible Regular Expressions (PCRE)
into HAMPI format. HAMPI’s source code, documentation, and supporting scripts are
available at: http://people.csail.mit.edu/akiezun/hampi.

(3) We provide an Experimental evaluation of HAMPI for program analysis, security,
and automated testing applications.

(4) We provide experimental data (downloadable from HAMPI’s Web site) that can be
used as benchmarks for developing and evaluating future string solvers.

(5) We also made significant improvements over an earlier 2009 version of HAMPI,
described in the following text.

Improvements over 2009 version of HAMPI. We published the first version of HAMPI in
an ISSTA 2009 conference paper [Kiezun et al. 2009a]. In the past two years, we have
made the following significant improvements to HAMPI’s expressiveness based on the
needs of our users.

(1) HAMPI now automatically infers size bounds for language-membership constraints.
The previous version of HAMPI required the user to calculate a size bound to convert
a context-free language into a regular language.

(2) HAMPI now supports word equations (equalities and disequalities) over string terms.
(3) HAMPI now allows variable-sized strings to be declared.
(4) HAMPI now supports a substring extraction operation.
(5) HAMPI now allows multiple input string variables, simulating this feature by using

a single long bounded string variable and the extraction operation.

1.2. ARTICLE ORGANIZATION

We first introduce HAMPI’s capabilities with an example (Section 2), then present HAMPI’s
input format and solving algorithm (Section 3), discuss speed optimizations (Section 4),
and present experimental evaluation (Section 5). We end with related work (Section 6)
and conclusion (Section 7).

2. EXAMPLE: SQL INJECTION

SQL injections are a prevalent class of Web-application vulnerabilities. This section
illustrates how an automated tool [Kiezun et al. 2009b; Wassermann et al. 2008] could
use HAMPI to detect SQL injection vulnerabilities and to produce attack inputs.

Figure 1 shows a fragment of a PHP program that implements a simple Web ap-
plication: a message board that allows users to read and post messages stored in a

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:5

Fig. 2. HAMPI input that, when solved, produces an SQL injection attack vector for the vulnerability from
Figure 1.

MySQL database. Users of the message board fill in an HTML form (not shown here)
that communicates the inputs to the server via a specially formatted URL, for instance,
http://www.mysite.com/?topicid=1. Input parameters passed inside the URL are available
in the $ GET associative array. In the above example URL, the input has one key-value
pair: topicid=1. The program fragment in Figure 1 retrieves and displays messages
for the given topic.

This program is vulnerable to an SQL injection attack. An attacker can read all
messages in the database (including ones intended to be private) by crafting a malicious
URL like:

http://www.mysite.com/?topicid=1’ OR ’1’=’1.

Upon being invoked with that URL, the program reads the string

1’ OR ’1’=’1

as the value of the $my topicid variable, constructs an SQL query by concatenating it
to a constant string, and submits the following query to the database in line 4.

SELECT msg FROM messages WHERE topicid=’1’ OR ’1’=’1’

The WHERE condition is always true because it contains the tautology ’1’=’1’. Thus,
the query retrieves all messages, possibly leaking private information.

A programmer or an automated tool might ask, “Can an attacker exploit the topicid
parameter and introduce a OR ’1’=’1’ tautology into a syntactically correct SQL query
at line 4 in the code of Figure 1?” The HAMPI solver is designed to help answer such
questions and serve as a back-end solver in an automated analysis tool to create strings
that can be used as exploits.

The HAMPI constraints in Figure 2 formalize the question in our example. Automated
vulnerability-scanning tools [Kiezun et al. 2009b; Wassermann et al. 2008] can create
HAMPI constraints via either static or dynamic program analysis (we demonstrate both
static and dynamic techniques in our evaluation in Sections 5.1 and 5.2, respectively).
Specifically, a tool could create the HAMPI input shown in Figure 2 by analyzing the
code of Figure 1.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:6 A. Kiezun et al.

STP Solver

Encoder

Normalizer

Decoder

Solution
Bit−vector

Core String Constraints

Bit−vector Constraints

String Solution

HAMPI

No Solution Exists

String Constraints

Fig. 3. Schematic view of the HAMPI string constraint solver. Input enters at the top, and output exits at the
bottom. Section 3 describes the HAMPI solver.

We now discuss various features of the HAMPI input language that Figure 2 illustrates.
(Section 3.1 describes the input language in more detail.)

—Keyword var (line 2) introduces a string variable v. The variable has a size in the
range of 6 to 12 characters. The goal of the HAMPI solver is to find a string that, when
assigned to the string variable, satisfies all the constraints. In this example, HAMPI

will search for solutions of sizes between 6 and 12.
—Keyword cfg (lines 5–10) introduces a context-free grammar, for a fragment of the

SQL grammar of SELECT statements.
—Keyword val (line 13) introduces a temporary variable q, declared as a concatenation

of constant strings and the string variable v. This variable represents an SQL query
corresponding to the PHP $sqlstmt variable from line 3 in Figure 1.

—Keyword assert defines a constraint. The top-level HAMPI constraint is a conjunction
of assert statements. Line 16 specifies that the query string q must be a member
of the context-free language SqlSmall (syntactically-correct SQL). Line 17 specifies
that the variable v must contain a specific substring (e.g., the OR ’1’=’1’ tautology
that can lead to an SQL injection attack).

HAMPI can solve the constraints specified in Figure 2 and find a value for v such as

1’ OR ’1’=’1,

which is a value for $ GET[’topicid’] that can lead to an SQL injection attack.

3. THE HAMPI STRING CONSTRAINT SOLVER

HAMPI finds a string that satisfies constraints specified in the input, or decides that no
satisfying string exists. HAMPI works in four steps, as illustrated in Figure 3.

(1) Normalize the input constraints to a core form (Section 3.2).
(2) Encode core form constraints in bit-vector logic (Section 3.3).

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:7

Fig. 4. Summary of HAMPI’s input language. Terminals are bold-faced, nonterminals are italicized. A
HAMPI input (Input) is a variable declaration, followed by a list of these statements: context-free-grammar
declarations, regular-language declarations, temporary variables, and assertions.

(3) Invoke the STP solver [Ganesh and Dill 2007] on the bit-vector constraints (Sec-
tion 3.3).

(4) Decode the results obtained from STP (Section 3.3).

Users can invoke HAMPI with a text-based command-line front-end (using the input
grammar in Figure 4) or with a Java API to directly construct the HAMPI constraints.

3.1. Hampi Input Language for String Constraints

We now discuss the salient features of HAMPI’s input language (Figure 4) and illustrate
them on examples. The language is expressive enough to encode many kinds of string
constraints generated by typical program analysis, and testing applications. HAMPI may
also find uses in software-security applications, though its applicability to that domain
may be limited due to the lack of the replace operator, often found in sanitization
functions.

HAMPI’s language supports declaration of bounded string variables and constants,
concatenation and extraction operation over string terms, equality over string terms,
regular-language operations, membership predicate, and declaration of context-free
and regular languages, temporaries and constraints.

3.1.1. Declaration of String Variable (var keyword). A HAMPI input must declare a single
string variable and specify its size range as lower and upper bounds on the number
of characters. If the input constraints are satisfiable, then HAMPI finds a value for the

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:8 A. Kiezun et al.

variable that satisfies all constraints. For example, the following line declares a string
variable named v with a size between 5 and 20 characters.

var v:5..20;

3.1.2. Extraction Operation. HAMPI supports extraction of substrings from string terms
(as shown in Figure 4). An example of extraction operation is as follows.

var longv:20;
val v1 := longv[0:9];

where 0 is the offset (or starting character of the extraction operation), and 9 is the
length of the resultant string, in terms of the number of characters of longv.

3.1.3. Declaration of Multiple Variables. The user can simulate having multiple variables
by declaring a single long string variable and using the extract operation: Disjoint
extractions of the single long variable can act as multiple variables. For example, to
declare two string variables of length 10 named v1 and v2, use the following.

var longv:20;
val v1 := longv[0:9];
val v2 := longv[10:9];

The val keyword declares a temporary (derived) variable and will be described later in
this section.

3.1.4. Declarations of Context-Free Languages (cfg keyword). HAMPI input can declare
context-free languages using grammars in the standard notation: Extended Backus-
Naur Form (EBNF). Terminals are enclosed in double quotes (e.g., "SELECT"), and
productions are separated by the vertical bar symbol (|). Grammars may contain spe-
cial symbols for repetition (+ and *) and character ranges (e.g., [a-z]). For example,
lines 5–10 in Figure 2 show the declaration of a context-free grammar for a subset of
SQL.

HAMPI’s format for context-free grammars is as expressive as that of widely-used
tools such as Yacc/Lex; in fact, we have written a simple syntax-driven script that
transforms a Yacc specification to HAMPI format (available on the HAMPI website).

