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Abstract

Program slicing restricts attention the components of a program relevant to evaluation of one

expression, the slicing criterion. Our slicer, which explicitly represents the store as an aggregate

value is the �rst to support arbitrary pointer manipulations and aggregate values, and is faster

than more limited techniques. We also improve the asymptotic complexity of slicing in the

presence of procedure calls, and of a preprocessing step for computing dependences of procedure

returns on formals. Additionally, our interprocedural slices can be smaller than those produced

by other techniques. We implement these techniques in the �rst slicer for an entire practical

programming language (ANSI C, except longjmp).

1 Introduction

Program slicing [Wei84] is a technique for visualizing dependences and restricting attention to just

the components of a program relevant to evaluation of the slicing criterion, which is the particular

expression(s) of interest. Backward slicing reveals which parts of the program the slicing criterion's

meaning depends on, while forward slicing determines which parts of the program depend on the

meaning of the slicing criterion. While this paper explicitly discusses only backward slicing, the

techniques are equally applicable to forward slicing.

In programming environments, slices aid program understanding, maintenance, testing, and

debugging by demonstrating the relationships between parts of a program. Slices can also limit the

amount of the program manipulated and assist with parallelization and comparison and integration

of program versions. Programs can be specialized to produce fewer results (and run faster) by

generating code from slices.

This paper addresses static slicing, which uses analysis to discover dependences and indicates

the program components that may have an e�ect on (or may be a�ected by) the slicing criterion

values. By contrast, a dynamic slice [AH90, Agr91, Ven93] gives de�nite information for some

particular execution by maintaining an execution trace of a running program.

This paper presents a new approach to slicing based on a functional representation called

the value dependence graph (VDG); in particular, improved techniques for dealing with pointers,

structures, and procedures are presented.

We show how to slice in the presence of arbitrary pointer manipulations. Our method hinges on

explicit representation of the store as an aggregate value with one component for each location. This

representation permits dependences in terms of values rather than variables, and it allows aggregates

to be sliced elementwise. Previous techniques have handled only call-by-reference parameters or
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limited pointer variables, and have not been as e�cient as our method. Our slices include only the

relevant parts of aggregate values, which were only partially supported by previous methods.

We improve the graph-based interprocedural slicing method [HRB90] in several ways. We

compute summary dependences faster than previous methods (by a factor of at least O(n)) and via

a simpler algorithm. Our representation is more compact, so in the absence of aliasing, our slicing

algorithm runs in time proportional to the size of the original program, compared to quadratic time

for previous algorithms. Aliasing degrades our algorithm by O(n) but degrades previous algorithms

exponentially. Our slices are more precise because they exclude more procedure calls and bodies

by distinguishing between direct and indirect summary dependences.

These techniques are implemented in VDGomatic, a slicer that accepts input via mouse clicks

and displays closure slices by highlighting portions of the program in the programmer's editor. It

is the �rst slicer to support an entire practical programming language (ANSI C, with the exception

of longjmp). Currently the system is limited to programs shorter than approximately 10,000 lines.

This paper �rst describes the value dependence graph (VDG), the intermediate representation

used by our slicer, then gives an algorithm for slicing with respect to this representation. The next

two sections extend the basic algorithm to properly account for pointers and procedures. Finally,

the implementation is discussed. Other reports [Ern94a, Ern94b] provide more details and discuss

our techniques for expression-oriented slicing (we improve the precision of slicing criteria, display

of slices, and of slices themselves), for executable slicing (we bypass syntactic constraints in code

generation and supply precise liveness information to the back end), and for slicing optimized code

(which improves dependence information) while displaying results in terms of the original program.

2 Slicing the value dependence graph

This section brie
y describes the value dependence graph (VDG), the program representation used

by our slicing algorithm, then describes the basic slicing algorithm. Later sections further detail

and enhance the algorithm.

