
Automatic SAT-Compilation of Planning Problems

Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld

�

Department of Computer Science and Engineering

University of Washington, Box 352350 Seattle WA 98195{2350 USA

fmernst, todd, weldg@cs.washington.edu

Abstract

Recent work by Kautz et al. provides tantalizing

evidence that large, classical planning problems

may be e�ciently solved by translating them into

propositional satis�ability problems, using stochas-

tic search techniques, and translating the resulting

truth assignments back into plans for the original

problems. We explore the space of such transfor-

mations, providing a simple framework that gener-

ates eight major encodings (generated by selecting

one of four action representations and one of two

frame axioms) and a number of subsidiary ones.

We describe a fully-implemented compiler that can

generate each of these encodings, and we test the

compiler on a suite of STRIPS planning problems

in order to determine which encodings have the

best properties.

1 Introduction

Despite the early formulation of planning as theorem prov-

ing

[

Green, 1969

]

, most researchers have long assumed that

special-purpose planning algorithms are necessary for practi-

cal performance. However, recent improvements in the per-

formance of propositional satis�ability methods

[

Cook and

Mitchell, 1997

]

cast doubt on this conclusion. Initial results

for compiling bounded-length planning problems to SAT were

unremarkable

[

Kautz and Selman, 1992

]

, but recent experi-

ments

[

Kautz and Selman, 1996

]

suggest that compilation to

SAT might yield the world's fastest STRIPS-style planner.

However, several open questions must be answered before

concluding that SAT-based planning dominates specialized

algorithms. The experiments of

[

Kautz and Selman, 1996

]

used hand-crafted SAT encodings, and while

[

Kautz et al.,

1996

]

describe methods for compilation, no one has reported

experiments on automatically compiled problems and no one

knows which encodings are best. The encodings used by

[

Kautz and Selman, 1996

]

included domain information that

is inexpressible in the STRIPS action language (e.g., the 
u-

ent On is irre
exive and noncommutative); to what extent is

this information responsible for the speedup they observed?

This paper addresses these issues:

�

This paper appears in Proceedings of the

15th International Joint Conference on Arti-

�cial Intelligence (IJCAI-97), Nagoya, Aichi,

Japan, August 23{29, 1997, pp. 1169-1176.

This research was funded in part by O�ce of Naval Research

Grant N00014-94-1-0060, by National Science Foundation Grant

IRI-9303461, by ARPA / Rome Labs grant F30602-95-1-0024, and

by a gift from Rockwell International Palo Alto Research.

� We present an analytic framework that accounts for

all previously reported non-causal encodings,

1

including

several novel possibilities. We parameterize the space

of encodings along two major dimensions, action and

frame representation. For twelve points in this two-

dimensional space, we list the axioms necessary for a

minimal encoding, and we calculate the asymptotic en-

coding sizes.

� We describe an automatic compiler that generates all of

these encodings. While it is di�cult for a compiler to

produce encodings that are as lean as the hand-coded

versions of

[

Kautz and Selman, 1996

]

, we describe type-

analysis and factoring techniques that get us close. Ex-

periments demonstrate these methods can reduce the

number of variables by half and formula size by 80%.

� We run the compiler on a suite of STRIPS-style planning

problems, determining that the regular and simply-split

explanatory encodings are smallest and can be solved

fastest.

2 The Space of Encodings

This section presents a framework that describes all of the

AT&T encodings (except for the causal encodings) as well

as some new alternatives. Previous work has described indi-

vidual encodings in a variety of ways (e.g., \direct," \state-

based," etc.), but we avoid these terms. Instead we present

a parameterized space with two dimensions:

� The choice of a regular, simply split, overloaded split,

or bitwise action representation speci�es the correspon-

dence between propositional variables and ground (fully-

instantiated) plan actions. These choices represent dif-

ferent points in the tradeo� between the number of vari-

ables and the number of clauses in the formula.

� The choice of classical or explanatory frame axioms

varies the way that stationary 
uents are constrained.

Our encodings use a standard 
uent model in which time

takes nonnegative integer values. State-
uents occur at even-

numbered times and actions at odd times. All of the encod-

ings use the following set of universal axioms:

init The initial state is completely speci�ed at time zero,

including all properties presumed false by the closed-

world assumption.

goal In order to test for a plan of length n, all desired goal

properties are asserted to be true at time 2n.

1

The omitted \state-based" encodings can be obtained by re-

solving away the actions in our encodings

[

Kautz et al., 1996

]

.



a)p,e Actions imply their preconditions and e�ects. For

each odd time t between 1 and 2n� 1 and for each con-

sistent ground action, an axiom asserts that execution

of the action at time t implies that its e�ects hold at

t+ 1 and its preconditions hold at t� 1. For example,

suppose that the initial conditions specify four blocks

A, B, C, and D. The STRIPS operator of Figure 1 is in-

consistent when instantiated with o = A and s = A, but

with o = A, s = B, and d = C it yields the axioms shown,

and analogous axioms for preconditions.

2.1 Action Representation

The �rst major encoding choice is whether to represent ac-

tions as regular, simply split, overloaded split, or bitwise.

In the regular representation, each ground action is rep-

resented by a di�erent logical variable, for a total of A =

njOpsjjDomj

A

o

such variables (Figure 2 de�nes these sym-

bols). Since systematic solvers take time exponential in the

number of variables, and large numbers of variables also slow

stochastic solvers, we would like to reduce this number.

