
Inference of Resource Management Specifications

Narges Shadab1, Pritam Gharat2, Shrey Tiwari2, Michael D. Ernst3,
Martin Kellogg4, Shuvendu K. Lahiri2, Akash Lal2, Manu Sridharan1

1 University of California, Riverside
2 Microsoft Research

3 University of Washington
4 New Jersey Institute of Technology



Outline

Past work overview: Resource Leak Checker for Java and C# using
resource management specifications

Inference of Resource Management Specifications

Evaluation

Conclusions

Manu Sridharan Inference for RLC 2 / 1



Part I

Overview: Resource Leak Checker



What is a Resource Leak?

In Java and C#, resource management is a shared responsibility of a
developer and the runtime environment

A resource leak occurs when a program fails to free some finite allocated
resource after it is no longer needed

Examples of unmanaged resources: file handles, network sockets, ...

May lead to

Resource starvation

System slowdown

Whole system crash

Manu Sridharan Inference for RLC 4 / 1



Overview of Past Work: Resource Leak Checker

We have developed a Resource Leak Checker (RLC) as part of
Checker Framework for Java and for C# code using CodeQL

RLC uses a light-weight, modular, and sound approach to prevent
resource leaks based on checking resource management specifications

No whole-program alias analysis is required, hence light-weight

Specifications are written on classes and method boundaries

Help RLC to track which objects control a resource and the flow of
resources throughout the program

Improve the quality of warnings generated by RLC

Manu Sridharan Inference for RLC 5 / 1

https://checkerframework.org/
https://github.com/microsoft/global-resource-leaks-codeql
https://codeql.github.com/docs/


Current Work: Inference of Resource

Management Specifications

Inference of resource management specifications

Reduce the overhead of developers of manually adding them

RLC is now fully automated

Comparison between hand-written specifications and inferred
specifications

Evaluating RLC with inferred specifications

Manu Sridharan Inference for RLC 6 / 1



Example for RLC

1

2 public static SqlConnection getSqlConnection() {

3 var sqlconnection = new SqlConnection(...);

4 ...

5 return sqlconnection;

6 }

7

8 public static void performAction() {

9 SqlConnection connection = getSqlConnection();

10 ...

11 closeConnection(connection);

12 }

13

14 public static void closeConnection(SqlConnection con) {

15 con.Close();

16 }

No resource leak in the code snippet

Manu Sridharan Inference for RLC 7 / 1



Example for RLC

1 [Owning]

2 public static SqlConnection getSqlConnection() {

3 var sqlconnection = new SqlConnection(...);

4 ...

5 return sqlconnection;

6 }

7

8 public static void performAction() {

9 SqlConnection connection = getSqlConnection();

10 ...

11 closeConnection(connection);

12 }

13

14 public static void closeConnection([Owning] SqlConnection con) {

15 con.Close();

16 }

Owning denotes which of the two aliases referring to the same object
is responsible for releasing the resource

Manu Sridharan Inference for RLC 7 / 1



Example for RLC

1 [Owning]

2 public static SqlConnection getSqlConnection() {

3 var sqlconnection = new SqlConnection(...);

4 ...

5 return sqlconnection; // Obligation transferred

6 }

7

8 public static void performAction() {

9 SqlConnection connection = getSqlConnection();

10 ...

11 closeConnection(connection);

12 }

13

14 public static void closeConnection([Owning] SqlConnection con) {

15 con.Close();

16 }

Manu Sridharan Inference for RLC 7 / 1



Example for RLC

1 [Owning]

2 public static SqlConnection getSqlConnection() {

3 var sqlconnection = new SqlConnection(...);

4 ...

5 return sqlconnection;

6 }

7

8 public static void performAction() {

9 SqlConnection connection = getSqlConnection();

10 ...