2.1 The value dependence graph

The value dependence graph (VDG) [WCES94a, WCES94b] is a sparse, parallel, functional, data
ow-

like program representation for imperative programs. It is sparse because it directly connects con-

sumers to producers of values, enabling fast, incremental analyses and transformations. It is parallel

because it makes no commitment regarding the relative order of noninterfering computations. It is

functional because all values are explicitly represented, even those usually left implicit, such as the

store.

The insight underlying the VDG's design is that only the values computed by a programmatter.

The original names and control 
ow are incidental to the underlying computation, so such artifacts

of the program text should not be enshrined in the representation, as they are in traditional

intermediate representations such as the control 
ow graph. The consequences of this decision are

� all values are explicit, even ordinarily-implicit ones such as I/O streams,

� selectors (resulting from if and switch) choose among values, not control paths, and

� non-sequential control 
ow is represented by function calls.

The VDG is composed of nodes which represent computation and arcs which carry values

between computations. Figure 1 shows a procedure and its VDG representation. The sum_product

procedure returns a modi�ed I/O stream resulting from a call to printf. Some of the arguments

to printf are themselves computed by a function call, where the function's body corresponds to
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void sum_product(int n)

{

int sum = 0;

int product = 0;

int i = 0;

while (i++ < n)

{ sum = sum + i;

product = product * i;

}

printf("Sum %d, product %d",

sum, product);

}

n I/O

*<

γ

+
Call

γ

Call

+

1

sumi

sum product

product

0

Call

I/O

"Sum..."

printf

Figure 1: A procedure and its VDG representation. The arrows point from consumers to producers of

values. A 
 node is a selector whose output is its left or right input, depending on whether its boolean

argument (attached to the side of the 
 node) is true or false. The heavy boxes represent function bodies,

with arguments along the top edge and return values along the bottom edge.

the loop body in the original program. Depending on the value of a less-than (<) comparison, that

function either returns its arguments (the loop terminates) or does some computation and makes a

recursive call (another loop iteration is invoked). (Section 3.1 introduces lookup and update nodes,

which represent operations on the store.)

The VDG is a practical representation. The VDG's size is proportional to that of the original

program (certain optimizations can make the VDG quadratic in the size of the original program).

A program's VDG can be computed in linear time, even for programs with irreducible control 
ow.

Furthermore, e�cient code can be generated from the VDG [WCES94b, Ste93].

2.2 Basic slicing algorithm

The basic slicing algorithm [OO84] on the VDG is extremely simple. A slice consists of all com-

putations encountered in a graph traversal starting at the slicing criterion, which is a particular

dependence (value) arc. A backward slicing traversal follows consumer-producer arcs; at formal

parameters, the traversal proceeds at corresponding actuals on call sites in the slice, and at call

results, the traversal continues both at the appropriate return nodes in the callee and at all actuals

corresponding to formals in the slice. Because each VDG arc is visited at most once, this algorithm

runs in time linear in the size of the slice, which is no larger than the VDG.

Figure 2 shows a slice of the sum_product procedure of Figure 1. The slicing traversal starts

at the slicing criterion, an arc representing one of the arguments to printf. When the traversal

encounters a call node, it continues at the corresponding procedure return (annotated sum). That

return node (transitively) depends on the left-hand result of the recursive call (the corresponding

return for which has already been processed), on formal n of sum_product, and on formals i and

sum of the inner procedure. Encountering the latter two formals causes the traversal to continue

at the corresponding actuals for both calls; it proceeds to the addition nodes and the constants.

The traversal ends when no more unreached nodes are encountered.
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Figure 2: A backward slice indicates which computations can a�ect the run-time value of the slicing criterion.

The textual slicing criterion is the use of sum in the call to printf; its VDG translation is an edge connecting

two call nodes. In the VDG, edges and nodes in the slice are shown thicker and shaded, respectively. The

screen dump on the right shows how our system indicates, in the programmer's editor, the computations in

the slice. The dark highlighting indicates computation; the light highlighting indicates other names for the

values in the slice. The user interface issues of communicating a VDG slice to the user [Ern94a, Ern94b] are

outside the scope of this paper.

