
Rely-Guarantee References
for Refinement Types

over Aliased Mutable Data
Colin S. Gordon, Michael D. Ernst, and Dan Grossman

University of Washington

PLDI 2013

Static Verification Meets Aliasing

x:ref ℕ y:ref ℕ

x := !x+1;
m(y);
static_assert(!x > 0);  Pass or fail?

2 3

Static Program Verification:
Mutation + Aliases

• Common approaches:

– Restrict aliasing

• Separation Logic, Linear & Uniqueness Types

– Restrict mutation

• Read-only access

• Reference Immutability, Region & Effect Systems

Our Approach: Describe Mutation

• Arbitrary binary relations

• Explicitly characterize:

– How data may change over time

• Side effects, type state, protocols, invariants, monotonicity…

• Lots of prior work, all working around aliasing

– Safe assumptions in the presence of mutation through
aliases

• Eye towards backwards compatibility:

– Subsume standard references, reference immutability

Rely-Guarantee References

• New approach to static verification of
imperative programs

• Formal core type system + proofs

– Uses dependent types

• Implementation as Coq DSL

• Characterized proof burden for 4 examples

– Roughly on par w/ pure functional equivalents

Outline

• Concurrent Reasoning for Aliases

• Typechecking Rely-Guarantee References

• Technical Challenge: Nested References

• Intuition for Soundness

• Conclusions

A Duality: Threads & Aliases

• Mutation by aliases ≈ thread interference

• Actions through aliases can be seen as
concurrent

• Rely-Guarantee reasoning is good for threads

– Summarizes possible interference

• We can adapt concurrent analyses to treat
aliasing

– A few differences to discuss later

Thread & Alias Interference

Thread Interference

let x = ref 0 in

atomic_inc(x) atomic_inc(x)

assert(!x>0) assert(!x>0)

Alias Interference

let x = ref 0 in

inc x;

let y = x in

inc x;

assert(!y > 0);

0 0

Rely-Guarantee for Threads

• Characterize thread interference:

1. Rely summarizes expected interference

2. Guarantee bounds thread actions

3. Stable assertions are preserved by interference

4. Compatible threads: each rely assumes at least
the other’s guarantee

Rely-Guarantee for References

• Characterize alias interference:

1. Rely summarizes alias interference

2. Guarantee bounds actions through this alias

3. Stable predicates preserved by interference

4. Compatible aliases: if x == y, then
x.G ⊆ y.R && y.G ⊆ x.R

• Subsumes ML references! (OCaml, SML, etc.)

Rely-Guarantee Reference Type

ref{τ|P}[R,G]

standard
reference

Rely (e.g. ==)
Guarantee (e.g.≤)

Predicate
(e.g. >0)

Alias Interference Revisited

x:ref{ℕ|>0}{==,≤} y:ref{ℕ|>0}{≤,==}

2 3

x:=!x+1;

 ≤(2,3) ⇒ ≤(2,3)

2 > 0 ∧ ≤(2,3)
 ⇒ 3 > 0

R G R G

1 Rely, 2 Guarantee, 3 Stable, 4 Compatible

❹

❸

❷ ❶

Splitting for Compatible References

• x:ref{nat|P}[≈,havoc] cannot be duplicated

– Duplicates must be compatible (#4)

– havoc ⊈ ≈

• Must track & restrict duplication:

– let y = x in … could create

• Two immutable refs (ref{nat|P}[≈, ≈])

• Two unrestricted refs (ref{nat|any}[havoc, havoc])

• Producer/consumer
(ref{nat|any}[≥,≤] and ref{nat|any}[≤,≥])

Outline

• Concurrent Reasoning for Aliases

• Typechecking Rely-Guarantee References

• Technical Challenge: Nested References

• Intuition for Soundness

• Conclusions

A Coq DSL
for Rely-Guarantee References

• Shallow DSL embedding in a proof assistant

• Satisfying proof obligations

– Separated from program text

– Semi-automatic

• Examples include

– Monotonic Counter

• Simple, but illustrative

• Specify how data changes over time, not inc operation

– Reference Immutability

Example: A Monotonic Counter

Definition increasing : hrel nat := (λ n n’ h h’. n <= n').

Definition counter := ref{nat|pos}[increasing,increasing].

Definition read (c:counter) : nat := !c.

Definition inc (p:counter) : unit :=

 [p]:= !p + 1.

Definition mkCounter (u:unit) : counter := Alloc 1.

Example test_counter (u:unit) : unit :=

 x <- mkCounter tt;

 inc x.

Proofs automatically discharged

Invalid Code:
Decrement a Monotonic Counter

Definition counter :=

 ref{nat|pos}[increasing,increasing].

Definition dec (p:counter) : unit :=

 [p]:= !p - 1.

Reference Immutability
via Rely-Guarantee References

• writable T ≝ ref{T|any}[havoc,havoc]

• readable T ≝ ref{T|any}[havoc,≈]

• immutable T ≝ ref{T|any}[≈, ≈]

• Suggests a spectrum:

ML refs ⊆ RI ⊆ ... ⊆ RGref

Outline

• Concurrent Reasoning for Aliases

• Typechecking Rely-Guarantee References

• Technical Challenge: Nested References

• Intuition for Soundness

• Conclusions

References to References

• Folding
– If x.f is a ref, and x’s type disallows mutation to

anything, type of !x.f should, too

• Containment
– ref{T|P}[R,G]: if T contains refs, R permits their

interference as well

• Precision
– P,R,G only depend on heap reachable from the T they

apply to

Non-issues in concurrent program logics:

no “threads to threads”

Outline

• Concurrent Reasoning for Aliases

• Typechecking Rely-Guarantee References

• Technical Challenge: Nested References

• Intuition for Soundness

• Conclusions

How to Preserve Refinements

• Well-formed ref{τ|P}[R,G]
(e.g. ref{int|>0}[≤,≤])
– P is stable with respect to R (#3)

– Enforce containment, precision

• Aliases as x:ref{τ|P}[R,G] and y:ref{τ|P’}[R’,G’]
– Relies summarize guarantees (#4):

G’ ⊆ R, G ⊆ R’

– Ensured by splitting semantics and folding

• Actions in x.G are included in alias y’s y.R,
and thus by stability preserves y.P

Outline

• Concurrent Reasoning for Aliases

• Typechecking Rely-Guarantee References

• Technical Challenge: Nested References

• Intuition for Soundness

• Conclusions

Future Work

• We’ve worked out a core system

• Route to a full system:

– Non-atomic updates

– Internalizing proof terms (in progress)

– Better datatype definitions

– Borrowing

– Concurrency (in progress)

– More examples / experience

Related Work

• Rely-guarantee program logics
– Mostly concurrent
– Explicit Stabilization (Wickerson’10) used for malloc
– We apply RG at a much finer granularity

• Reference Immutability, Ownership
– Notion of per-reference read-only
– Tschantz’05, Zibin’07, Dietl’07, Zibin’10, Gordon’12
– We generalize read-only to arbitrary relations

• Dependent types for imperative programs
– Types depend only on immutable data (DML, etc.)
– Or bake in a low-level program logic (Ynot / Hoare Type

Theory)
– Our types directly treat interference

Conclusion

• Rely-Guarantee References
– Directly address alias interference

– Key challenge: nested references

– Apply concurrent verification insights to aliasing
• We applied rely-guarantee

• Other correspondences exist

• Promising early results
– Modest proof burden

– Backwards compatible with more traditional systems

https://github.com/csgordon/rgref/

https://github.com/csgordon/rgref/

