
Automatically Repairing Broken Workflows

for Evolving GUI Applications

Sai Zhang

University of Washington

Joint work with: Hao Lü, Michael D. Ernst

End-user’s workflow

A workflow = A sequence of UI actions for a specific task

2

A 3-action workflow of creating a crossword puzzle:

1

2
3

1. Click menu item 3. Click OK

2.Fill in textbox

12

Example:

GUI evolution can break workflows

3

Version 0.3

Version 0.35

?
The workflow is broken!

(the first action in creating a puzzle)

the first action in creating a puzzle is broken.

Goal: repair a broken workflow

• Suggest a “replacement action” for a broken action

– No change to the code

– Help users perform the same task, but adapt to the new GUI

Version 0.35

?

Click “New Crossword”

(Suggested by our technique: FlowFixer, since both

invoke method “showCrosswordBuilder”)

Replacement action:

GUIs keep evolving all the time

5

GUIs keep evolving all the time

6

GUIs keep evolving all the time

7

GUIs keep evolving all the time

8

GUIs keep evolving all the time

9

GUIs keep evolving all the time

10

GUI evolution can break workflows!

Broken workflows in practice

• Affect user experience (focus of this talk)

• Impact automated testing

- mimic workflows

- 30 – 70% of them are broken in GUI evolution

[Memon’03, Grechanik’09, Daniel’11]

Tedious and challenging to resolve them manually

100+ posts
Example: the ribbon UI in Office 2007

• A UI action’s effect cannot be observed statically

• Repairing broken workflows needs to:

– distinguish actions that look similar but have different results

– identify different UI actions that may perform the same task

The “action semantics” challenge

12

Requires knowing the “what the action does”

Outline

• Problem

• Technique

• Evaluation

• Related Work

• Contributions

13

Key insights of FlowFixer

• The underlying code implementing the same functionality

stays relatively the same between versions

• “action semantics” ≈ the invoked methods

• UI Actions invoking similar methods are likely to perform

similar tasks

14

An overview of the FlowFixer technique

15

GUI change

actionPerformed()

showCrosswordBuilder()

...

Old version New version

User demonstration Random testing

1. Click “New Crossword”

2. Click “Save Crossword”

3. Click “Solve New Crossword”

actionPerformed()

showCrosswordBuilder()

...

actionPerformed()

saveCrossword()

...

actionPerformed()

crosswordSolverPanel<init>()

...

Replacement actions:

1. Click “New Crossword”

2. …

Method matching

1/3

1/3

1/3

Weight

1

The FlowFixer technique

16

Old version

--- -

- ---

New version

instrument

Instrumented version

an execution trace

User demonstrates

the workflow up to

the broken action

Record all methods invoked

by the broken action
Abroken workflow

(the first action is broken)

The FlowFixer technique

17

Old version

--- -

- ---

New version

Instrumented version

instrument

an execution trace

Static Method

Matching

Match each method

invoked by the broken

action in the new version

Abroken workflow

The FlowFixer technique

18

Old version

--- -

- ---

New version

Instrumented version

instrument

an execution trace

instrument

Static Method

Matching

Random testing

Instrumented version

Randomly execute each applicable UI action, and

recursively explore UI actions on new screens

Matched

Methods

(in the new version)

A broken workflow

Action ���� method mapping

@

���� f1(), f2(), f3()

���� f1(), f4()

Action ���� method mapping

@

���� f1(), f2(), f3()

���� f1(), f4()

The FlowFixer technique

19

Old version

--- -

- ---

New version

Instrumented version

instrument

an execution trace

Instrumented version

instrument

Static Method

Matching

Random testing

Replacement

Action

Recommendation

For each invoked method, find all actions invoking it.

The weight of each action is inversely proportional to the

number of all possible invoking actions.

Matched

Methods

Ranked list of

replacement actions

1.

2.

3. 6

Abroken workflow

Outline

• Problem

• Technique

• Evaluation

• Related Work

• Contributions

20

Research questions

• How effective is FlowFixer in repairing broken workflows?

– Accuracy

– Efficiency

• Comparison with a GUI-comparison-based technique

[Grechanik’09]

21

Subject programs and broken workflows

22

Subject Versions LOC ∆LOC #Broken workflows

Crossword 0.3 � 0.35 3,087 1,386 1

JEdit 2.5 � 2.6 32,607 5,017 1

Gantt Project 2.0.1 � 2.5.4 55,009 3,777 5

JabRef 2.0 � 2.8.1 83,447 38,992 3

Freemind 0.71 � 0.8 70,430 10,757 6

16 workflows with

distinct root causes.

Collected from user

manual.

Non-trivial

code changes

Popular software, being

actively developed for

3—12 years

• Selection of broken workflows

– 356 documented workflows, 70 are broken, 16 have distinct root causes

– Exclude trivial UI changes, e.g.,

• swapping two neighboring menu items

• move a button to a different location on the same panel.

FlowFixer’s accuracy

• Measured by the absolute rank of the correct actions

23

1.