The advantages of our slicing approach accrue both from the VDG's features and their ex-

ploitation by our algorithms. The VDG's �ne granularity makes slicing criteria and results more

precise than with statement-based representations. The graph directly links value producers with

consumers, so all dependences are made explicit in a single graph. Because all values and compu-

tations are explicitly represented, the algorithm need not account for hidden constraints and side

e�ects.

The basic slicing algorithm is simple, fast, and easy to understand, but imprecise: the slices it

produces are larger than necessary. The next two sections extend this algorithm to address pointers

and aggregate values and procedure calling context.

3 Pointers and aggregate values

Modern programming languages depend on the explicit or implicit use of pointers for organizing

data, and even in the absence of pointer variables, function calls can introduce aliasing, which

complicates slicing. A start has been made on these problems by suggesting techniques for address-

ing by-reference function parameters [HDC88, HRB90, LC92] and providing support for pointer

variables [JZR91, LR94]. We provide the �rst discussion and implementation of slicing techniques

for handling arbitrary pointer manipulations (including arithmetic, casting, and function pointers).

We then discuss the similar challenges raised by aggregate values, which are also fully supported

by VDGomatic.

A strategy for slicing in the presence of pointers has three components: a representation for

pointers or aliased values; an analysis to determine possible pointer values or possible alias relations;

and a slicing algorithm that takes advantage of the representation and the analysis results.
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Figure 3: The VDG represents memory references by lookup nodes and memory stores by update nodes.

This �gure specially indicates store values and uses variable names in typewriter font for variable addresses.

Variables y and p contain pointers; a is an array.

3.1 Representing pointers

The VDG, a functional representation, explicitly represents all values, including locations and

stores. Two types of node operate on stores. Lookup nodes represent variable references and

pointer dereferences; they take two arguments|a location and a store|and return the contents

of the location in the store. Update nodes represent assignments to memory; they take three

arguments|a location, a store, and a value|and return a modi�ed store in which the location's

content has been set to the value. For ordinary variable references and assignments, the location

is a constant resolved at link time. In general, the location may be produced by an arbitrary

expression, such as another lookup or an arithmetic operation. Figure 3 shows the representation

for various memory references and assignments.

Stores are represented as aggregates, because store locations can be manipulated independently;

typical store operations manipulate only a small portion of the store. It is sometimes helpful to

view a store arc as a set of component arcs, one for each value contained in the store. A pointer

value speci�es a location in a store. Explicit representation of stores permits dependences to be

expressed in terms of values rather than variables.

When the location argument to an update node is the same as that of a lookup node that (even-

tually) consumes the update's result, and the location is not set between the update and the lookup,

then the update's value input can be routed directly to the consumer(s) of the lookup. The lookup

(and possibly the update as well) becomes dead and can be removed from the graph. Figure 4

demonstrates this \short-circuiting" transformation, which, along with arity raising [WCES94b,

Ruf94b], eliminated all store operations from Figure 2. The transformation depends only on lo-

cation equality, not on the location argument being a constant. (Arbitrary pointer manipulations

complicate proving that the location is not modi�ed between the update and the lookup.)

Explicit representation of locations and stores in the graph simpli�es and clari�es slicing and

other analyses, as there are no hidden e�ects or values to account for. Additionally, information

about pointers is easy to re
ect in the graph (by short-circuiting (Figure 4), store splitting [SW93,

Ste94b], and other transformations), making it immediately available to all analyses.

3.2 Pointer analysis

VDGomatic makes use of a points-to analysis [CWZ90, HEGV93, Ruf94b], which indicates the

possible values for each location-valued expression. (In our representation a points-to analysis is

more natural than an alias analysis, which produces a set of possible alias pairs.) In the worst case,
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Figure 4: \Short circuiting" of a lookup node and an update node setting the looked-up location eliminates

the lookup and can make the update dead as well.

the analysis indicates that a location-returning expression could return any location at run time,

but in practice, on average fewer than two values are possible [LRZ93, EGH94, Ruf94a, Ste94a].

The details of the analysis are irrelevant to the slicing algorithm.