HAMPI can only solve constraints over bounded context-free grammars. However, the
user does not have to manually specify bounds, since HAMPI automatically derives a
bound by analyzing the bound on the input string variable and the longest possible
string that can be constructed out of concatenation and extraction operations.

3.1.5. Declarations of Regular Languages (reg keyword). HAMPI input can declare regular
languages using the following regular expressions: (i) a singleton set with a string
constant, (ii) a concatenation/union of regular languages, (iii) a repetition (Kleene star)
of a regular language, (iv) bounding of a context-free language, which HAMPI does
automatically. Every regular language can be expressed using the first three of those
operations [Sipser 2005].

For example, (b*ab*ab*)* is a regular expression that describes the language of
strings over the alphabet {a,b}, with an even number of a symbols. In HAMPI syntax
this is the following.

reg Bstar := star("b"); // ’helper’ expression
reg EvenA := star(concat(Bstar, "a", Bstar, "a", Bstar));

The HAMPI website contains a script to convert Perl Compatible Regular Expressions
(PCRE) into HAMPI syntax.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:9

Also note that context-free grammars in HAMPI are implicitly bounded, and hence
are regular expressions.

3.1.6. Temporary Declarations (val keyword). Temporary variables are shortcuts for ex-
pressing constraints on expressions that are concatenations of the string variable and
constants or extractions. For example, line 13 in Figure 2 declares a temporary variable
named q by concatenating two constant strings to the variable v.

val q := concat("SELECT msg FROM messages WHERE topicid=’", v, "’");

3.1.7. Constraints (assert keyword). HAMPI constraints specify membership of variables
in regular and context-free languages, substrings, and word equations. HAMPI solves
for the conjunction of all constraints listed in the input.

— Membership Predicate (in): asserts that a variable is in a context-free or regu-
lar language. For example, line 16 in Figure 2 declares that the string value of the
temporary variable q is in the context-free language SqlSmall:

assert q in SqlSmall;

— Substring Relation (contains): asserts that a variable contains the given string
constant. For example, line 17 in Figure 2 declares that the string value of the tempo-
rary variable q contains an SQL tautology.

assert q contains "OR ’1’=’1’";

— String Equalities (=): asserts that two string terms are equal (also known as word
equations). In HAMPI, both sides of the equality must ultimately originate from the
same single string variable. For example, the extract operator can assert that two
portions of a string must be equal.

var v:20;
val v1 := v[0:9];
val v2 := v[10:9];
assert v1 = v2;

All of these constraints may be negated by preceding them with a not keyword.

3.2. Core Form of String Constraints

After parsing and checking the input, HAMPI normalizes the string constraints to a
core form. The core form (grammar shown in Figure 5) is an internal intermediate
representation that is easier than raw HAMPI input to encode in bit-vector logic.

A core form string constraint specifies membership (or its negation) in a regular lan-
guage: StrExp ∈ RegExp or StrExp /∈ RegExp, where StrExp is an expression composed
of concatenations of string constants, extractions, and occurrences of the (sole) string
variable, and RegExp is a regular expression.

HAMPI normalizes its input into core form in 3 steps.

(1) Expand all temporary variables, that is, replace each reference to a temporary
variable with the variable’s definition (HAMPI forbids recursive definitions of tem-
poraries).

(2) Calculate maximum size and bound all context-free grammar expressions into
regular expressions (see below for the algorithm).

(3) Expand all regular-language declarations, that is, replace each reference to a
regular-language variable with the variable’s definition.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:10 A. Kiezun et al.

Fig. 5. The grammar of core form string constraints. Var, StrConst, and Int are defined in Figure 4.

Fixed-sizing of Context-free Grammars. HAMPI creates regular expressions that spec-
ify the set of strings of a fixed length that are derivable from a context-free grammar.
The pseudo-code of this algorithm is given as follows.

(1) Expand all special symbols in the grammar (e.g., repetition, option, character range)
by adding nonterminals to the grammar and productions that correspond to the
special symbols. This step is standard.

(2) Remove ε productions [Sipser 2005].
(3) Construct the regular expression that encodes all strings of size n that can be gen-

erated from grammar symbol S (fix(S, n)), by enumaration of all possible partitions
of n characters into k grammar symbols, creating subexpressions recursively, and
combining the subsexpressions using concatenation operation as follows:
—fix(T , n) = T , where T is a terminal string of length n
—fix(N, n) = +(fix(S1. . . Sk, n)), union for all productions N ::= S1, . . . , Sk
—fix(S1 . . . Sk, n) = +(fix(S1 . . . Sk, n1 , . . . , nk)), union for all n1 , . . . , nk, such that

ni > 0, and n = n1 + · · · + nk
—fix(S1 . . . Sk, n1 , . . . , nk) = fix(S1, n1) . . . fix(Sk, nk), concatenation of all subex-

pressions

HAMPI’s implementation of the above algorithm uses memoization of intermediate
results (Section 4.1) to make the process (worst-case exponential in k and n) scalable.
Additional optimizations involve precomputing the length of the shortest and longest
(if exists) string that can be generated from each nonterminal (i.e., lower and upper
bounds), and using those precomputed bounds during enumeration.

Here is an example of grammar fixed-sizing: Consider the following grammar of well-
balanced parentheses and the problem of finding the regular language that consists of
all strings of length 6 that can be generated from the nonterminal E.

cfg E ::= "()" | E E | "(" E ")" ;

The grammar does not contain special symbols or ε productions, so first two steps
of the algorithm do nothing. Then, HAMPI determines that the shortest string E can
generate is of length 2. There are three productions for the nonterminal E, so the
final regular expression is a union of three parts. The first production, E := "()",
generates no strings of size 6 (and only one string of size 2). The second production,
E := E E, generates strings of size 6 in two ways: either the first occurrence of E
generates 2 characters and the second occurrence generates 4 characters, or the first

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:11

Fig. 6. Grammar of bit-vector logic. Variables denote bit-vectors of fixed length. HAMPI encodes string con-
straints as formulas in this logic and solves using STP.

occurrence generates 4 characters and the second occurrence generates 2 characters.
From the preprocessing step, HAMPI knows that the only other possible partition of 6
characters is 3–3, which HAMPI tries and fails (because E cannot generate 3-character
strings). The third production, E := "(" E ")", generates strings of size 6 in only one
way: the nonterminal E must generate 4 characters. In each case, HAMPI creates the
subexpressions recursively. The resulting regular expression for this example is (plus
signs denote union and square brackets group subexpressions).

()[()() + (())] + [()() + (())]() + ([()() + (())])

3.3. Bit-Vector Encoding and Solving

HAMPI encodes the core form string constraints as formulas in the logic of fixed-size
bit-vectors. A bit-vector is a fixed-size, ordered list of bits. The fragment of bit-vector
logic that HAMPI uses contains standard Boolean operations, extracting subvectors, and
comparing bit-vectors (Figure 6). HAMPI asks the STP bit-vector solver [Ganesh and Dill
2007] for a satisfying assignment to the resulting bit-vector formula. If STP finds an
assignment, HAMPI decodes it, and produces a string solution for the input constraints.
If STP cannot find a solution, HAMPI terminates and declares the input constraints
unsatisfiable.

Every core form string constraint is encoded separately, as a conjunct in a bit-vector
logic formula. HAMPI encodes the core form string constraint StrExp ∈ RegExp recur-
sively, by case analysis of the regular expression RegExp, as illustrated by the following
example (pseudocode shown in Figure 7).

— Consider the following HAMPI formula of the form StrExp ∈ RegExp:

(v) ∈ ()[()() + (())] + [()() + (())]() + ([()() + (())]),
where v is a string variable of size 4 characters, and the regular expression RE on the
right-hand side represents all balanced parantheses of exactly size 6 produced by the
context-free grammar E.

cfg E ::= "()" | E E | "(" E ")" ;

— Since this regular expression RE has only two symbols (and), it encodes constant
characters using a single bit bit-vector constant where 0 represents "(", and 1 represents
")".

— A 6-bit bit-vector variable B is generated corresponding to the 6-character string
(v) on the left hand side of the above formula. In addition, two new conjunctions are
generated, namely, B[0 : 1] = 0 and B[5 : 1] = 1, and added to the bit-vector constraint.
Note that these constraints leave the middle 4 bits of B unconstrained.

— HAMPI encodes the union operator (+) as a disjunction in the bit-vector logic.
This results in 6 disjuncts for the above formula, where each disjunct is an equality
constraint. For example, the formula corresponding to the first regular expression ()()()

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:12 A. Kiezun et al.

Fig. 7. Pseudo code for translating HAMPI string constraints into bit-vector constraints. For a string con-
straint StrExp ∈ RegExp, HAMPI creates a bitvector B of length(StrExp), and calls RegexpToBV(B, RegExp)
to create constraints.

is as follows.