In order to do this,

[

Kautz and Selman, 1996

]

introduced

simple operator splitting, which replaces each n-ary ac-

tion 
uent with n unary 
uents throughout the encoding. For

example, Move(A,B,C,t) is replaced with the conjunction of

MoveArg1(A,t), MoveArg2(B,t), MoveArg3(C,t). Doing this

for all fully-instantiated actions reduces the number of vari-

ables needed to represent all actions to njOpsjjDomjA

o

.

In simple splitting, only instances of the same opera-

tor share propositional variables. An alternative is over-

loaded splitting, whereby all operators share the same

split 
uents. Overloaded splitting replaces Move(A,B,C,t)

by the conjunction of Act(Move,t), Arg1(A,t), Arg2(B,t),

Arg3(C,t), while a di�erent action Paint(A,Red,t) is re-

placed with Act(Paint,t), Arg1(A,t), Arg2(Red,t). This

technique further reduces the number of variables needed to

represent all actions to n(jOpsj+ jDomjA

o

).

The bitwise representation shrinks the number of vari-

ables even more, by representing the actions with only

dlog

2

Ae propositional symbols (per odd time step), each

representing a bit. The ground actions are numbered from

0 to A � 1. The number encoded by the bit symbols

determines the ground action which executes at each odd

time step. For instance, if there were four ground actions,

then (:bit1(t) ^ :bit2(t)) would replace the �rst action,

(:bit1(t)^bit2(t)) would replace the second, and so forth.

2.2 Frame Axioms

frame Classical or explanatory frame axioms constrain un-

a�ected 
uents when an action occurs.

Classical frame axioms

[

McCarthy and Hayes, 1969

]

state

what 
uents are left unchanged by a given action. For ex-

ample, one classical frame axiom for the Move operator in

Figure 1 would say \Moving block A from B to C leaves D's

clearness unchanged," e.g.,

Clear(D,t�1) ^ Move(A,B,C,t) ) Clear(D,t+1)

Adding classical frame axioms for each action and each

odd time t to the universal axioms almost produces a valid

encoding of the planning problem. However, if no action

occurs at time t, the axioms of the encoding can infer nothing

about the truth value of 
uents at time t + 1, which can

therefore take on arbitrary values. The solution is to add

at-least-one axioms for each time step.

Move(o; s; d)

Precond : Block(o) ^ Clear(o)^

(Table(d) _ Clear(d))^

On(o; s) ^ o 6= s ^ o 6= d ^ s 6= d

Effect : Clear(s) ^ :On(o; s)^

:Clear(d) ^ On(o; d)

Move(A,B,C,t) ) Clear(B,t+1)

Move(A,B,C,t) ) :On(A,B,t+1)

Move(A,B,C,t) ) :Clear(C,t+1)

Move(A,B,C,t) ) On(A,C,t+1)

Figure 1: Top: STRIPS de�nition of a blocks-world operator for

moving an object from a source to a destination. Bottom: Axiom

schema showing an instance of Move implies its e�ects.

jOpsj number of operators

jPredj number of predicate symbols

jDomj number of constants in the domain

n number of odd time steps in plan (may be < plan length)

A

p

max arity of predicates

A

o

max arity of operators

A

r

length of action representation (predicate symbols

per action): regular = 1; simple split = A

o

;

overloaded split = A

o

+ 1; bitwise = dlog

2

Ae

A = jOpsjjDomj

A

o

number of ground actions

F = jPredjjDomj

A

p

number of ground 
uents

P

o

= O(F) max num 
uents mentioned in operator

Figure 2: Symbols used in complexity analyses.

at-least-one A disjunction of every possible fully-

instantiated action ensures that some action occurs at

each odd time step. (A no-op action is inserted as a pre-

processing step.) Note that action representation has a

huge e�ect on the size of these axioms (Figure 3).

2

The resulting plan consists of a totally-ordered sequence of

actions; indeed it corresponds roughly to a \linear" encoding

in

[

Kautz et al., 1996

]

, except that they include exclusion ax-

ioms (see below) to ensure that at most one action is active

at a time. However, exclusion axioms are unnecessary be-

cause the classical frame axioms combined with the a)p,e

axioms ensure that any two actions occurring at time t lead

to an identical world-state at time t+ 1. Therefore, if more

than one action does occur in a time step, then either one

can be selected to form a valid plan.

Explanatory frame axioms

[

Haas, 1987

]

enumerate the

set of actions that could have occurred in order to account

for a state change. For example, an explanatory frame ax-

iom would say which actions could have caused D's clearness

status to change from true to false.

Clear(D,t�1) ^ :Clear(D,t+1) ) (Move(A,B,D,t)_

Move(A,C,D,t) _ : : : _ Move(C,Table,D,t))

As a supplement to the universal axioms, explanatory

frame axioms must be added for each ground 
uent and

each odd time t to produce a reasonable encoding. With

explanatory frames, a change in a 
uent's truth value implies

that some action occurs, so (contrapositively) if no action oc-

curs at a time step, this will be correctly treated as a no-op.

Therefore, no at-least-one axioms are required.

Since explanatory frames do not explicitly force the 
uents

not a�ected by an executing action to remain unchanged,

2

At-least-one axioms are not necessary if the bitwise action

representation is used, because all spare bit patterns can be used

to refer to actual ground actions.