3.3 Slicing algorithm

We now extend the slicing algorithm to process lookup nodes, to traverse store edges, and to process

update nodes.

Upon encountering a lookup node, a slicing traversal proceeds to the lookup's location argument

in the usual way. The slice should not include the entire store argument, however, because only

some operations that contribute to the store are relevant to the lookup node's value.

Unlike scalar values, stores can be partially included in a slice. (An aggregate-valued slicing

criterion optionally speci�es a component of that aggregate [Ern94a, Ern94b].) A slicing traversal

along a store speci�es a location, and the result includes only operations that can set that location.

At a lookup node, the slicing traversal proceeds independently for each location that may be

looked up|that is, each location speci�ed by the points-to analysis for the lookup node's location

argument. Like scalar values, store components are each visited only once, so a store arc is traversed

no more often than the number of locations it contains.

Update nodes encountered when slicing on location l in a store fall into three categories:

strong update of l: the location argument always returns l.

1

This is a killing de�nition that

de�nitely sets the value in l. The slicing traversal proceeds to the update node's value and

location inputs, but not to its store input, since previous store values are irrelevant.

weak update of l: the location argument may return l. This is a preserving de�nition that might

set the value in l but might leave it unchanged. The slicing traversal proceeds to the update

node's value and location inputs, and also proceeds along its store input with respect to l, in

order to include the location's previous value.

1

Some locations returned by the points-to analysis (such as those for malloc calls and for arrays, which are treated

as single elements) represent multiple runtime locations and cannot be strongly updated; updates to them are always

weak.
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Figure 5: Slicing in the presence of pointer manipulation. Pointer xyn points to either x or y, and yzn points

to y or z. The �nal value pointed to by xy3 is 1, 4, 6, 7, or 8, depending on the values of four of the calls to

rand, the pseudorandom number generator. Highlighting of the int declaration indicates that the addresses

of x, y, and z are manipulated.

other: the location argument never returns l. This isn't a de�nition of the value in l at all, so it

is irrelevant for this slicing criterion. The slicing traversal proceeds along the update node's

store input with respect to l.

Figure 5 shows the result of slicing a program containing pointer manipulations.

VDGomatic does not actually consider one location at a time, then union the results. Instead,

each traversal of a store edge speci�es a set of locations. Encountering a strong update causes

locations to be removed from the set, but the traversal continues if the set is nonempty. Sets

are combined when the traversal simultaneously reaches a node from multiple consumers. (The

algorithm queues values needing to be processed, combining queue entries for a single value.)

This strategy also enables optimizations that take advantage of pointer equality in addition to the

points-to analysis [Ern94b].

3.4 Aggregate values

The slicing algorithm treats stores as aggregate values; the same mechanisms can be applied to

other aggregates, such as C structs. An edge may be traversed a number of times equal to the

number of components in the value carried by the edge. Each traversal speci�es which components

of the aggregate are being demanded and sliced upon, and those components need not be revisited

if the traversal returns to the aggregate value.

The VDG representation of structures is similar to that of stores. Lookup-struct and update-

struct nodes operate on structured values; member speci�ers, which give o�set and size information

with respect to a base pointer, indicate parts of structured values.

For analysis, aggregates are broken into quanta small enough that no member speci�er only

partially includes some quantum. C unions may cause structure elements to overlap, resulting
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Figure 6: The �rst slot of foo's return value depends directly on the second slot of formal a, and the second

slot of the result value depends indirectly on the �rst slot of formal a and indirectly on formal b. Slices on

x.slot1 and x.slot2 are shown. While the traditional method includes parts of foo in a slice on x.slot1,

we omit it by default because there is no dependence on its body.

in more quanta for the union than either alternative has slots; member speci�ers for overlapped

�elds encompass multiple quanta, just as pointer operations can reference or assign to multiple

store locations. Every bit in a quantum is guaranteed to be identically operated upon, and each

quantum is independently treated by the slicing algorithm. Casting, which e�ectively makes gives

union types to arbitrary variables, is similarly handled [Ern94b].