B[0 : 0] = 0 ∧ B[1 : 1] = 1 ∧ . . . ∧ B[5 : 1] = 1

— HAMPI encodes the concatenation operator by enumerating all possible distribu-
tions of the characters to the subexpressions, encoding the subexpressions recursively,
and combining the sub-formulas in a disjunction.

After STP finds a solution to the bit-vector formula (if one exists), HAMPI decodes the
solution by reading 8-bit subvectors as consecutive ASCII characters.

3.4. Complexity

The satisfiability problem for HAMPI’s logic (core form string constraints) is NP-
complete.

To show NP-hardness, we reduce the 3-CNF (conjunctive normal form) Boolean sat-
isfiability problem to the satisfiability problem of the core form string constraints in
HAMPI’s logic. Consider an arbitrary 3-CNF formula with n Boolean variables and m
clauses. A clause in 3-CNF is a disjunction (∨) of three literals. A literal is a Boolean
variable (vi) or its negation (¬vi). For every 3-CNF clause, a HAMPI constraint can
be generated. Let � = {T, F} denote the alphabet. For the clause (v0 ∨ v1 ∨ ¬v2), the
equivalent HAMPI constraint is:

V ∈ (T�� · · · � + �T� · · ·� + ��F · · ·�),

where the HAMPI variable V is an n-character string representing the possible assign-
ments to all n Boolean variables satisfying the input 3-CNF formula. Each of the HAMPI

regular-expression disjuncts in the core form string constraint shown above, such as
T�� · · ·�, contains n conjuncts and has a T in the ith slot for vi (and F for ¬vi), that is,

vi −→
i−1

︷ ︸︸ ︷

� · · · � T

n−i
︷ ︸︸ ︷

� · · ·�
︸ ︷︷ ︸

n

.

The total number of such HAMPI constraints is m, the number of clauses in the input
3-CNF formula (here m = 1). This reduction from a 3-CNF Boolean formula into HAMPI

is clearly polynomial-time.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:13

To establish that the satisfiability problem for HAMPI’s logic is in NP, we only need
to show that for any set of core form string constraints, there exists a polynomial-time
verifier that can check any short witness. The size of a set of core form string constraints
is the size k of the string variable plus the sum r of the sizes of regular expressions. A
witness has to be of size k, and it is easy to check, in time polynomial in k+ r, whether
the witness belongs to each regular language.

3.5. Example of Constraint Solving

We now illustrate the entire constraint solving process end-to-end on a simple example.
Given the following input.

var v:2..2; // fixed-size string of length 2
cfg E := "()" | E E | "(" E ")";
reg Efixed := fixsize(E, 6);
val q := concat("((" , v , "))");
assert q in Efixed; // turns into constraint c1
assert q contains "())"; // turns into constraint c2

HAMPI tries to find a satisfying assignment for variable v by following the four-step
algorithm2 in Figure 3.

Step 1. Normalize constraints to core form, using the algorithm in Section 3.2:

c1 [assert q in Efixed]: ((v)) ∈ ()[()() + (())] +
[()() + (())]() +
([()() + (())])

c2 [assert q contains "())"]: ((v)) ∈ [(+)]� ()) [(+)]�

Step 2. Encode the core-form constraints in bit-vector logic. We show how HAMPI

encodes constraint c1; the process for c2 is similar. HAMPI creates a bit-vector variable
bv of length 6*8=48 bits, to represent the left-hand side of c1 (since Efixed is 6 bytes).
Characters are encoded using ASCII codes: ’(’ is 40 in ASCII, and ’)’ is 41. HAMPI

encodes the left-hand-side expression of c1, ((v)), as formula L1, by specifying the
constant values:

L1 : (bv[0] = 40) ∧ (bv[1] = 40) ∧ (bv[4] = 41) ∧ (bv[5] = 41).

Bytes bv[2] and bv[3] are reserved for v, a 2-byte variable. The top-level regular
expression in the right-hand side of c1 is a 3-way union, so the result of the encoding is
a 3-way disjunction. For the first disjunct ()[()() + (())], HAMPI creates the following
formula D1a:

bv[0] = 40 ∧ bv[1] = 41∧

((bv[2] = 40 ∧ bv[3] = 41 ∧ bv[4] = 40 ∧ bv[5] = 41)∨

(bv[2] = 40 ∧ bv[3] = 40 ∧ bv[4] = 41 ∧ bv[5] = 41)).
Formulas D1b and D1c for the remaining conjuncts are similar. The bit-vector formula

that encodes c1 is

C1 = L1 ∧ (D1a ∨ D1b ∨ D1c).

2The alphabet of the regular expression or context-free grammar in a HAMPI input is implicitly restricted to
the terminals specified.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:14 A. Kiezun et al.

Similarly, a formula C2 (not shown here) encodes c2. The formula that HAMPI sends
to the STP solver is

(C1 ∧ C2).

Step 3. STP finds a solution that satisfies the formula:

bv[0] = 40, bv[1] = 40, bv[2] = 41, bv[3] = 40, bv[4] = 41, bv[5] = 41.

In decoded ASCII, the solution is “(()())” (quote marks not part of solution string).

Step 4. HAMPI reads the assignment for variable v off of the STP solution, by decoding
the elements of bv that correspond to v, that is, elements 2 and 3. HAMPI reports the
solution for v as “)(”.

String “()” is another legal solution for v, but STP only finds one solution.

4. OPTIMIZATIONS

We now describe some optimizations we implemented in HAMPI to reduce running time.

4.1. Memoization

HAMPI stores and reuses partial results during the computation of fixed-sizing of
context-free grammars (Section 3.2) and during the encoding of core constraints in
bit-vector logic (Section 3.3).

To illustrate, consider the example from Section 3.5, that is, fixed-sizing the context-
free grammar of well-balanced parentheses to size 6.

cfg E := "()" | E E | "(" E ")" ;

Consider the second production E := E E. There are two ways to construct a string of 6
characters: Either construct 2 characters from the first occurrence of E and construct 4
characters from the second occurrence, or vice-versa. After creating the regular expres-
sion that corresponds to the first of these ways, HAMPI creates the second expression
from the memoized subresults. HAMPI’s implementation shares the memory representa-
tions of common subexpressions. For example, HAMPI uses only one object to represent
all three occurrences of ()() + (()) in constraint c1 of the example in Section 3.5.

4.2. Constraint Templates

Constraint templates capture common encoded subexpressions, modulo offset in the bit-
vector. During the bit-vector encoding step (Section 3.3), HAMPI may encode the same
regular expression multiple times as bit-vector formulas, as long as the underlying
offsets in the bit-vector are different. For example, the (constant) regular expression
“)(" may be encoded as (bv[0] = 41) ∧ (bv[1] = 40) or as (bv[3] = 41) ∧ (bv[4] = 40),
depending on the offset in the bit-vector (0 and 3, respectively)3.

HAMPI creates a single “template”, parameterized by the offset, for the encoded ex-
pression, and instantiates the template every time, with appropriate offsets. For the
example above, the template is T (p) ≡ bv[p] = 41 ∧ bv[p + 1] = 40, where p is the
offset parameter. HAMPI then instantiates the template to T (0) and T (3).

As another example, consider c1 in Section 3.5: The subexpression ()()+(()) occurs
3 times in c1, each time with a different offset (2 for the first occurrence, 0 for the
second, and 1 for the third). The constraint-template optimization enables HAMPI to do
the encoding once and reuse the results, with appropriate offsets.

340 is the ASCII code for the (character, and 41 is the code for).

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:15

4.3. Server Mode

Server mode improves HAMPI’s efficiency on simple constraints and repeated calls.
Because HAMPI is a Java program, the startup time of the Java virtual machine may
be a significant overhead when solving small constraints. Therefore, we added a server
mode to HAMPI, in which the (constantly running) solver accepts inputs passed over
a network socket and returns results over the same socket. This enables HAMPI to
be efficient over repeated calls, for tasks like solving the same constraints on string
variables of different sizes.

5. EVALUATION

We experimentally tested HAMPI’s applicability to practical problems involving string
constraints and compared HAMPI’s performance and scalability to another string-
constraint solver. We ran the following four experiments.
(1) We used HAMPI in a static-analysis tool [Wassermann and Su 2007] that identifies

possible SQL injection vulnerabilities (Section 5.1).
(2) We used HAMPI in Ardilla [Kiezun et al. 2009b], a dynamic-analysis tool that creates

SQL injection attacks (Section 5.2).
(3) We used HAMPI in Klee, a systematic testing tool for C programs (Section 5.3).
(4) We compared HAMPI’s performance and scalability to CFGAnalyzer [Axelsson et al.

2008], a solver for bounded versions of context-free-language problems, for instance,
intersection (Section 5.4).