Axiom Action Representation Clauses Clause size

init All F 1

goal All arbitrary formula, typically small

a)p,e All O(nP

o

A) A

r

+ 1

frame Classical O(nFA) A

r

+ 2

Explanatory O(nFA

r

A

) O(A)

at-least-one Simple factored O(n) jOpsjjDomj

Overloaded factored O(n) jOpsj

All other representations O(nA

r

A

) A

exclusion Simple factored O(njOpsj(jOpsj+A

o

� 1)jDomj

2

) 2

Overloaded factored O(n(jOpsj

2

+A

o

jDomj

2

)) 2

All other representations O(n(A

r

A)

2

) 2

no-partial Simple Factored: O(njOpsjjDomjA

o

) jDomj+ 1

Overloaded Factored: O(njDomj(A

o

+ 1)) jDomj+ 1

Figure 3: The sizes of each axiom schema as a function of action representation. Note that combinations whose entries are identical

may have di�erent sizes because the value of A

r

is itself a function of action representation (see Figure 2).

they permit parallelism. Speci�cally, any actions whose pre-

conditions are satis�ed at time t and whose e�ects do not

contradict each other might be executed in parallel. This

kind of parallelism is problematic because it can create valid

plans which have no linear solution. For example, suppose

action � has precondition X and e�ect Y , while action � has

precondition :Y and e�ect :X. While these actions might be

executed in parallel (because their e�ects are not contradic-

tory) there is no legal total ordering of the two actions, which

is problematic for non-instantaneous real-world actions.

exclusion Linearizability of resulting plans is guaranteed

by restricting which actions may occur simultaneously.

Two kinds of exclusion enforce di�erent constraints in the

resulting plan:

� Complete exclusion: For each odd time step, and for all

distinct, fully-instantiated action pairs �; �, add clauses

of the form :�

t

_:�

t

. Complete exclusion ensures that

only one action occurs at each time step, guaranteeing

a totally-ordered plan.

� Con
ict exclusion: For each odd time step, and for

all distinct, fully-instantiated, con
icting action pairs

�; �, add clauses of the form :�

t

_ :�

t

. In our frame-

work, two actions con
ict if one's precondition is incon-

sistent with the other's e�ect.

3

Con
ict exclusion results

in plans whose actions form a partial order. Any total

order consistent with the partial order is a valid plan.

Because we wish to consider the minimal encoding corre-

sponding to each choice of action and frame representations,

we will assume that con
ict exclusion is used whenever possi-

ble. Con
ict exclusion cannot be exploited when using a split

action representation, because splitting causes there not to be

a unique variable for each fully-instantiated action. For ex-

ample, with simple splitting, it would be impossible to have

two instantiations of the same operator execute at the same

time, because their split 
uents would interfere. Overloaded

splitting further disallows two instantiations of di�erent op-

erators to execute at the same time.

The bitwise action representation requires no action ex-

clusion axioms. At any time step, only one fully-

instantiated action's index can be represented by the bit sym-

bols, so a total ordering is guaranteed.

3

Contrast our de�nition of con
ict with that of Graph-

plan

[

Blum and Furst, 1995

]

and

[

Kautz and Selman, 1996

]

. Unlike

Kautz and Selman's parallel encoding, but like their linear one,

our encodings have axioms stating that actions imply their e�ects;

their parallel encoding prohibits e�ect-e�ect con
icts instead.

3 Optimizing Axioms with Factoring

Eight base encodings are generated by choosing among the

regular, simple split, overloaded split, and bitwise action

representations and choosing either classical or explanatory

frames. Unfortunately, choices that lead to a small number

of variables (i.e., the splitting strategies and bitwise) tend to

explode the number of clauses or size of each clause. Con-

sider the at-least-one axiom, which is a disjunction of all

fully-instantiated actions. Substituting a conjunction of split

or bitwise variables for each regular action literal produces

a disjunctive normal form formula which blows up exponen-

tially when converted to conjunctive normal form. With sim-

ple splitting, this axiom grows

4

from n clauses of size A to

nA

o

A

clauses of size A (see Figure 3).

The formula blowup results from blindly substituting a

complete conjunction of split variables for each action in the

a)p,e, frame, at-least-one, and exclusion axioms. Fac-

toring can dramatically reduce both the number of clauses

and their sizes for simple and overloaded splitting. The idea

is to use only a subset of the full conjunction for an ac-

tion whenever possible. Such a partially-instantiated action

represents the set of all fully-instantiated actions consistent

with it. The bitwise action representation does not admit an

easy method of factoring because partial conjunctions of the

bit variables are not useful unless a clever action numbering

scheme is created.

3.1 Factoring a)p,e and frame Axioms

The a)p,e and frame axioms, which relate a single 
uent

to a single action, can make good use of partial action in-

stantiations. For example, Figure 1 shows the Move operator

and some of the a)p,e axioms for one possible instantiation

of the operator. Ordinary simple splitting will transform the

�rst axiom at the bottom of Figure 1 into

MoveArg1(A,t) ^ MoveArg2(B,t) ^ MoveArg3(C,t)

) Clear(B,t+1)

A similar axiom is generated for all pairs of constants s

and d for which Move(s,B,d,t) is a consistent action. Since

two of the argument values are irrelevant for this axiom, the

simpler axiom MoveArg2(B,t) ) Clear(B,t+1) can be used

instead, eliminating the need to explicitly consider all jDomj

2

values for MoveArg1 and MoveArg3.

4

The number of logically independent clauses may be substan-

tially smaller than this worst-case bound which results from naive

conversion: some clauses may contain duplicated literals, and some

clauses may logically imply others. Our implementation eliminates

these unnecessary literals and clauses.