While pointers are more expressive (and member speci�ers can be resolved at compile time),

C's union construct enables aliasing, so many of the same issues are raised for structures as for

pointers. Since aggregates may be nested (consider a struct in a union in a struct in a store), the

algorithms are mechanically more complicated, but the concepts and algorithmic complexity are

the same. Figure 6 shows an example of slicing on aggregate components.

3.5 Complexity

The basic slicing algorithm runs in time linear in the number of arcs or nodes in the VDG, whose size

is proportional to that of the original program. Extended to account for pointers and aggregates,

the algorithm runs in time linear in the number of values in the graph, where aggregate components

are counted individually. In the worst case, the number of such values is quadratic in the size of

the original program, because a single store containing all the values in the global store can be

threaded through every computation.

In practice, the graph is little larger than the original program; only widespread aliasing, which

is rare, results in VDGs containing many large stores. In the absence of aliasing, the number

of values computed is proportional to the size of the original program (equivalently, the number

of nodes or edges in the VDG). VDG construction makes stores smaller and propagates them

through fewer computations by splitting stores into noninterfering pieces, by removing elements

from stores (converting them into standalone scalars), and by eliminating store operations. Neither

these transformations nor support for slicing aggregates or pointers increases the size of the VDG

(beyond the storage requirements of the points-to analysis).

3.6 Related work

Two previous slicers provide limited support for pointer variables (but no arithmetic, casting,

function pointers, etc.). CPS [JZR91] adds dummy variables and literals for pointer dereferences

and address-of operations; pointer references and assignments count as uses and modi�cations of
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Figure 7: Calling context determines which actual parameters should be included: an accurate slice includes

di�erent parameters for the two calls to set globals. VDGomatic permits users to omit procedure bodies

where no computation occurs: the slice shown clearly indicates that the result is the sum of 10 and 40. Both

the lighter highlighting and including portions of the body (as in Figure 11) help indicate which variables

carry dependences between calls, when that information is desired.

the corresponding dummy variables. Ghinsu [LR94] uses an extended storage shape graph to add

data dependence edges to the program representation.

Call-by-reference function parameters can be addressed by duplicating each procedure for every

possible alias pattern among its parameters [HDC88, HRB90, LC92], which increases the program

size exponentially, or by assuming all possible aliases can occur simultaneously, which degrades

slice quality [HRB90].

The only slicer besides VDGomatic which addresses structures is Ghinsu [LR94]. It handles

basic operations on C's struct, but its type system cannot accommodate union, casting, and other

operations, and no details are given regarding how the alias analysis and slicer deal with structures.

4 Interprocedural slicing

The basic slicing algorithm of Section 2.2 has two 
aws with respect to interprocedural slicing.

First, the same set of actuals is demanded at each call site in the slice. If a slice on one call of

a procedure forces inclusion of its �rst parameter, and elsewhere in the slice another call of the

same procedure induces a demand on its second parameter, then the resulting slice includes both

actual parameters at each call site. For instance, in Figure 7, the basic slicing algorithm would

include both arguments of each call to set_globals. Second, when the slicing criterion appears in

a procedure, the algorithm can fail to include procedures in the call chain|that is, procedures that

may (transitively) call the procedure containing the criterion. This is a result of ascending from

formals only to corresponding actuals at call sites in the slice. Figure 8 demonstrates the proper

behavior, and Figure 12 shows slicing in the presence of both pointers and procedure calls.

Our solution to these problems is patterned after Horwitz's [HRB90]. Before slicing, a summary

of the dependences of each procedure return on each formal parameter is computed. This summary

permits the slicing traversal to proceed directly from a call result to the actuals that a�ect that

result. Appropriate portions of the procedure body are added to the slice separately, by performing

a traversal which starts at the procedure return corresponding to the call result and ends at the

procedure's formals (the slice has already proceeded at the corresponding actual arguments).