Unless otherwise noted, we ran all experiments on a 2.2GHz Pentium 4 PC with
1 GB of RAM running Debian Linux, executing HAMPI on Sun Java Client VM 1.6.0-
b105 with 700MB of heap space. We ran HAMPI with all optimizations on, but flushed
the whole internal state after solving each input to ensure fairness in timing measure-
ments, that is, preventing artificially low runtimes when solving a series of structurally-
similar inputs.

The results of our experiments demonstrate that HAMPI is expressive in encoding
real constraint problems that arise in security analysis and automated testing, that
it can be integrated into existing testing tools, and that it can efficiently solve large
constraints obtained from real programs.

HAMPI’s source code and documentation, experimental data, and additional results
are available at http://people.csail.mit.edu/akiezun/hampi.

5.1. Identifying SQL Injection Vulnerabilities Using Static Analysis

We evaluated HAMPI’s applicability to finding SQL injection vulnerabilities in the con-
text of a static analysis. We used the tool from Wassermann and Su [2007] that, given
source code of a PHP Web application, identifies potential SQL injection vulnerabil-
ities. The tool computes a context-free grammar G that conservatively approximates
all string values that can flow into each program variable. Then, for each variable that
represents a database query, the tool checks whether L(G) ∩ L(R) is empty, where L(R)
is a regular language that describes undesirable strings or attack vectors (strings that
can exploit a security vulnerability). If the intersection is empty, then Wassermann and
Su’s tool reports the program to be safe. Otherwise, the program may be vulnerable to
SQL injection attacks.

An example L(R) that Wassermann and Su use—the language of strings that contain
an odd number of unescaped single quotes—is given by the regular expression (we used
this R in our experiments):

R = (([^’]|\’)*[^\])?’
((([^’]|\’)*[^\])?’
(([^’]|\’)*[^\])?’([^’]|\’)*

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:16 A. Kiezun et al.

Using HAMPI in such an analysis offers two important advantages. First, it elim-
inates a time-consuming and error-prone reimplementation of a critical component:
the string-constraint solver. To compute the language intersection, Wassermann and
Su implemented a custom solver based on the algorithm by Minamide [2005]. Second,
HAMPI creates concrete example strings from the language intersection, which is im-
portant for generating attack vectors; Wassermann and Su’s custom solver only checks
for emptiness of the intersection, and does not create example strings.

Using a fixed-size string-constraint solver, such as HAMPI, has its limitations. An
advantage of using an unbounded-length string-constraint solver is that if the solver
determines that the input constraints have no solution, then there is indeed no solution.
In the case of HAMPI, however, we can only conclude that there is no solution of the
given size.

Experiment. We performed the experiment on 6 PHP applications. Of these, 5 were
applications used by Wassermann and Su to evaluate their tool [Wassermann and Su
2007]. We added 1 large application (claroline, a builder for online education courses,
with 169 kLOC) from another paper by the same authors [Wassermann and Su 2008].
Each of the applications has known SQL injection vulnerabilities. The total size of the
applications was 339,750 lines of code.

Wassermann and Su’s tool found 1,367 opportunities to compute language intersec-
tion, each time with a different grammar G (built from the static analysis) but with
the same regular expression R describing undesirable strings. For each input (i.e., pair
of G and R), we used both HAMPI and Wassermann and Su’s custom solver to compute
whether the intersection L(G) ∩ L(R) was empty.

When the intersection is not empty, Wassermann and Su’s tool cannot produce an
example string for those inputs, but HAMPI can. To do so, we varied the size N of the
string variable between 1 and 15, and for each N, we measured the total HAMPI solving
time, and whether the result was UNSAT or a satisfying assignment.

Results. We found empirically that when a solution exists, it can be very short.
In 306 of the 1,367 inputs, the intersection was not empty (both solvers produced
identical results). Out of the 306 inputs with nonempty intersections, we measured the
percentage for which HAMPI found a solution (for increasing values of N): 2% for N = 1,
70% for N = 2, 88% for N = 3, and 100% for N = 4. That is, in this large dataset, all
nonempty intersections contain strings with no longer than 4 characters.

Due to false positives inherent in Wassermann and Su’s static analysis, the strings
generated from the intersection do not necessarily constitute real attack vectors. How-
ever, this is a limitation of the static analysis, not of HAMPI.

We measured how HAMPI’s solving time depends on the size of the grammar. We
measured the size of the grammar as the sum of lengths of all productions (we counted
ε-productions as of length 1). Among the 1,367 grammars in the dataset, the mean size
was 5490.5, standard deviation 4313.3, minimum 44, maximum 37955. We ran HAMPI

for N = 4, that is, the length at which all satisfying assignments were found. Figure 8
shows the solving time as a function of the grammar size, for all 1,367 inputs.

HAMPI can solve most queries quickly. Figure 9 shows the percentage of inputs that
HAMPI can solve in the given time, for 1 ≤ N ≤ 4, that is, until all satisfying assignments
are found. For N = 4, HAMPI can solve 99.7% of inputs within 1 second. There were 5
queries for which HAMPI spent more than 130 seconds on each. We examined these
inputs and concluded that the unusually long solving time was due to the very large
size of the grammar (more than 37000 productions in each input).

Summary of results. We applied HAMPI to 1,367 constraints created from analysis of
339,750 lines of code from 6 PHP applications. HAMPI found that all 306 satisfiable

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:17

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

s
o
l
v
i
n
g

t
i
m
e

(
s
e
c
.
)

SAT
UNSAT

grammar size

Fig. 8. HAMPI solving time as function of grammar size (number of all elements in all productions), on 1,367
inputs from the Wassermann and Su [Wassermann and Su 2007] dataset. The size of the string variable
was 4, the smallest at which HAMPI finds all satisfying assignments for the dataset. Each point represents
an input; shapes indicate SAT/UNSAT. Section 5.1 describes the experiment.

constraints have short solutions (N ≤ 4). HAMPI found all known solutions, and
solved 99.7% of the generated constraints in less than 1 second per constraint. These
results, obtained on a large dataset from a powerful static analysis and real Web appli-
cations, show that HAMPI’s fixed-size solving algorithm is applicable to real problems.

5.2. Creating SQL Injection Attacks Using Dynamic Analysis

We evaluated HAMPI’s ability to automatically find SQL injection attack strings using
constraints produced by running a dynamic-analysis tool on PHP Web applications. For
this experiment, we used Ardilla [Kiezun et al. 2009b], a tool that constructs SQL injec-
tion and Cross-site Scripting (XSS) attacks by combining automated input generation,
dynamic tainting, and generation and evaluation of candidate attack strings.

One component of Ardilla, the attack generator, creates candidate attack strings
from a pre-defined list of attack patterns. Though its pattern list is extensible, Ardilla’s
attack generator is neither targeted nor exhaustive: The generator does not attempt
to create valid SQL statements but rather simply assigns predefined values from the
attack patterns list one-by-one to variables identified as vulnerable by the dynamic
tainting component; it does so until an attack is found or until there are no more
patterns to try.

For this experiment, we replaced the attack generator with the HAMPI string solver.
This reduces the problem of finding SQL injection attacks to one of string constraint
generation followed by string constraint solving. This replacement makes attack cre-
ation targeted and exhaustive: HAMPI constraints encode the SQL grammar and, if
there is an attack of a given length, HAMPI is sure to find it.

To use HAMPI with Ardilla, we also replaced Ardilla’s dynamic tainting component
with a concolic execution [Godefroid et al. 2005; Sen et al. 2005] component. This

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:18 A. Kiezun et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1

%

o
f

s
o
l
v
e
d

q
u
e
r
i
e
s

time (sec.)

string size 1
string size 2
string size 3
string size 4

Fig. 9. Percentage of queries solvable by HAMPI, in a given amount of time, on data from Wassermann and
Su [2007]. Each line represents a distribution for a different size of the string variable. All lines reach 99.7%
at 1 second and 100% before 160 seconds. Section 5.1 describes the experiment.

required code changes that were quite extensive but fairly standard. Concolic execution
creates and maintains symbolic expressions for each concrete runtime value derived
from the input. For example, if a value is derived as a concatenation of user-provided
parameter p and a constant string "abc," then its symbolic expression is concat(p,
"abc"). This component is required to generate the constraints for input to HAMPI.

The HAMPI input includes a partial SQL grammar (similar to that in Figure 2). We
wrote a grammar that covers a subset of SQL queries commonly observed in Web appli-
cations, which includes SELECT, INSERT, UPDATE, and DELETE, all with WHERE clauses. The
grammar size is 74, according to the metric of Section 5.1. Each terminal is represented
by a single unique character.