Action representation

Regular Simple Overloaded Bitwise

Unfactored Factored Unfactored Factored

Vars nF+nA nF+njOpsjA

o

jDomj nF+njOpsjA

o

jDomj nF+n(jOpsj+A

o

jDomj) nF+n(jOpsj+A

o

jDomj+1) nF+n log

2

A

Class-

ical

at-least-

one

O(nFA)

at-least-one

O(nFAA

o

+ nA

o

A

A)

at-least-one, no-partial

O(nFAA

o

+ njOpsjjDomj

2

A

o

)

at-least-one

O(nFAA

o

+ nA

o

A

A)

at-least-one, no-partial

O(nFAA

o

+ njDomj

2

A

o

)

O(nFA log

2

A)

Explan-

atory

exclusion

O(nFA

+ nA

2

)

exclusion

O(nFA

o

A

+ n(A

o

A)

2

)

exclusion, no-partial

O(nFA

o

A

+ njOpsj

2

jDomj

2

A

o

)

exclusion

O(nF(AA

o

)

2

+ nFA

o

A

A)

exclusion, no-partial

O(nFA

o

A

A

+ njDomj

2

(A

o

+ jOpsj

2

))

O(nF(log

2

A)

A

)

Figure 4: Composition and worst case size of the encodings. The bitwise action representation yields the smallest number of variables,

but the most clauses; regular actions are the exact opposite. All encodings init, goal, a)p,e, and frame axioms. Any additional

clauses are noted, and the total size for all clauses is given. The reported numbers are asymptotic numbers of literals (i.e., the product

of numbers of clauses and clause sizes).

Factoring a)p,e axioms relies on this idea: when relating

an action to a 
uent, we need only include the parts of the

action conjunct pertaining to the arguments that appear in

the a�ected 
uent.

The technique extends easily to both classical and ex-

planatory frame axioms. Consider the classical frame

example given in Section 2.2. Instead of naively split-

ting Move(A,B,C,t) into MoveArg1(A,t) ^ MoveArg2(B,t) ^

MoveArg3(C,t), we observe that the source and object of the

Move are irrelevant and generate

Clear(D,t�1) ^ MoveArg3(C,t) ) Clear(D,t+1)

This formula implicitly represents the set of all classical

frame axioms relating the clearness of D to any Move action

having C as its destination argument.

Note that while the factoring optimization is crucial in

practice (see Section 5.5), it is equivalent to ordinary splitting

in the worst case. In particular, when the arity of precondi-

tion and e�ect 
uents is equal to the arity of the operator,

no factoring is possible.

3.2 Factoring exclusion Axioms

Since pairwise exclusion clauses relate actions to other actions

(e.g., :Move(A,B,C,t)_:Move(A,B,D,t)) instead of relating

actions to 
uents, the previous technique cannot be used.

Instead, we factor these axioms by noting that, rather than

excluding whole actions from occurring simultaneously, we

can independently exclude the values of each argument to an

action.

For example, factored exclusions of the Move operator look

like (:MoveArgi(a,t) _ :MoveArgi(b,t)), ranging over all ar-

guments i and distinct constants a and b. This ensures that

at most one fully-instantiated Move action is active at time

t. By doing this for all operators, we ensure that only one

instance of each operator is active at time t.

To complete the exclusion, we need to ensure that no two

operators have an active instance at time t. This is accom-

plished by pairwise excluding all possible �rst arguments of

each operator with one another. In other words, we add

clauses (:�Arg1(a,t) _ :�Arg1(b,t)) for all distinct oper-

ators � and � and all (not necessarily distinct) constants a

and b. Figure 3 shows how factoring reduces the asymptotic

number and size of clauses as compared with unfactored split

exclusion axioms.

3.3 Factoring at-least-one Axioms

Without factoring, the at-least-one axiom explodes into

an exponential morass during the conversion to CNF. For-

tunately, it can be factored very easily, yielding the disjunc-

tion of all possible �rst arguments to all operators, i.e., an

axiom of the form: (Op

1

Arg1(A,t) _ Op

1

Arg1(B,t) _ : : :_

Op

2

Arg1(A,t) _ Op

2

Arg1(B,t) _ : : : ). This axiom now re-

quires only n clauses of size jOpsjjDomj, quite a reduction

from the unfactored case.

3.4 Preventing Partial Action Execution

The previous three subsections show how to factor each part

of the encoding. All three parts rely on the ability to refer to

parts of an action instead of always referring to a complete

instantiation of an action. However, the underlying assump-

tion is that, whenever any part is instantiated, so is the rest

of the action.

For example, we would not want a factored frame clause to

have any e�ect unless a full action implied by that frame was

actually being executed at the current time step. Otherwise,

the frame could constrain the resulting plan, even though the

action referred to by the frame is never fully executed.

no-partial We add axioms which state that, whenever any

part of an operator is instantiated, so is the rest.

Here are the partial action elimination axioms for the Move

operator:

(MoveArg1(A,t) _ MoveArg1(B,t) _ : : :),

(MoveArg2(A,t) _ MoveArg2(B,t) _ : : :)

(MoveArg1(A,t) _ MoveArg1(B,t) _ : : :),

(MoveArg3(A,t) _ MoveArg3(B,t) _ : : :)

These axioms ensure that whenever any split 
uent of Move

is true, then some complete instantiation of Move is true.

Figure 3 shows the number and size of the resulting clauses.

4 The Medic Planner

Following the encodings described above, we have imple-

mented a classical planner which accepts traditional

5

inputs

(initial state, goal formula, and STRIPS action schemata)

and returns a sequence of actions that will achieve the goal.