A slicing traversal beginning inside a procedure proceeds from formals to the corresponding

actuals at all call sites (which themselves appear inside procedures on the call chain), because

actuals to any of those calls could a�ect (an instance of) the slicing criterion value.
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Figure 8: A slice including a particular call to abs, as on the left, contains actuals from that call and elements

of the procedure body. A slice that starts inside the function body, as on the right, includes both of the calls

to the function, and their actuals, since any of those actual parameters can a�ect the run-time value of the

expression in the function body.

This algorithm runs in time linear in the number of values computed by the program, since

each edge need be traversed at most once for each component of the value it carries. Thus, the

asymptotic complexity is the same as that of the naive slicing algorithm which does not account

for calling context. Bookkeeping details such as depth limiting, direct summary dependences, and

aggregate values complicate the code but do not a�ect its algorithmic complexity.

We present several improvements on previous work on interprocedural slicing. We give a faster

(by an order of at least O(n)), clearer algorithm for computing summary dependences. In the

absence of aliasing, our slicing algorithm works in time linear in the size of the original program,

compared to quadratic time for previous algorithms; aliasing degrades our method less than other

methods. Our slices exclude more procedure calls and bodies by distinguishing between direct and

indirect summary dependences. We produce better executable slices by providing exact liveness

information (including demand on call results) to the code generator [Ern94a, Ern94b].

4.1 Summary dependences

Precomputed summary dependences for a procedure indicate, for each return value, which formal

parameters it depends on. They permit a slicing traversal which encounters a procedure call result

to proceed at the demanded actual parameters of the call without entering the procedure body.

The dependence summary is precomputed for all functions simultaneously by �nding a �xed

point solution for the data
ow equations of Figure 9. A solution to the equations consists of

formals(v) for every value v in the program|indicating which formal parameters v depends on|

and summary(ret) for every return node ret in the program|indicating which formal parameters

ret depends on. The rules can be understood as follows:

� A return node depends on whatever formals its input depends on.

� A formal node's output depends only on that formal.

� Except for return, formal, and call nodes, a node's output value depends on every formal

depended on by any of its inputs.

� The dependences of a call result res are determined in two steps. First, let F be the formals

of the called procedure which are depended on by the formal return corresponding to res.

Then, res depends on every formal depended on by an actual parameter corresponding to a

formal f 2 F . When calling through a function pointer, this procedure is followed for every

possible callee (as indicated by the points-to analysis) and the results are unioned together.

An e�cient optimistic analysis solves the data
ow equations of Figure 9. All formals and

summary properties are initialized to the empty set, then each node in the program is placed on a
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Notation:

summary(ret) = the formals of return node ret 's procedure on which ret depends

formals(v) = the formals of value v's enclosing procedure on which v depends

in(n) = the inputs of node n

out(n) = the outputs of node n

callees(c) = procedures that may be called by call node c

ret(res; p) = the formal return in procedure p corresponding to result res of a call to p

act(f; c) = the actual parameter to call node c corresponding to formal f of a callee of c

Data
ow equations for node n:

return node: summary(n) = formals(in(n))

formal node: formals(out(n)) = fng

call node:

for each res 2 out(n)

formals(res) =

[

p2callees(n)

[

f2summary(ret(res;p))

formals(act(f; n))

otherwise: formals(out(n)) =

[

i2in(n)

formals(i)

Figure 9: Data
ow equations for computing dependences on formal parameters. The equations use in, out as

a singleton when the set is known to contain just one element. For simplicity, the modi�cations to support

aggregate values, direct dependences, and depth-limiting are not shown in the �gure.

worklist. Nodes are removed from the worklist one at a time and processed. When a new summary

property (di�erent from the previous approximation) is computed, all callers of the procedure are

placed on the worklist. When a new formals property is computed for a value, its consumers

are placed on the worklist. When the worklist is empty, the least �xed point solution has been

computed.

Summary dependences for codeless procedures are looked up in a database which is �lled in when

the function is analyzed (in a separate compilation phase) or by hand (for library routines whose

text is unavailable); pessimal assumptions are made for procedures not in the database. Free values

de�ned outside a procedure but used inside without being passed in parameters (such as the use of

n in the loop of Figure 1) can be either addressed directly or converted into parameters [Ern94b].