We ran our modified Ardilla on 5 PHP applications (the same set as the original
Ardilla study [Kiezun et al. 2009b], totaling 14,941 lines of PHP code). The original
study identified 23 SQL injection vulnerabilities in these applications. Ardilla gener-
ated 216 HAMPI inputs, each of which is a string constraint built from the execution of
a particular path through an application. For each constraint, we used HAMPI to find
an attack string of size N ≤ 6—a solution corresponds to the value of a vulnerable
PHP input parameter. Following previous work [Fu et al. 2007; Halfond et al. 2008],
the generated constraint defined an attack as a syntactically valid (according to the
grammar) SQL statement with a tautology in the WHERE clause, for instance, OR 1=1.
We used 4 tautology patterns, distilled from several security lists.4

4http://www.justinshattuck.com/2007/01/18/mysql-injection-cheat-sheets.,
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku,
http://pentestmonkey.net/blog/mysql-sql-injection-cheat-sheet

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:19

We separately measured solving time for each tautology and each choice of N. A
security-testing tool like Ardilla might search for the shortest attack string for any of
the specified tautologies.

Summary of results. HAMPI fully replaced Ardilla’s custom attack generator. HAMPI

successfully created all 23 attacks on the tested applications. HAMPI solved the associ-
ated constraints quickly, finding all known solutions for N ≤ 6. HAMPI solved 46.0% of
those constraints in less than 1 second per constraint, and solved all the constraints in
less than 10 seconds per constraint.

These results show that the HAMPI enabled a successful reduction of the problem of
finding SQL injection attacks to string constraint generation and solving, and was able
to plug into an existing security testing application and perform comparably.

5.3. Systematic Testing of C Programs

We combined HAMPI with a state-of-the-art systematic testing tool, Klee [Cadar et al.
2008], to improve Klee’s ability to create valid test cases for programs that accept
highly structured string inputs.

Automatic test-case generation tools that use combined concrete and symbolic exe-
cution, also known as concolic execution [Sen et al. 2005; Godefroid et al. 2005; Cadar
et al. 2006; Cadar et al. 2008; Godefroid et al. 2008b; Jayaraman et al. 2009] have trou-
ble creating test cases that achieve high coverage for programs that expect structured
inputs, such as those that require input strings from a context-free grammar [Majum-
dar and Xu 2007; Godefroid et al. 2008a]. The parser components of programs that
accept structured inputs (especially those auto-generated by tools such as Yacc) often
contain complex control-flow with many error paths; the vast majority of paths that
automatic testers explore terminate in parse errors, thus creating inputs that do not
lead the program past the initial parsing stage.

Testing tools based on concolic execution mark the target program’s input string as
totally unconstrained (i.e., symbolic) and then build up constraints on the input based
on the conditions of branches taken during execution. If there were a way to constrain
the symbolic input string so that it conforms to a target program’s specification (e.g., a
context-free grammar), then the testing tool would only explore nonerror paths in the
program’s parsing stage, thus resulting in generated inputs that reach the program’s
core functionality.

To demonstrate the feasibility of this technique, we used HAMPI to create grammar-
based input constraints and then fed those into Klee [Cadar et al. 2008] to generate
test cases for C programs. We compared the coverage achieved and numbers of le-
gal (and rejected) inputs generated by running Klee with and without the HAMPI

constraints.
Similar experiments have been performed by others [Majumdar and Xu 2007; Gode-

froid et al. 2008a], and we do not claim novelty for the experimental design. However,
previous studies used custom-made string solvers, while we applied HAMPI as an “off-
the-shelf” solver without modifying Klee.

Klee provides an API for target programs to mark inputs as symbolic and to place
constraints on them. The code snippet below uses klee assert to impose the constraint
that all elements of buf must be numeric before the target program runs.

char buf[10]; // program input
klee_make_symbolic(buf, 10); // make all 10 bytes symbolic

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:20 A. Kiezun et al.

// constrain buf to contain only decimal digits
for (int i = 0; i < 10; i++)
klee_assert((’0’ <= buf[i]) && (buf[i] <= ’9’));

run_target_program(buf); // run target program with buf as input

HAMPI simplifies writing input-format constraints. Simple constraints, such as those
above, can be written by hand, but it is infeasible to manually write more complex
constraints for specifying, for example, that buf must belong to a particular context-
free language. We use HAMPI to automatically compile such constraints from a grammar
down to C code, which can then be fed into Klee.

We chose 3 open-source programs that specify expected inputs using context-free
grammars in Yacc format (a subset of those used by Majumdar and Xu [2007]).
cueconvert converts music playlists from .cue format to .toc format. logictree is
a solver for propositional logic formulas. bc is a command-line calculator and simple
programming language. All programs take input from stdin; Klee allows the user to
create a fixed-size symbolic buffer to simulate stdin, so we did not need to modify these
programs.

For each target program, we ran the following experiment on a 3.2GHz Pentium 4
PC with 1GB of RAM running Fedora Linux.

(1) Automatically convert its Yacc specification into HAMPI’s input format (described in
Section 3.1), using a script we wrote. To simplify lexical analysis, we used either
a single letter or numeric digit to represent certain tokens, depending on its Lex
specification (this should not reduce coverage in the parser).

(2) Add a fixed-size restriction to limit the input to N bytes. Klee (similar to, for
example, SAGE [Godefroid et al. 2008b]) actually requires a fixed-size input, which
matches well with HAMPI’s fixed-size input language. We empirically picked N as
the largest input size for which Klee does not run out of memory. We augmented
the HAMPI input to allow for strings with arbitrary numbers of trailing spaces, so
that we can generate program inputs up to size N.

(3) Run HAMPI to compile the input grammar file into STP bit-vector constraints (de-
scribed in Section 3.3).

(4) Automatically convert the STP constraints into C code that expresses the equiv-
alent constraints using C variables and calls to klee assert(), with a script we
wrote (the script performs only simple syntactic transformations since STP opera-
tors map directly to C operators).

(5) Run Klee on the target program using an N-byte input buffer, first marking that
buffer as symbolic, then executing the C code that imposes the input constraints,
and finally executing the program itself.

(6) After a 1-hour time-limit expires, collect all generated inputs and run them through
the original program (compiled using gcov) to measure coverage and legality of each
input.

(7) As a control, run Klee for 1 hour using an N-byte symbolic input buffer (with no
initial constraints), collect test cases, and run them through the original program
to measure coverage and legality of each input.

Table I summarizes our experimental setup and results. We made 3 sets of mea-
surements: total line coverage, line coverage in the Yacc parser file that specifies the
grammar rules alongside C code snippets denoting parsing actions, and numbers of
inputs (test cases) generated, as well as how many of those inputs were legal (i.e., not
rejected by the program as a parse error).

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:21

Table I.
The result of using HAMPI grammars to improve coverage of test cases generated by the Klee systematic testing
tool. ELOC lists Executable Lines of Code, as counted by gcov over all .c files in program (whole-project line
counts are several times larger, but much of that code does not directly execute). Each trial was run for 1 hour.
To create minimal test suites, Klee only generates a new input when it covers new lines that previous inputs have
not yet covered; the total number of explored paths is usually 2 orders of magnitude greater than the number of
generated inputs. Column symbolic shows results for runs of Klee without a HAMPI grammar. Column symbolic
+ grammar shows results for runs of Klee with a HAMPI grammar. Column combined shows accumulated results
for both kinds of runs. Section 5.3 describes the experiment.

cueconvert (939 ELOC, 28-byte input) symbolic symbolic + grammar combined
% total line coverage: 32.2% 51.4% 56.2%
% parser file line coverage (48 lines): 20.8% 77.1% 79.2%
legal inputs / # generated inputs (%): 0 / 14 (0%) 146 / 146 (100%) 146 / 160 (91%)

logictree (1,492 ELOC, 7-byte input) symbolic symbolic + grammar combined
% total line coverage: 31.2% 63.3% 66.8%
% parser file line coverage (17 lines): 11.8% 64.7% 64.7%
legal inputs / # generated inputs (%): 70 / 110 (64%) 98 / 98 (100%) 168 / 208 (81%)

bc (1,669 ELOC, 6-byte input) symbolic symbolic + grammar combined
% total line coverage: 27.1% 43.0% 47.0%
% parser file line coverage (332 lines): 11.8% 39.5% 43.1%
legal inputs / # generated inputs (%): 2 / 27 (5%) 198 / 198 (100%) 200 / 225 (89%)

The run times for converting each Yacc grammar into HAMPI format, fixed-sizing to
N bytes, running HAMPI on the fixed-size grammar, and converting the resulting STP
constraints into C code are negligible; together, they took less than 1 second for each
of the 3 programs.

Using HAMPI in Klee improved coverage. Constraining the inputs using a HAMPI gram-
mar resulted in up to 2× improvement in total line coverage and up to 5× improvement
in line coverage within the Yacc parser file. Also, as expected, it eliminated all illegal
inputs.