TheMedic planner operates by compiling the planning prob-

lem into clausal form, solving the SAT problem, and trans-

lating the satisfying truth assignment back into actions. De-

pending on the switch settings, any of the SAT encodings

described above can be generated. Thus the Medic planner

forms a unique testbed for exploring the properties of the

di�erent encodings.

The architecture of the planner is shown in Figure 5. Ac-

tion schemata are parsed using the preprocessor from the

5

By contrast, the implementation of

[

Kautz and Selman, 1996

]

accepts \direct" encodings in a logical constraint language, rather

than STRIPS actions.



Initial State


Actions


Axiom

Schemas
 Decode
Type


Opt
 Plan
Goal


Action Repr & Frame Repr


Shift Time &

Duplicate
 Simplify
 Solve


Repeat as needed, varying plan length

until a solution is found


Figure 5: Architecture of the Medic planner.

UCPOP planner

[

Penberthy and Weld, 1992

]

and type opti-

mization (see below) is performed. Next, guided by the choice

of action and frame representations (Figure 4), the compiler

creates a master axiom schema representing all action pos-

sibilities for one time step. The periodic axiom schema is

instantiated multiple times, based on the plan length cur-

rently being considered. The output of this duplication mod-

ule, combined with the initial state and goal speci�cation,

is simpli�ed by pure literal elimination, unit clause propa-

gation, and duplicate literal elimination using a fast (linear

time) procedure

[

Van Gelder and Tsuji, 1996

]

. The result-

ing clauses are solved using Walksat

[

Selman et al., 1996

]

or

Tableau

[

Crawford and Auton, 1993

]

.

4.1 Optimizations

Planning via reduction to propositional satis�ability is im-

practical without a number of optimizations which determine

the truth values of 
uents or limit the ground instantiations

of actions. Foremost among these are type optimizations. A

type is a 
uent which no action a�ects.

Types can constrain operator instantiation by ruling out

impossible ground versions. For instance, if A and B are the

only blocks, we can prune any instantiation of the Move op-

erator (Figure 1) which does not assign o to either A or B.

When such preconditions are re
ected in the operator instan-

tiations, the types themselves need not appear in the �nal

encoding; for instance, the Block precondition would be re-

moved from Move. This mechanism is a generalization of the

obvious one for handling equality and inequality constraints,

which are special cases of types.

Because of the usefulness of type information, we have ex-

plored methods of inferring types of arguments when oper-

ators do not specify them. Suppose that Block(o) did not

appear in the Move de�nition in Figure 1, but that when-

ever Clear(o) appears in an action's e�ect (for any variable

o), that action's precondition contains the 
uent Block(o).

Then no constant can become Clear without being a Block.

If every constant which is Clear in the initial conditions is

also a Block, we can deduce that every Clear constant must

be a Block and add Block(o) to the Move precondition.

Similarly, inequality constraints can be inferred if a 
uent

appears both positively and negatively in an operator, since

the two bindings cannot be identical. Since the Move operator

of Figure 1 has e�ects :On(o; s) and On(o; d), the s 6= d

constraint would be inferred if it were not already present.

An operator's instantiations can be further pruned by elim-

inating symmetric operator instantiations. For instance, if an

operator � takes two arguments which are used identically,

then there is no sense considering both of the bindings �(A; B)

and �(B; A); we arbitrarily select one of the possibilities. This

analysis cuts the number of ground instantiations by about

an order of magnitude for the refrigerator domain.

The Medic planner further reduces bindings and infers

invariant 
uents by enforcing a form of consistency. An ap-

proximation to the set of 
uents that can be true (and also to

those that can be false) is computed by an iterative data
ow

analysis. The �rst approximation is the initial condition; at

each step any 
uents in the e�ects of actions that can �re,

given the current approximations, are added to the sets. This

process is guaranteed to terminate and is not tantamount to

solving the planning problem since time is ignored, thereby

permitting impossible situations, like the presence of a 
uent

and its negation.

The CNF simpli�cation step is also quite important, since

it is fast and can reduce the formula size enormously. Though

CNF simpli�cation operates without knowledge of the struc-

ture of the problem, its e�ects are similar to some of the

optimizations listed above. For instance, it can do much of

the type elimination described above. However, performing

these steps earlier can reduce encoding time by a factor of

four or more due to generation of smaller formulae. Further,

these optimizations can often allow the simpli�er to reduce a

formula more than it otherwise could.

Optimization and Factoring

Factored action representations reduce the bene�t of these

type optimizations. When performing factored simple split-

ting, only unary types can be eliminated, since their e�ect is

restricted to (and fully re
ected by) just one of the newly-

introduced action predicate symbols. Binary types such as

6= cannot be eliminated: consider a binary operator � which

takes two non-equal arguments. Given two objects A and B,

only two instantiations �(A; B) and �(B; A) are possible, but

since the new action 
uents �Arg1 and �Arg2 can each take

either A or B as an argument, it is necessary to leave the ax-

iom �Arg1(x)^�Arg1(y)) x 6= y in the encoding to prevent

the illegal argument combinations.

Overloaded action representations do not admit elimina-

tion of even unary types, since a single action 
uent rep-

resents the nth argument to many di�erent operators with

di�erent constraints.

4.2 Searching for the Minimal Plan

So far we have assumed that one is trying to �nd a plan of

known length, but in general the plan length is not known in

advance. The Medic planner is capable of both linear and

binary search on plan lengths.