For e�ciency, VDGomatic does not propagate whole formals properties, but only di�erences from

previous values.

Aggregate values such as structures and stores require two modi�cations to the data
ow equa-

tions. First, dependence on part of an aggregate formal does not imply dependence on all of the

formal. Therefore, each element of the formals and summary sets may be either a scalar formal

or an aggregate formal and a location or member speci�er. Second, di�erent parts of an aggregate

may depend on di�erent formals. The formals and summary properties are extended to be either

a set (for scalar values) or a tuple of sets (one set for each element of an aggregate value). These

tuples are combined elementwise when the equations call for a union operation. The dependence

summary for the return value of procedure foo in Figure 6 is hfa:slot2g; fa:slot1; bgi.

VDGomatic also marks each dependence on a formal as direct or indirect. A direct dependence

indicates that the formal is passed through unchanged (and that no other formal is depended upon).
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int foo(int a, int b, int c, int d);

{ if (a < 0)

return(foo(a+1, b, c*2, c));

else

return(d);

}
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call formals(J) = fag [ fcg [ fcg = fa; cg

Figure 10: Computing summary dependences. VDG values have been labeled with uppercase letters. The

table steps through the algorithm, assuming the initial worklist order is a,b,c,d,e,1,2,+,*,0,call,<,
. Nodes

needing to be reprocessed are added to the worklist, if they are not already there; the last �ve lines of the

table reprocess previously encountered nodes.

An indirect dependence indicates that the formal may participate in computation to determine the

return value. Formal outputs depend directly on the formal. Propagation through any other

node makes a dependence indirect (e.g., the result of an addition depends indirectly on any formal

depended on by any of the summands), with three exceptions: an assignment to a known location

preserves directness, dependences on una�ected aggregate components are not made indirect, and

a call preserves direct dependences when the corresponding return depends directly on a formal.

This enhancement does not a�ect the algorithmic complexity, only the implementation complexity.

When a return value depends directly on a formal, VDGomatic can omit or include the proce-

dure body from slices that include the corresponding call result. Omitting the body more clearly

indicates an expression's value and what computations it depends on, while including elements of

the procedure body indicates both computations depended upon and how the value was copied

among storage locations. Previous slicers support only the latter view, which appears in Figure 11.

Figure 11: Display of direct dependences due to procedure calls. These �gures repeat the slices on the

left-hand sides of Figures 12 and 6, but with code passing values directly through procedures highlighted.
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Figure 12: Interprocedural slicing with pointers. Jiang's implementation [JZR91, x3.2.2] of Horwitz's algo-

rithm [HRB90] includes the entire program when slicing on a or sum; our slices are shown above. Note that

there is no dependence on any variable addresses.

4.1.1 Complexity

The summary algorithm works by processing nodes and propagating new information along edges

to other nodes. Because each edge traversal adds to the set of dependences (if there is no new

information, the traversal is stopped), the algorithm crosses each scalar VDG edge at most f

times, where f is the combined number of formals and free values for the enclosing procedure.

Edges carrying aggregate values can be traversed up to f times for each value carried by the edge,

or up to O(n

2

) times, since both f and the number of aggregate components are bounded by n.

The VDG contains O(n) edges, so the total number of edge traversals is O(n

3

). This result can also

be derived by replacing each aggregate edge with an appropriate number of scalar edges, resulting

in a total of O(n

2

) VDG edges, each of which can be traversed up to f times.

The assertion that a VDG contains O(n

2

) edge components, where aggregates and stores are

counted once for each element they contain, is easily justi�ed for an unoptimized VDG. (An

unoptimized VDG also contains O(n) edges and nodes. While optimization can increase the number

of nodes and edges in the VDG, it does not increase the number of edge components, which is a

more accurate measure of VDG size [Ern94b].) Each variable reference becomes a store lookup,

and each assignment is represented by an update-store node. No value is used by more than one

consumer. Each program operation becomes (a constant number of) VDG nodes. The machine

state (global store, I/O streams, and so forth) is threaded through each computation; these values

appear as formals and returns of each procedure, in addition to user-speci�ed formals and returns.