11 closeConnection(connection); // Obligation satisfied

12 }

13

14 public static void closeConnection([Owning] SqlConnection con) {

15 con.Close();

16 }

Manu Sridharan Inference for RLC 7 / 1



Example for RLC

1 [Owning]

2 public static SqlConnection getSqlConnection() {

3 var sqlconnection = new SqlConnection(...);

4 ...

5 return sqlconnection;

6 }

7

8 public static void performAction() {

9 SqlConnection connection = getSqlConnection();

10 ...

11 closeConnection(connection);

12 }

13

14 public static void closeConnection([Owning] SqlConnection con) {

15 con.Close(); // Obligation satisfied

16 }

Manu Sridharan Inference for RLC 7 / 1



Example for RLC

1 [Owning]

2 public static SqlConnection getSqlConnection() {

3 var sqlconnection = new SqlConnection(...);

4 ...

5 return sqlconnection;

6 }

7

8 public static void performAction() {

9 SqlConnection connection = getSqlConnection();

10 ...

11 closeConnection(connection);

12 }

13

14 public static void closeConnection([Owning] SqlConnection con) {

15 con.Close();

16 }

A warning is reported at the appropriate location (line 9) where the
developer should address the issue, rather than at line 3,

where the actual resource allocation occurs

Manu Sridharan Inference for RLC 7 / 1



Other Specifications

RLC also uses the following resource management specifications (see paper for
more details)

MustCall

Calls

MustCallAlias

CreateMustCallFor

Manu Sridharan Inference for RLC 8 / 1

https://dl.acm.org/doi/10.1145/3622858


Specifications Overhead

RLC expects developers to write specifications

Annotating legacy code is a huge bottleneck

Manually incorporating specifications is a multi-step and time-consuming
process

Took several weeks to annotate a moderately-sized program
Unrealistic to expect developers to write these specifications
themselves

Manu Sridharan Inference for RLC 9 / 1



Specifications Overhead

RLC expects developers to write specifications

Annotating legacy code is a huge bottleneck

Manually incorporating specifications is a multi-step and time-consuming
process

Took several weeks to annotate a moderately-sized program
Unrealistic to expect developers to write these specifications
themselves

Motivated the need for an automatic inference of specifications

Manu Sridharan Inference for RLC 9 / 1



Part II

Inference of Specifications



Inference of Resource Management Specifications

Resource management specifications must capture multiple inter-related
properties, including resource ownership, obligations to release, as well as
aliasing relationships

Our inference algorithm employs an optimistic approach, identifying
resource management specifications that closely align with the
developer’s likely intentions

We formalize the inference algorithm as a set of inference rules, such
that specifications are inferred by applying the rules to a fixed point

The inference rules are generic, such that they are implemented in

Checker Framework for Java, and

CodeQL for C# code

See paper for more details

Manu Sridharan Inference for RLC 11 / 1

https://dl.acm.org/doi/10.1145/3622858


Example: Inference of Specifications I

1 void cleanup(Socket socket) throws SocketException {

2 // Disables send and receive on a Socket

3 socket.Shutdown(...); // May throw SocketException

4 socket.Close(); // Closes socket and releases resources

5 }

cleanup does not necessarily close socket

Reflects only code’s behavior

No Owning specification for socket
May lead to confusing false positive alarms at call sites of cleanup

Optimistic approach mirrors the developer’s intent

Infers Owning for socket
An error is issued by RLC within cleanup, exactly where a
developer needs to fix the bug

Manu Sridharan Inference for RLC 12 / 1



Example: Inference of Specifications I

1 void cleanup(Socket socket) throws SocketException {

2 // Disables send and receive on a Socket

3 socket.Shutdown(...); // May throw SocketException

4 socket.Close(); // Closes socket and releases resources

5 }

cleanup does not necessarily close socket

Reflects only code’s behavior

No Owning specification for socket
May lead to confusing false positive alarms at call sites of cleanup

Optimistic approach mirrors the developer’s intent

Infers Owning for socket
An error is issued by RLC within cleanup, exactly where a
developer needs to fix the bug