6

Our encodings support the

linear search strategy without any modi�cation. To imple-

ment binary search for the minimal plan length, we include an

explicit no-op (maintain) action when using classical frame

axioms. This allows plans longer than the minimal length to

succeed.

Because Walksat is stochastic, �nding a minimal length

plan requires a systematic solver such as Tableau instead of

(or in addition to) Walksat. For even moderately-sized prob-

lems, however, Tableau can take an unreasonably long time

to verify that no solution exists. (Such veri�cation is moot

6

Because SAT solving time is potentially exponential in encod-

ing size, we conjecture that linear search strategy is better, but we

haven't performed serious tests.



10

100

1000

log0

log1

log2

log3

log4

logA

suss

suss1

suss2

small-bw1

med-bw1

big-bw1

bw2

hanoi2

hanoi3

monkey1

monkey2

tire1

tire2

ferry1

ferry2

fridge1

fridge2

Variables

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

? ?

?

?

?

? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

10

100

1000

10000

log0

log1

log2

log3

log4

logA

suss

suss1

suss2

small-bw1

med-bw1

big-bw1

bw2

hanoi2

hanoi3

monkey1

monkey2

tire1

tire2

ferry1

ferry2

fridge1

fridge2

Clauses

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

? ?

?

?

?

? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

10

100

1000

10000

100000

log0

log1

log2

log3

log4

logA

suss

suss1

suss2

small-bw1

med-bw1

big-bw1

bw2

hanoi2

hanoi3

monkey1

monkey2

tire1

tire2

ferry1

ferry2

fridge1

fridge2

Literals

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

? ?

?

?

?

? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.1

1

10

100

1000

log0

log1

log2

log3

log4

logA

suss

suss1

suss2

small-bw1

med-bw1

big-bw1

bw2

hanoi2

hanoi3

monkey1

monkey2

tire1

tire2

ferry1

ferry2

fridge1

fridge2

Time (seconds)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4 4

4

4

4

4

4 4 4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

? ?

?

?

?

? ? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � �

�

�

�

regular split overloaded bitwise

classical � + 2 �

explanatory 4 ? � �

Satplan

�

Figure 6: Numbers of variables, clauses, and literals in simpli�ed CNF formulas resulting from each of eight encodings, plus the Satplan

hand-encoding (sans domain-speci�c axioms). Values reported as 10 are actually 0: that is, the CNF simpli�er solved the problem. Times

less than one tenth second are reported as one tenth.

when trying to �nd any satisfying plan rather than the short-

est one.)

5 Experiments

To test the various encodings, we encoded a suite of planning

problems using each of the eight encodings. Factoring was

applied when split action representations were used. Figure 6

plots the number of variables, clauses, and literals in the �nal

simpli�ed CNF formulae.

Figure 6 also reports Walksat solution

7

times (averaged

over �ve runs), but note that timing data is hard to interpret.

Walksat is not always the fastest solution method. We used

the suggested Walksat 
ag settings from the Satplan planner,

but these 
ags might favor some encodings over others. The

timings reported in

[

Kautz and Selman, 1996

]

are each min-

ima over many Walksat runs with varying parameter values.

It is believed that solution time correlates with CNF size,

7

We do not report encoding or simpli�cation times, which for

medium and large problems are dominated by solution time.

but automatically determining which solver 
ags are best for

a particular problem is an open problem

[

Selman et al., 1997

]

,

though progress has been made recently

[

McAllester et al.,

1997

]

.

From the asymptotic size bounds of Figure 4 one would

expect the bitwise encodings to have the smallest number

of variables and the regular encodings to have the largest

number of variables. Surprisingly, neither expectation was

ful�lled.

5.1 The Smallest Encodings

The two smallest encodings are the regular and simply split

explanatory encodings, and these encodings had quick solve

times as well. These successes bring to light several interest-

ing points about the relative merits of the encodings.

First, it is clear that explanatory frame clauses are superior

to classical frame clauses. Explanatory frames are smaller

because they only state what changes, rather than what does

not change, when an action occurs. In general, we expect

each action to a�ect relatively few 
uents.



Parallelism is also a big advantage (as shown by the success

of the regular explanatory encoding). Since parallel plans

have shorter length, the formula contains fewer copies of the

periodic axioms. Additionally, con
ict exclusion axioms are

a subset of complete exclusions, which prohibit all pairs of

actions. Con
ict exclusion only excludes pairs of actions that

would not be otherwise excluded but should be in order to

guarantee the existence of a linearization of the partial order

plan returned.

It is quite surprising that the regular explanatory encod-

ing has so few variables.

[

Kautz and Selman, 1996

]

dismiss

this encoding as impractical. While its size can blow up pro-

hibitively in the worst case (see Figure 4), in practice the

encoding maintains excellent variable and clause sizes. And

it remains competitive even as problems increase in size (e.g.,

problem sequence log0, log1, : : : , logA). We suspect the com-

piler's type optimizations (which are handicapped by factored

splitting) deserve the credit.

5.2 The Largest Encodings

The two worst encodings are the regular and bitwise classi-

cal encodings. We have already mentioned the superiority

of explanatory to classical frames. Regular classical is out-

performed by the two split classical encodings. Worst-case

splitting clause sizes can be much bigger than the regular

encoding, but in practice factoring seems to keep the sizes

competitive. Splitting also may provide the simpli�er with

more 
exibility, allowing it to deduce more, because it can

reason about parts of actions instead of only about fully-

instantiated actions without hope of generalizing. Finally,

these encodings are also aided by the great decrease in the

number of variables as compared with the regular encoding.