The only free values are program constants, such as the addresses of global variables. Such a VDG

contains O(n) nodes and O(n) edges, and each procedure has O(n) formals and free values.

Each node is processed at most once for each time the slicing traversal reaches it. Node pro-

cessing and computation of di�erences from previous results costs O(n) for each component with

modi�ed dependences. (Storing summary dependences per formal as well as per return can prevent

processing nodes when no output dependences would be changed.) Therefore, the total theoretical

cost of the algorithm is O(n

4

), though in practice most edges are traversed no more than a few

times, and few values have O(n) components or depend on O(n) formals.

4.2 Related work

Horwitz, Reps, and Binkley [HRB90] compute summary dependences from an attribute gram-

mar that models procedure-call structure and from the subordinate characteristic graphs of the

grammar's nonterminals. If n is the size of the original program, constructing the subordinate
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characteristic graphs requires O(n

5

) computation [HRB90, x5.1], and the entire summary algo-

rithm performs O(n

7

) steps [RHSR94, x4]. An improved algorithm [RHSR94] �nds same-level

realizable paths in the graph that end at a procedure's formal-out (return) vertices, which induce

summary edges at call sites. The algorithm can extend paths up to O(n

4

) times, and each path

extension incurs set operations on sets of size O(n). Livadas and Croll [LC92] suggest incremen-

tally constructing and re�ning an \extended call sequence graph." They have not implemented the

technique (Ghinsu handles function calls via inlining [LR94]) or determined its complexity (they

do note that it multiply processes looping statements).

These methods represent dependences due to calls via a system dependence graph (SDG).

After summary computation, slicing is linear in the size of the SDG, which (in the absence of

aliasing) is quadratic in the size of the original program. The blowup in size results from the

numerous special nodes and edges added to model procedure calls, and from the representation of

dependence summaries at every call site instead of just at the procedure de�nition. By contrast, an

alias-free interprocedural VDG is linear in the size of the program, so the slicing algorithm remains

linear-time, and computing summaries for such a procedure takes at most O(n

3

) time. Support

for arbitrary pointer manipulations (see Section 3) increases VDG size to quadratic; support for

call-by-reference parameters either increases the SDG size to exponential or results in degraded

performance.

The NCTU slicer [HDC88] computes summaries via an exponential time [HRB90] technique.

At each call, the called procedure is processed and the results propagated back to that call site.

The method is made to terminate in the presence of recursion by computing a series of slices in

which the recursion depth is limited: initially no recursive calls are followed, then one level, and so

forth, until no change in results occurs.

5 Implementation

VDGomatic was �rst operational in late 1993 as part of the Zaphod environment for program

understanding and debugging being built at Microsoft Research. It is written in Scheme and

integrated with GNU Emacs for input and output and implements the techniques of this paper.

Currently the system can accommodate only programs of modest size. Creating a 13,000-node

VDG from a 7,000-line program (the Free Software Foundation's bc calculator) takes approximately

150 seconds on an Iris Indigo 2 (MIPS R4400 processor). Computing dependence summaries takes

under 30 seconds, slicing requires less than a second, and display of slices takes a second or two,

depending on the size of the slice. (The full paper will contain more extensive timings.) The

Zaphod system has not been optimized for speed and many obvious improvements are possible; for

instance, VDGomatic incurs an O(n) penalty by using an analysis framework rather than directly

implementing traversals and value combination.

It is di�cult to quantitatively compare our slicing results with previous ones. Previous work has

not included hard results on timings or slice sizes, and in any event numbers for di�erent program

representations would be di�cult to compare. Additionally, static slices vary greatly in size. slices

on program results can be large, since interesting results tend to depend directly or indirectly on

most of the previous computation, but other slices can be quite small. While we do not present

slice size statistics here, future work will include the creation of a slicing test suite (for both closure

and executable slicing) and measurements of our system on those test cases.
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