Manu Sridharan Inference for RLC 12 / 1



Example: Inference of Specifications I

1 void cleanup([Owning] Socket socket) throws SocketException {

2 // Disables send and receive on a Socket

3 socket.Shutdown(...); // May throw SocketException

4 socket.Close(); // Closes socket and releases resources

5 }

cleanup does not necessarily close socket

Reflects only code’s behavior

No Owning specification for socket
May lead to confusing false positive alarms at call sites of cleanup

Optimistic approach mirrors the developer’s intent

Infers Owning for socket
An error is issued by RLC within cleanup, exactly where a
developer needs to fix the bug

Manu Sridharan Inference for RLC 12 / 1



Example: Inference of Specifications II

1 void cleanup([Owning] Socket socket) throws Exception {

2 // Disables send and receive on a Socket

3 socket.Shutdown(...); // May throw SocketException

4 socket.Close(); // Closes socket and releases resources

5 }

Manu Sridharan Inference for RLC 13 / 1



Example: Inference of Specifications II

1 void cleanup([Owning] Socket socket) throws Exception {

2 // Disables send and receive on a Socket

3 socket.Shutdown(...); // May throw SocketException

4 socket.Close(); // Closes socket and releases resources

5 }

ParamAnnot(Owning, m, p) ⇐

ParamType(m, T ),
ClassAnnot(MustCall(mpd), T ),
Invokes(s, m, mpd , p, _)

Manu Sridharan Inference for RLC 13 / 1



Example: Inference of Specifications II

1 void cleanup([Owning] Socket socket) throws Exception {

2 // Disables send and receive on a Socket

3 socket.Shutdown(...); // May throw SocketException

4 socket.Close(); // Closes socket and releases resources

5 }

ParamAnnot(Owning, m, p) ⇐

ParamType(m, T ),
ClassAnnot(MustCall(mpd), T ),
Invokes(s, m, mpd , p, _)

Type T of parameter socket of m is Socket (Resource Type)

Manu Sridharan Inference for RLC 13 / 1



Example: Inference of Specifications II

1 void cleanup([Owning] Socket socket) throws Exception {

2 // Disables send and receive on a Socket

3 socket.Shutdown(...); // May throw SocketException

4 socket.Close(); // Closes socket and releases resources

5 }

ParamAnnot(Owning, m, p) ⇐

ParamType(m, T ),
ClassAnnot(MustCall(mpd), T ),
Invokes(s, m, mpd , p, _)

We model the library type Socket with
specification [MustCall("Close")]

Manu Sridharan Inference for RLC 13 / 1



Example: Inference of Specifications II

1 void cleanup([Owning] Socket socket) throws Exception {

2 // Disables send and receive on a Socket

3 socket.Shutdown(...); // May throw SocketException

4 socket.Close(); // Closes socket and releases resources

5 }

ParamAnnot(Owning, m, p) ⇐

ParamType(m, T ),
ClassAnnot(MustCall(mpd), T ),
Invokes(s, m, mpd , p, _)

There exists an invocation of method Close (mpd ) with
receiver object socket (p) within cleanup (m)

Manu Sridharan Inference for RLC 13 / 1



Some More Inference Rules∗

∗See paper for more details

Manu Sridharan Inference for RLC 14 / 1

https://dl.acm.org/doi/10.1145/3622858


Part III

Empirical Evaluation



Recovering Hand-written Specifications

Hand-written
Specifications

Inferred
Specifications

Percentage
(%)

Service 1 21 21 100
Service 2 28 28 100
Service 3 24 24 100
Lucene.Net 63 60 95
EF Core 25 17 68

Zookeeper 93 66 71
Hadoop-hdfs 91 69 76
Hbase 35 26 74

Our algorithm achieved an 82% recovery rate in open-source C# projects,
74% in open-source Java projects, and successfully recovered 100% of the

specifications in proprietary C# microservices

Manu Sridharan Inference for RLC 16 / 1



Impact on RLC Warnings I

NS: No Specifications IS: Inferred Specifications

#warnings
(NS)