2.

3. 6

16 broken workflows

1 workflow

FlowFixer outputs

wrong result

13 workflows

Correct action

ranks first

2 workflows

Correct action ranks second

FlowFixer can repair 15 broken workflows

FlowFixer’s efficiency

• Random testing

– 27 mins per application

(A one-time cost, shared by different workflows)

• User demonstration

– < 1 min per workflow

(assuming the old version is installed)

• Action recommendation

– 4 mins per workflow

24

Gantt Project version 2.0

An example repair

25

Save current state

Gantt Project version 2.5

?

Fill the textbox to save

the current state

Gantt Project version 2.0

An example repair

26

Save current state

Gantt Project version 2.5

?

Fill the textbox to save

the current state

UndoableEditImpl.createTemporaryFile

Comparison with an existing technique

• REST: a GUI-comparison-based technique [Grechanik’09]

– A black-box approach

– Compare GUIs of two versions to identify modified UI elements

– Identifies affected actions, but gives no repair suggestion

27

Old version New version

Comparison with an existing technique

• REST: a GUI-comparison-based technique [Grechanik’09]

– A black-box approach

– Compare GUIs of two versions to identify modified UI elements

– Identifies affected actions, but gives no repair suggestion

• Extend REST for workflow repair

– Recommend actions on the matched UI element of the new version

28

Old version New version

REST vs. FlowFixer

29

16 broken workflows 16 broken workflows

REST FlowFixer

15 workflows fixed

6 workflows

fixed

Fail to fix 1 workflowFail to fix 10 workflows

Why REST did not work well?

• REST only repairs 6 workflows where a UI element is

moved to a different location

• FlowFixer repairs 15 broken workflows

– Execute UI actions and observe their consequences

30

REST’s black-box approach is not aware of the “action semantics”

- Ineffective for non-trivial UI changes

UI label change

UI element change

UI action change
This image cannot currently be displayed.

This image cannot currently be displayed.

This image cannot currently be displayed.

This image cannot currently be displayed. This image cannot currently be displayed.

Experimental conclusions

• FlowFixer is accurate and efficient in repairing broken

workflows

• FlowFixer achieves better results than a

GUI-comparison-based technique

31

Outline

• Problem

• Technique

• Evaluation

• Related Work

• Contributions

32

Related work

• Test repair

ReAssert [Daniel’09], REST [Grechanik’09], Guitar [Memon’04],

Genetic approach [Huang’10], WATER [Choudhary’11] @

Make obsoleted tests compilable without preserving its original semantics.

Not applicable to repairing broken workflows.

• Program repair

GenProg [Weimer’09], ClearView [Perkins’09], PAR [Kim’13]@

Search patches for bugs.

Not applicable to broken workflows caused by UI changes.

• Change analysis

Chianti [Ren’05], SemDiff [Dagenais’08], RefactoringCrawler [Dig’05],

Hybrid approach [Wang’12] @

Identify code-level changes and compute the effects.

Not applicable for repairing UI-level workflows.
33

Outline

• Problem

• Technique

• Evaluation

• Related Work

• Contributions

34

Future directions

• User study

• Extend FlowFixer to repair UI test scripts

– Lift syntax-correcting repair to semantics-preserving repair

• Integrate FlowFixer into software evolution

– Proactively finding broken workflows

– Summarize UI-level changes

– Automatically update user manual

– Help users learn new GUI features

35

Contributions

• A technique to repair broken workflows

analyze method invocations and evolution to reason about fix actions

– fully automated

– handles non-trivial code changes

• Experiments that demonstrate its usefulness

– Accurate and efficient

• Fixed 15 out of 16 broken workflows

– Outperforms alternative techniques

• The FlowFixer tool implementation:

http://workflow-repairer.googlecode.com

36

A broken workflow

FlowFixer
Fix suggestions

1.

2.

3. 6

[Backup Slides]

37

What if multiple actions are broken?

• Use FlowFixer in an interactive way

38

Fixed!

FlowFixer
Fix action

1.

2.

3. 6

FlowFixer
Fix action

1.

2.

3. 6

Might be a different broken action!

@

FlowFixer’s recommendation limitation

• Recommends one replacement action for a broken action

• Does not support recommending:

– A sequence of actions for one action

– One action for a sequence of actions

– A sequence of actions for a sequence of actions

39

FlowFixer
Fix action

1.

2.

3. 6

FlowFixer
Fix action

1.

2.

3. 6

@

FlowFixer
Fix action

1.

2.

3. 6

@
@

FlowFixer
Fix action

1.

2.

3. 6

@ @

Why does this simple random testing work?

• Goal:

– Identify “signature” method for each UI action

– NOT achieve good coverage

• The “signature” method is often easy to reach:

• Symbolic, model-based techniques might achieve

better results, but are more expensive to use
40

actionPerformed()

showCrosswordBuilder()

...

Event handler, shared by many actions

A “signature” method, only invoked by

“Clicking New Crossword”

Other methods. Requires certain states