On the other hand, the bitwise encoding, which has the

smallest number of variables before simpli�cation, is the

worst encoding of all. Simpli�cation is relatively ine�ective

on this encoding, as other encodings have fewer variables af-

ter the simpli�cation phase. This may be related to the fact

that bitwise uses one set of variables to encode all possible

actions in the domain, thereby making it next to impossible

for the simpli�er to reason about the truth values of these

variables. Finally, the graph of number of literals points to

the obvious blow-up that bitwise incurs in exchange for the

small variable size.

5.3 Comparison with Satplan

Although our encodings cannot be expected to be as compact

as the hand-made Satplan encodings, our best encodings are

surprisingly competitive. The �rst seven problems of Fig-

ure 6 include a ranking for the Satplan direct encoding of the

problem, from which domain-speci�c axioms (see Section 5.6)

have been removed for purposes of comparison. Our best en-

codings actually outperform the Satplan encodings on two of

the smaller problems, as the simpli�cation process is able to

satisfy our formulas completely. As the problems get larger,

the Satplan encodings begin to dominate. However, our best

automatic encoding appears to be always within a factor of

two of the Satplan size.

5.4 Type Optimizations

Type optimizations can substantially reduce formula size:

Figure 7 compares formula sizes with and without these op-

timizations. These numbers understate the bene�ts of the

optimizations, because they do not include data for prob-

lems that were too large to solve without type optimizations

Regular Simple Overloaded Bitwise

Classical .31 .39 .40 .32

Explanatory 1.00 .98 .67 .76

Figure 7: Ratio of simpli�ed formula size with type optimizations

to simpli�ed formula size without. The numbers reported are av-

erages over seven problems of the ratios for variables, clauses, and

literals, which are always within .15 of the average and usually

even closer.

Classical Explanatory

Simple Overloaded Simple Overloaded

Variables .81 .99 .46 .69

Clauses .50 .69 .30 .50

Literals .34 .50 .20 .38

Figure 8: Ratio of simpli�ed formula size with factoring to sim-

pli�ed formula size without.

but could be solved with them. The optimizations are criti-

cal for the classical encodings, cutting their size by about two

thirds. However, these optimizations are much less e�ective

on explanatory encodings. In fact, the optimizations appear

to be super
uous for the regular explanatory encoding: the

CNF simpli�er obtains all of the type optimization bene�ts

without considering the structure of the problem, using only

the resulting formula.

These contrasts may be attributable to the way in which

the simpli�er interacts with the various encodings. Classi-

cal encodings are much more constraining than explanatory

encodings, because they explicitly enforce all truth values at

time t+1 when an action occurs at time t. This rigidity may

make it hard for the simpli�er to reduce the encoding size,

thereby relying more heavily on the type optimizations to

make deductions about the encoding. The regular explana-

tory encoding, which uses con
ict exclusion, is the most 
ex-

ible of all of the encodings. Therefore, it seems that any

static optimizations that we make are easily teased out of

the encoding by the simpli�er.

5.5 Factoring

Figure 8 shows that factoring makes a big di�erence com-

pared with unfactored splitting. While factoring does not

reduce variable size at all in the base encoding, it does lead

to small drops in variable size after simpli�cation. Factoring's

big e�ects, however, are in clause and (especially) literal size.

This is important, because this reduction is precisely the rea-

son that we introduced the idea of factoring. Although in the

worst case, factoring has no e�ect, it is clear that factoring

is critical in practice.

5.6 Domain Speci�c Axioms

The \direct" encodings of

[

Kautz and Selman, 1996

]

pro-

vide hand-coded, domain-speci�c information which is im-

possible to specify in terms of STRIPS actions but is natural

when writing general logical axioms. For example, in their

blocks world problems Kautz et al. state that the relation

On is both non-commutative and irre
exive, only one block

may be on another at any time, every block is on exactly one

other object, blocks can't be both clear and have something

on them, and the Table is never on anything. To determine

how much (if at all) this additional information a�ected the

planning problem, we removed these domain-speci�c axioms

from the AT&T encodings and compared the size and speed

of the resulting SAT problems. As Figure 9 shows, eliminat-

ing the axioms decreased the number of clauses, but increased

the number of variables (presumably because unit-clause and



With domain-speci�c axioms Without domain speci�c axioms

Problem Vars Clauses Time (sec) � Vars Clauses Time (sec) �

bw-large-a 459 4675 0.97 0.66 534 3060 3.72 2.17

bw-large-b 1087 13772 27.18 16.91 1235 7457 71.93 48.60

bw-large-c 3016 50457 379.85 505.90 3526 22535 >7000.00

Figure 9: AT&T's hand-coded domain-speci�c axioms led to more clauses, fewer variables (after simpli�cation), and substantial speedup.

Each problem was run �ve times on an SGI Indy with Walksat settings: tries 20, noise 30 100, and cuto� set to the number of variables

squared. Solve-time standard deviations are reported as �.

pure-literal simpli�cation was less e�ective). Without the

domain-dependent axioms, the planning problems took sub-

stantially longer. These results suggest it would be useful to

investigate whether a compiler could deduce some of these

axioms automatically. We believe our type optimizations to

be a good start at achieving this goal.

6 Conclusions

This paper makes several contributions:

� We develop a simple framework that generates eight ma-

jor encodings, which account for all of the non-causal

AT&T encodings as well as several novel ones. In par-

ticular, the introduction of overloaded splitting and the

bitwise representation, combined with the regular and

simply-split encodings, creates a spectrum of choices

highlighting the tradeo� between variable and clause

sizes.