Using both sets of inputs (combined column) improved upon the coverage achieved
using the grammar by up to 9%. Upon manual inspection of the extra lines covered,
we found that it was due to the fact that the runs with and without the grammar cov-
ered nonoverlapping sets of lines: The inputs generated by runs without the grammar
(symbolic column) covered lines dealing with processing parse errors, whereas the in-
puts generated with the grammar (symbolic + grammar column) never had parse errors
and covered core program logic. Thus, combining test suites is useful for testing both
error and regular execution paths.

With HAMPI’s help, Klee uncovered more errors. Using the grammar, Klee generated 3
distinct inputs for logictree that uncovered (previously unknown) errors where the
program entered an infinite loop. We do not know how many distinct errors these inputs
identify.

Without the grammar, Klee was not able to generate those same inputs within the
1-hour time limit; given the structured nature of those inputs (e.g., one is “@x $y z”), it
is unlikely that Klee would be able to generate them within any reasonable time bound
without a grammar.

We manually inspected lines of code that were not covered by any strategy. We
discovered two main hindrances to achieving higher coverage: First, the input sizes
were still too small to generate longer productions that exercised more code, especially
problematic for the playlist files for cueconvert; this is a limitation of Klee running out
of memory and not of HAMPI. Second, while grammars eliminated all parse errors, many
generated inputs still contained semantic errors, such as malformed bc expressions and
function definitions (again, unrelated to HAMPI).

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:22 A. Kiezun et al.

Summary of results. Using HAMPI to create input constraints led to up to 2× improve-
ments in line coverage (up to 5× coverage improvements in parser code), eliminated
all illegal inputs, and enabled discovering 3 distinct, previously unknown, inputs that
led to infinitely-looping program execution.

These results show that using HAMPI can improve the effectiveness of automated
test-case generation and bug finding tools.

5.4. Comparing Performance to CFGAnalyzer

We evaluated HAMPI’s utility in analyzing context-free grammars, and compared HAMPI’s
performance to a specialized decision procedure, CFGAnalyzer [Axelsson et al. 2008].
CFGAnalyzer is a SAT-based decision procedure for bounded versions of 6 problems (5
undecidable) that involve context-free grammars: universality, inclusion, intersection,
equivalence, ambiguity, and emptiness (decidable). We downloaded the latest available
version5 (released 3 December 2007) and configured the program according to the
manual.

Experiment. We performed the CFGAnalyzer experiments with the grammar-
intersection problem. Five of six problems handled by CFGAnalyzer (universality,
inclusion, intersection, equivalence, and emptiness) can be easily encoded as HAMPI

inputs; the intersection problem is representative of the rest.
In the experiments, both HAMPI and CFGAnalyzer searched for strings (of fixed

length) from the intersection of 2 grammars. To avoid bias, we used CFGAnalyzer’s own
experimental data sets (obtained from the authors). From the set of 2088 grammars in
the data set, we selected a random sample of 100 grammar pairs. We used both HAMPI

and CFGAnalyzer to search for strings of lengths 1 ≤ N ≤ 50. We ran CFGAnalyzer
in a nonincremental mode (in the incremental mode, CFGAnalyzer reuses previously
computed subsolutions), to create a fair comparison with HAMPI, which ran as usual in
server mode while flushing its entire internal state after solving each input. We ran
both programs without a timeout.

Figure 10 shows the results averaged over all pairs of grammars. HAMPI is faster
than CFGAnalyzer for all sizes larger than 4 characters. Importantly, HAMPI’s win over
CFGAnalyzer grows as the size of the problem increases (up to 6.8× at size 50). For
the largest problems (N = 50), HAMPI was faster (by up to 3000×) on 99 of the 100
grammar pairs, and 1.3× slower on the remaining 1 pair of grammars (data available
on HAMPI Web site).

HAMPI is faster also on grammar-membership constraints. We performed an addi-
tional experiment: searching for any string of a given length from a context-free gram-
mar. The results were similar to those for intersection: for instance, HAMPI finds a string
of size 50, on average, in 1.5 seconds, while CFGAnalyzer finds one in 8.7 seconds (5.8×
difference). The HAMPI website contains the experimental data and results.

Summary of results. On average, HAMPI solved constraints up to 6.8× faster than
CFGAnalyzer, and its lead increased as the problem size grew larger.

6. RELATED WORK

Decision procedures have received widespread attention within the context of pro-
gram analysis, testing, and verification. Decision procedures exist for theories such
as Boolean satisfiability [Moskewicz et al. 2001], bit-vectors [Ganesh and Dill 2007],
quantified Boolean formulas [Biere 2005], and linear arithmetic [de Moura and Bjørner
2008]. In contrast, there has been relatively little work on practical and expressive
solvers that reason about strings or sets of strings directly.

5http://www.tcs.ifi.lmu.de/~mlange/cfganalyzer.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:23

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

t
i
m
e

(
s
e
c
.
)

string size (characters)

Hampi

CFGAnalyzer

Fig. 10. Solving time as a function of string size, on context-free-grammar intersection constraints. Re-
sults are averaged over 100 randomly-selected pairs of context-free grammars. Section 5.4 describes the
experiment.

6.1. Practical Solvers for String Constraints

MONA [Klarlund 1998] uses finite-state automata and tree automata to reason about
sets of strings. However, the user still has to translate their input problem into MONA’s
input language (weak monadic second-order theory of one successor). MONA also pro-
vides automata-based tools, similar to other libraries [AT&T FSM Library 1997; van
Noord 2010; Møller 2010].

Word equations [Rajasekar 1994; Bjørner et al. 2009] describe equality between two
strings that contain string variables. Rajasekar [1994] proposes a logic programming
approach that includes constraints on individual words. His solver handles concatena-
tion but not regular language membership. Bjørner et al. [2009] describe a constraint
solver for word queries over a variety of operations, and translate string constraints
to the language of the Z3 solver [de Moura and Bjørner 2008]. If there is a solution,
Z3 returns a finite bound for the set of strings, that is then explored symbolically.
String solvers SUSHI [Fu and Li 2010] and STRANGER [Yu et al. 2010a] focus on
modeling string replacement. Multiple string solvers are based on automata, for ex-
ample [Veanes et al. 2010; Yu et al. 2010b]. Hooimeijer and Veanes [2011] present
a comparison of a few automata-based solvers. The procedure described by Yu et al.
[2009] combines string and length constraints, which enables verification of proper-
ties that are beyond the capability of string solvers, such as HAMPI, that do not model
length constraints. Kaluza [2010], a string solver built on top of HAMPI and STP and
embedded in the Kuzdu JavaScript bugfinding tool [Saxena et al. 2010], reuses HAMPI’s
encoding regular-language constraints into bitvectors. Kaluza supports multiple string

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:24 A. Kiezun et al.

variables, concatenation function, equations over string terms, length function over
string terms and regular expressions. Unlike HAMPI, these tools do not support context-
free grammars directly.

Hooimeijer and Weimer [2009] describe a decision procedure for regular-language
constraints, focusing on generating sets of satisfying assignments rather than individ-
ual strings. Unlike HAMPI, their solver does not allow expressing fixed-size context-free
grammars.

Hooimeijer and Veanes [2011] conducted a performance comparison of several dif-
ferent automata algorithms and datastructures within the context of string constraint
solving. They found that a BDD-based character set representation is most performant
for alphabets. This work supplements previous work by Veanes et al. [2010] on sym-
bolic automata, and work by Hooimeijer and Weimer [2010] on lazy search algorithms.
The work by Veanes et al. focuses on a first-order encoding of automata directly into an
SMT solver. HAMPI similarly encodes directly to a constraint solver, but without the use
of quantifiers and without an intermediate automaton representation. Consequently,
many of the performance optimizations for automata-based techniques do not apply
to HAMPI. However, some of the results in this related work indicate that it may be
interesting to attempt HAMPI’s automaton-less translation in a setting that supports
quantifiers.

Yu et al. [2010b] focus on the integration of string constraints with length constraints,
as well as the relational analysis of string constraints. The approaches of Yu et al.
[2009] and Yu et al. [2010b] are based on multitrack automata or transducers. The
work on relational analysis includes an undecidability result, and the algorithmic
contribution is a sound over approximation. In contrast, HAMPI is based on a decidable
core theory that can be solved without approximation. Relational analysis is most
useful in the context of programs rather than constraint systems, and, indeed, the
language presented by Yu et al. [2010b] includes features like goto and assignment. We
instead focus on a pure constraint language that permits a variety of distinct frontend
constraint generators, as outlined in our experiments (Section 5).

Finally, a few recent approaches include support for operations such as substring
extraction with nontrivial integer bounds. Kaluza [2010] uses an external solver for
integer constraints. Internally, Kaluza eliminates high-level operations (e.g., substring
and indexOf) using a combination of low-level constraints on string lengths (using an
external solver) and string contents (using HAMPI). Bjørner et al. [2009] perform a
translation that is similar in spirit, but rely on a single solver for constraints on
both length and content. Since HAMPI’s underlying STP solver supports the required
operations, it is feasible to extend our approach to support positional constraints in an
analogous way.