#warnings
(IS)

Service 1 251 240
Service 2 45 34
Service 3 20 12
Lucene.Net 670 592
EF Core 88 147

Zookeeper 138 170
Hadoop-hdfs 26 95
Hbase 828 844

Inference discovers new obligations that RLC
does not check in the absence of specifications

Manu Sridharan Inference for RLC 17 / 1



Impact on RLC Warnings I

NS: No Specifications IS: Inferred Specifications

#warnings
(NS)

#warnings
(IS)

Service 1 251 240
Service 2 45 34
Service 3 20 12
Lucene.Net 670 592
EF Core 88 147

Zookeeper 138 170
Hadoop-hdfs 26 95
Hbase 828 844

Inference discovers new obligations that RLC
does not check in the absence of specifications

Manu Sridharan Inference for RLC 17 / 1



Impact on RLC Warnings I

NS: No Specifications IS: Inferred Specifications

#warnings
(NS)

#warnings
(IS)

Service 1 251 240
Service 2 45 34
Service 3 20 12
Lucene.Net 670 592
EF Core 88 147

Zookeeper 138 170
Hadoop-hdfs 26 95
Hbase 828 844

Inference discovers new obligations that RLC
does not check in the absence of specifications

Without the Owning specification on the return
type of getSqlConnection, all the calls to

this method would likely be overlooked

Manu Sridharan Inference for RLC 17 / 1



Impact on RLC Warnings II

True
Positives

Incorrect
Specifications

Missing
Specifications

C# 28% 0.4% 25%
Java 19% 5% 27%

The true positive rate using inferred specifications is very close
to the rate achieved with hand-written specifications

Manu Sridharan Inference for RLC 18 / 1



Impact on RLC Warnings II

True
Positives

Incorrect
Specifications

Missing
Specifications

C# 28% 0.4% 25%
Java 19% 5% 27%

RLC generates no more than 0.4% (C#) and 5% (Java) warnings due to
incorrect inferred specifications, indicating that the specifications

are generally in line with the developers’ intentions

Manu Sridharan Inference for RLC 18 / 1



Impact on RLC Warnings II

True
Positives

Incorrect
Specifications

Missing
Specifications

C# 28% 0.4% 25%
Java 19% 5% 27%

RLC generates no more than 25% (C#) and 27% (Java) warnings
due to missing specifications

Manu Sridharan Inference for RLC 18 / 1



Part IV

Conclusions



The Role of Specifications for RLC

Specifications

Quality of warnings

Full

No
Low High

Manu Sridharan Inference for RLC 20 / 1



The Role of Specifications for RLC

Specifications

Quality of warnings

Full

No
Low High

RLC with complete specifications might not produce the most
accurate results due to inherent imprecision, such as path-insensitivity

Manu Sridharan Inference for RLC 20 / 1



The Role of Specifications for RLC

Specifications

Quality of warnings

Full

No
Low High

Manual Previous
work

Manually written specifications are error prone and effort intensive
We added specifications only for library types

Manu Sridharan Inference for RLC 20 / 1



The Role of Specifications for RLC

Specifications

Quality of warnings

Full

No
Low High

Manual Previous
work

Inferred Our work

Inference of specifications lessens manual work, enabling specifications
for all resource types and facilitating the detection of new bugs

(6 for Java and 10 for C#)

Manu Sridharan Inference for RLC 20 / 1



Contributions

Proposed an Inference Algorithm as a set of inference rules for
inferring resource management specifications

Inferred specifications capture developers’ intent and generate high
quality warnings

With less manual labor, the average true positive rate for RLC
using inferred specifications is almost on par with the rate achieved
using manual specifications

Manu Sridharan Inference for RLC 21 / 1