� We describe an automatic compiler that takes classical

STRIPS planning problems and generates SAT prob-

lems using all of the above encodings. Our compiler

includes many interesting features, including a type in-

ference and optimization mechanism.

� We use the compiler to perform an empirical analysis

of tradeo�s in the space of encodings. We show that

explanatory frames and con
ict exclusion are dominant,

and regular acton representation is surprisingly e�ective.

Many exciting problems remain. Clearly we need to bet-

ter investigate the solve-time characteristics of the encod-

ings. Automatically generating domain-speci�c axioms, such

as those in Section 5.6, is a promising direction. We also hope

to investigate additional type inference methods. There are

also many hybrid encodings which would be interesting to

explore. Allowing inter-operator parallelism in the simply-

split explanatory encoding could take advantage of both of

the best encodings. (As mentioned earlier, simple splitting

prevents the possibility of parallel instantiations of the same

operator, as their split variables will interfere.) Another hy-

brid option is the addition of \action" variables, similar to

those of overloaded splitting, to the simple splitting encod-

ing. These extra variables can greatly compact many parts of

a factored split encoding. A third hybrid would use bitwise

representations for the split 
uents of simple or overloaded

split actions, avoiding the disadvantages of the bitwise ac-

tion representation while reducing the number of variables.

One can also imagine compiling part of a domain theory with

one encoding and using a di�erent encoding for other parts.

Finally, it would be interesting to automate the AT&T state-

based encodings and to integrate their causal encodings into

our framework.

Full source code for the Medic planner is available at

ftp://ftp.cs.washington.edu/pub/ai/medic.tar.gz.

7 Acknowledgments

Jared Saia, Nick Kushmerick, and Marc Friedman con-

tributed to our implementation and testing framework.

David Smith made many insightful observations that led to

a major reformulation of our encoding space. Bart Selman,

David McAllester, and Henry Kautz engaged in helpful dis-

cussions and kindly provided their Satplan code. Jimi Craw-

ford provided Tableau code.

References

[

Blum and Furst, 1995

]

A. Blum and M. Furst. Fast planning

through planning graph analysis. In Proc. 14th Int. Joint Conf.

on AI, pages 1636{1642, 1995.

[

Cook and Mitchell, 1997

]

S. Cook and D. Mitchell. Finding hard

instances of the satis�ability problem: A survey. Proceedings of

the DIMACS Workshop on Satis�ability Problems, To Appear,

1997.

[

Crawford and Auton, 1993

]

J. Crawford and L. Auton. Experi-

mental results on the cross-over point in satis�ability problems.

In Proc. 11th Nat. Conf. on AI, pages 21{27, 1993.

[

Green, 1969

]

C. Green. Application of theorem proving to prob-

lem solving. In Proc. 1st Int. Joint Conf. on AI, pages 219{239,

1969.

[

Haas, 1987

]

A. Haas. The case for domain-speci�c frame axioms.

In The Frame Problem in Arti�cial Intellegence, Proceedings of

the 1987 Workshop. Morgan Kaufmann, 1987.

[

Kautz and Selman, 1992

]

H. Kautz and B. Selman. Planning as

satis�ability. In Proc. 10th Eur. Conf. on AI, pages 359{363,

Vienna, Austria, 1992. Wiley.

[

Kautz and Selman, 1996

]

H. Kautz and B. Selman. Pushing the

envelope: Planning, propositional logic, and stochastic search.

In Proc. 13th Nat. Conf. on AI, pages 1194{1201, 1996.

[

Kautz et al., 1996

]

H. Kautz, D. McAllester, and B. Selman. En-

coding plans in propositional logic. In Proc. 5th Int. Conf. on

Principles of Knowledge Representation and Reasoning, 1996.

[

McAllester et al., 1997

]

David McAllester, Bart Selman, and

Henry Kautz. Evidence for invariants in local search. In Proc.

14th Nat. Conf. on AI, Providence, Rhode Island, July 1997.

[

McCarthy and Hayes, 1969

]

J. McCarthy and P. J. Hayes. Some

philosophical problems from the standpoint of arti�cial intel-

ligence. In Machine Intelligence 4, pages 463{502. Edinburgh

University Press, 1969.

[

Penberthy and Weld, 1992

]

J.S. Penberthy and

D. Weld. UCPOP: A sound, complete, partial order planner

for ADL. In Proc. 3rd Int. Conf. on Principles of Knowledge

Representation and Reasoning, pages 103{114, October 1992.

See also http://www.cs.washington.edu/research/projects/

ai/www/ucpop.html.

[

Selman et al., 1996

]

B. Selman, H. Kautz, and B. Cohen. Lo-

cal search strategies for satis�ability testing. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science,

26:521{532, 1996.

[

Selman et al., 1997

]

Bart Selman, Henry Kautz, and David

McAllester. Computational challenges in propositional reason-

ing and search. In Proc. 15th Int. Joint Conf. on AI, 1997.

[

Van Gelder and Tsuji, 1996

]

A. Van Gelder and Y. K. Tsuji. Sat-

is�ability testing with more reasoning and less guessing. In D. S.

Johnson and M. Trick, editors, Cliques, Coloring, and Satis�a-

bility: Second DIMACS Implementation Challenge., DIMACS

Series in Discrete Mathematics and Theoretical Computer Sci-

ence. American Mathematical Society, 1996.