6.2. String Solvers Built as Part of Program Analysis Applications

Many analyses use custom solvers for string constraints [Godefroid et al. 2008a; Chris-
tensen et al. 2003; Minamide 2005; Wassermann and Su 2007, 2008; Wassermann
et al. 2008; Emmi et al. 2007; Fu et al. 2007]. All of these approaches include some
implementation for language intersection and language inclusion; most, similarly to
HAMPI, can perform regular-language intersection. Each of these implementations is
tightly integrated with the associated program analysis, making a direct comparison
with HAMPI impractical.

Christensen et al. [2003] have a static analysis tool to check for SQL injection vul-
nerabilities that uses automata-based techniques to represent over-approximation of
string values. Fu et al. [2007] also use an automata-based method to solve string con-
straints. Ruan et al. [2008] use a first-order encoding of string functions occurring in C
programs, and solve the constraints using a linear arithmetic solver.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:25

Besides the custom solvers by Wassermann and Su [2007], the solver by Emmi
et al. [2007] is closest to HAMPI. Emmi et al. used their solver for automatic test case
generation for database applications. Unlike HAMPI, their solver allows constraints over
unbounded regular languages and linear arithmetic, but does not support context-free
grammars.

Many of the program analyses listed here perform similar tasks when reasoning
about string-valued variables. This is strong evidence that a unified approach, in the
form of an external string-constraint solvers such as HAMPI, is warranted.

6.3. Theoretical Work on String Constraints

A variety of problems involve strings constraints, and there is an extensive literature
on the theoretical study of these problems [Makanin 1977; Pesant 2004; Quimper and
Walsh 2006].

In his original paper, Quine [1946] showed that the first-order theory of string equa-
tions (i.e., quantified sentences over Boolean combination of word equations) is unde-
cidable. Many sub-theories and extensions have been studied since.

One line of research studies fragments and modifications of this base theory which
are decidable. Makanin [1977] famously proved that the satisfiability problem for the
quantifier-free theory of word equations is decidable. Plandowski [2006] and co-authors
showed that the complexity of this problem is in PSPACE.

Schulz [1992] extended Makanin’s satisfiability algorithm to the class of formulas
where each variable in the equations is specified to lie in a given regular set. This is
a strict generalization of the solution sets of word equations. Karhumäki et al. [2000]
shows that the class of sets expressible through word equations is incomparable to that
of regular sets.

Word equations augmented with additional predicates yield richer structures which
are relevant to many applications. In the 1970s, Matiyasevich formulated a connection
between string equations augmented with integer coefficients whose integers are taken
from the Fibonacci sequence and Diophantine equations [Matiyasevich 2008]. In partic-
ular, he showed that proving undecidability for the satisfiability problem of the theory
of word equations and length constraints would suffice to solve Hilbert’s 10th Problem
in a novel way. The problem remains open. Another related problem, namely, the de-
cidability of the satisfiability problem for the quantifier-free theory of word equations,
length constraints and membership predicate over regular expressions is also open.

Recently, the first decidability results regarding the above-mentioned open problems
were proved [Ganesh et al. 2011], under a certain minimal and practical condition. In
particular, the authors proved that if word equations can be converted into a solved
form [Barrett 2003], a concept well known in automated reasoning and SMT solver com-
munity, then the satisfiability problem for word equations and length constraints is de-
cidable. Ganesh et al. [2011] further show that if the solved form of the given word equa-
tions are regular expressions then the quantifier-free theory of word equations, length
constraints and membership predicate over regular expressions is also decidable. They
also studied string constraints generated by the Kudzu JavaScript bugfinding tool
[Saxena et al. 2010], and found that most word equations that occur in practice are
either already in solved form or can be algorithmically converted into one.

Another interesting result proved independently by multiple authors [Marchenkov
1982; Durnev 1995; Ganesh et al. 2011] is the undecidability of the validity problem
for ∀∃-sentences over positive word equations (AND-OR combination of word equations
without negation). These are currently the strongest undecidability results for any
theory involving word equations.

All the above-mentioned theoretical work is for theories where the string variables
range over an infinite domain of strings. In their recent work, Jha et al. [2009]

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:26 A. Kiezun et al.

showed that the theory of word equations over finite-length strings with substring
operation, concatenation, and extraction is NP-complete. This work builds on the NP-
completeness result that we obtained for the satisfiability problem for HAMPI’s logic.

7. CONCLUSION

We presented HAMPI, a solver for constraints over fixed-size string variables. HAMPI con-
straints express membership in regular and fixed-size context-free languages. HAMPI

constraints may contain a fixed-size string variable, context-free language definitions,
regular-language definitions and operations, and language-membership predicates.
Given a set of constraints over a string variable, HAMPI outputs a string that satis-
fies all the constraints, or reports that the constraints are unsatisfiable. HAMPI works
by encoding the constraint in the bit-vector logic and solving using STP.

HAMPI is designed to be used as a component in testing, analysis, and verification
applications. HAMPI can also be used to solve the intersection, containment, and equiva-
lence problems for regular and fixed-size context-free languages. We evaluated HAMPI’s
usability and effectiveness as a component in static- and dynamic-analysis tools for
PHP Web applications. Our experiments show that HAMPI is expressive enough to eas-
ily encode constraint arising in finding SQL injection attacks, and in systematic testing
of real-world programs. In our experiments, HAMPI was able to find solutions quickly,
and scale to practically-relevant problem sizes.

By using a general-purpose freely-available string-constraint solver such as HAMPI,
researchers in program analysis, formal methods, testing and software engineering
can save significant development effort, and improve the effectiveness of their tools.

The power of bounding. HAMPI accepts only bounded languages. All bounded lan-
guages are finite, and all finite languages are regular. Hence, it would suffice to say that
HAMPI supports only bounded regular languages. However, it is important to emphasize
the ease-of-use that HAMPI provides by allowing users to use context-free languages as
input. Furthermore, our experiments show how powerful bounding can be. For many
applications, bounding the input language (whether it be regular or context-free or
context-sensitive languages or even Turing-complete languages) enables creation of
powerful and expressive tools. The cost of bounding is often limited, since for many
applications a bounded logic is sufficient to express the associated constraint satisfac-
tion problem. The power of bounding has been known to researchers in related areas,
such as bounded model-checking. We foresee that powerful solvers for bounded ver-
sions of expressive logics will be created in the near future, and that they will help the
applications of formal methods to software engineering problems.

REFERENCES

AT&T FSM LIBRARY 1997. AT&T FSM library. http://www.research.att.com/˜fsmtools/fsm.
AXELSSON, R., HELJANK, K., AND LANGE, M. 2008. Analyzing context-free grammars using an incremental SAT

solver. In Proceedings of the International Colloquium on Automata, Languages and Programming.
Springer.

BARRETT, C. 2003. Checking validity of quantifier-free formulas in combinations of first-order theories. Ph.D.
thesis, Stanford University.

BIERE, A. 2005. Resolve and expand. In Proceedings of the International Conference on Theory and Applica-
tions of Satisfiability Testing. Springer.

BIERE, A., CIMATTI, A., CLARKE, E., STRICHMAN, O., AND ZHU, Y. 2003. Bounded model checking. Adv. Comput.
58.

BJØRNER, N., TILLMANN, N., AND VORONKOV, A. 2009. Path feasibility analysis for string-manipulating programs.
In Proceedings of the International Conference on Tools and Algorithms for the construction and Analysis
of Systems. Springer.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

A Solver for Word Equations over Strings, Regular Expressions, and Context-Free Grammars 25:27

CADAR, C., DUNBAR, D., AND ENGLER, D. R. 2008. Klee: Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of the Symposium on Operating Systems Design and
Implementation. USENIX Association.

CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L., AND ENGLER, D. R. 2006. EXE: automatically generating
inputs of death. In Proceedings of the Conference on Computer and Communications Security. ACM.

CHRISTENSEN, A. S., MØLLER, A., AND SCHWARTZBACH, M. I. 2003. Precise analysis of string expressions. In
Proceedings of the International Static Analysis Symposium. Springer.

CLARKE, E. M., KROENING, D., AND LERDA, F. 2004. A tool for checking ANSI-C programs. In Proceedings of the
International Conference on Tools and Algorithms for the construction and Analysis of Systems. Springer.

DE MOURA, L. AND BJØRNER, N. 2008. Z3: An efficient SMT solver. In Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer.

DURNEV, V. 1995. Undecidability of the positive 893-theory of a free semigroup. Siberian Math. J. 36, 5.
EMMI, M., MAJUMDAR, R., AND SEN, K. 2007. Dynamic test input generation for database applications. In

Proceedings of the International Symposium on Software Testing and Analysis. ACM.
FU, X. AND LI, C.-C. 2010. A string constraint solver for detecting web application vulnerability. In Proceedings

of the International Conference on Software Engineering & Knowledge Engineering.
FU, X., LU, X., PELTSVERGER, B., CHEN, S., QIAN, K., AND TAO, L. 2007. A static analysis framework for detecting

SQL injection vulnerabilities. In Proceedings of the International Computer Software and Applications
Conference. IEEE.

GANESH, V. AND DILL, D. L. 2007. A decision procedure for bit-vectors and arrays. In Proceedings of the 19th
International Conference on Computer Aided Verification (CAV’07). W. Damm and H. Hermanns, Eds.,
Lecture Notes in Computer Science, vol. 4590. Springer.

GANESH, V., MINNES, M., SOLAR-LEZAMA, A., AND RINARD, M. January, 2011. What is decidable about strings?
Tech. rep. MIT-CSAIL-TR-2011-006, MIT.

GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y. 2008a. Grammar-based whitebox fuzzing. In Proceedings of the
Conference on Programming Language Design and Implementation. ACM.

GODEFROID, P., KLARLUND, N., AND SEN, K. 2005. DART: Directed automated random testing. In Proceedings of
the Conference on Programming Language Design and Implementation. ACM.

GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. 2008b. Automated whitebox fuzz testing. In Proceedings of the
Network and Distributed System Security Symposium. Internet Society.

GULWANI, S., SRIVASTAVA, S., AND VENKATESAN, R. 2008. Program analysis as constraint solving. In Proceedings
of the Conference on Programming Language Design and Implementation. ACM.

HALFOND,W., ORSO, A., ANDMANOLIOS, P. 2008. WASP: Protecting Web applications using positive tainting and
syntax-aware evaluation. IEEE Trans. Softw. Engin. 34, 1.

HOOIMEIJER, P. AND VEANES, M. 2011. An evaluation of automata algorithms for string analysis. In Proceedings
of the International Conference on Verification, Model Checking, and Abstract Interpretation. Springer.

HOOIMEIJER, P. AND WEIMER, W. 2009. A decision procedure for subset constraints over regular languages. In
Proceedings of the Conference on Programming Language Design and Implementation. ACM.

HOOIMEIJER, P. AND WEIMER, W. 2010. Solving string constraints lazily. In Proceedings of the International
Conference on Automated Software Engineering. ACM.

JACKSON, D. AND VAZIRI, M. 2000. Finding bugs with a constraint solver. In Proceedings of the International
Symposium on Software Testing and Analysis. ACM.

JAYARAMAN, K., HARVISON, D., GANESH, V., AND KIEZUN, A. 2009. jFuzz: A concolic whitebox fuzzer for Java. In
Proceedings of the NASA Formal Methods Symposium.

JHA, S. K., SESHIA, S. A., AND LIMAYE, R. S. 2009. On the computational complexity of satisfiability solving for
string theories. Tech. rep. UCB/EECS-2009-41, EECS Department, University of California, Berkeley.

KALUZA 2010. Kaluza string solver. http://webblaze.cs.berkeley.edu/2010/kaluza.
KARHUMÄKI, J., MIGNOSI, F., AND PLANDOWSKI, W. 2000. The expressibility of languages and relations by word

equations. J. ACM 47.
KIEZUN, A., GANESH, V., GUO, P. J., HOOIMEIJER, P., AND ERNST, M. D. 2009a. HAMPI: a solver for string

constraints. In Proceedings of the International Symposium on Software Testing and Analysis.
ACM.

KIEZUN, A., GUO, P. J., JAYARAMAN, K., AND ERNST, M. D. 2009b. Automatic creation of SQL injection and
cross-site scripting attacks. In Proceedings of the International Conference on Software Engineering.
IEEE.

KLARLUND, N. 1998. Mona & Fido: The logic-automaton connection in practice. In Proceedings of the Interna-
tional Workshop on Computer Science Logic. Springer.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

25:28 A. Kiezun et al.

MAJUMDAR, R. AND XU, R.-G. 2007. Directed test generation using symbolic grammars. In Proceedings of the
6th Joint Meeting on European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering. Companion Papers.

MAKANIN, G. 1977. The problem of solvability of equations in a free semigroup. Sbornik: Math. 32, 2, 129–198.
MARCHENKOV, S. S. 1982. Unsolvability of positive 89-theory of free semi-group. Sibirsky Math. J. 23, 1.
MATIYASEVICH, Y. 2008. Computation paradigms in light of Hilbert’s tenth problem. In New Computational

Paradigms, S. B. Cooper, B. Lwe, and A. Sorbi, Eds., Springer.
MINAMIDE, Y. 2005. Static approximation of dynamically generated Web pages. In Proceedings of the Interna-

tional World Wide Web Conference.
MØLLER, A. 2010. Brics finite state automata utilities. http://www.brics.dk/automaton.
MOSKEWICZ, M.,MADIGAN, C., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: engineering an efficient SAT solver.

In Proceedings of the Design Automation Conference. ACM.
PESANT, G. 2004. A regular language membership constraint for finite sequences of variables. In Principles

and Practices of Constraint Programming. Springer.
PLANDOWSKI, W. 2006. An efficient algorithm for solving word equations. In Proceedings of the 38th Annual

ACM Symposium on Theory of Computing. J. M. Kleinberg, Ed., ACM, 467–476.
QUIMPER, C. AND WALSH, T. 2006. Global grammar constraints. In Proceedings of the Conference on Constraint

Programming. Springer.
QUINE, W. V. 1946. Concatenation as a basis for arithmetic. J. Symb. Logic 11, 4, 105–114.
RAJASEKAR, A. 1994. Applications in constraint logic programming with strings. In Proceedings of the 2nd In-

ternational Workshop on Principles and Practice of Constraint Programming. Lecture Notes in Computer
Science, vol. 874. Springer.

RUAN, H., ZHANG, J., AND YAN, J. 2008. Test data generation for C programs with string-handling functions. In
Proceedings of the Conference on Theoretical Aspects of Software Engineering. IEEE.

SAXENA, P., AKHAWE, D., HANNA, S., MAO, F., MCCAMANT, S., AND SONG, D. 2010. A symbolic execution framework
for javascript. In Proceedings of the Symposium on Security and Privacy. IEEE.

SCHULZ, K. U. 1992. Makanin’s algorithm for word equations - two improvements and a generalization. In
Proceedings of the 1st International Workshop on Word Equations and Related Topics (IWWERT ’90).
Springer.

SEN, K., MARINOV, D., AND AGHA, G. 2005. CUTE: A concolic unit testing engine for C. In Proceedings of the
International Symposium on the Foundations of Software Engineering. ACM.

SHANNON, D., HAJRA, S., LEE, A., ZHAN, D., AND KHURSHID, S. 2007. Abstracting symbolic execution with string
analysis. In Testing: Academic and Industrial Conference Practice and Research Techniques. IEEE.

SIPSER, M. 2005. Introduction to the Theory of Computation. Course Technology, Florence, KY.
VAN NOORD, G. 2010. Finite state automata utilities. http://www.let.rug.nl/˜vannoord/Fsa/fsa.html.
VEANES, M., BJ RNER, N., AND MOURA, L. D. 2010. Symbolic automata constraint solving. In Proceedings of the

International Conference on Logic for Programming, Artificial Intelligence, and Reasoning. Springer.
WASSERMANN, G. AND SU, Z. 2007. Sound and precise analysis of Web applications for injection vulnerabilities.

In Proceedings of the Conference on Programming Language Design and Implementation. ACM.
WASSERMANN, G. AND SU, Z. 2008. Static detection of cross-site scripting vulnerabilities. In Proceedings of the

International Conference on Software Engineering. IEEE.
WASSERMANN, G., YU, D., CHANDER, A., DHURJATI, D., INAMURA, H., AND SU, Z. 2008. Dynamic test input generation

for Web applications. In Proceedings of the International Symposium on Software Testing and Analysis.
ACM.

XIE, Y. AND AIKEN, A. 2005. Saturn: A scalable framework for error detection using Boolean satisfiability. In
Proceedings of the Symposium on Principles of Programming Languages. ACM.

YU, F., ALKHALAF, M., AND BULTAN, T. 2010a. Stranger: An automata-based string analysis tool for PHP. In
Proceedings of the Workshop on Tools and Algorithms for the Construction and Analysis of Systems.
Springer.

YU, F., BULTAN, T., AND IBARRA, O. H. 2009. Symbolic string verification: Combining string analysis and size
analysis. In Proceedings of the Workshop on Tools and Algorithms for the Construction and Analysis of
Systems. Springer.

YU, F., BULTAN, T., AND IBARRA, O. H. 2010b. Relational string verification using multi-track automata. In
Proceedings of the International Conference on Implementation and Application of Automata. Springer.

Received February 2011; revised July 2011; accepted August 2011

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 4, Article 25, Pub. date: November 2012.

