
Javari: Adding Reference Immutability to Java

Matthew S. Tschantz Michael D. Ernst
MIT CSAIL

Cambridge, MA, USA
tschantz@mit.edu, mernst@csail.mit.edu

Abstract
This paper describes a type system that is capable of ex-
pressing and enforcing immutability constraints. The spe-
cific constraint expressed is that the abstract state of the
object to which an immutable reference refers cannot be
modified using that reference. The abstract state is (part
of) the transitively reachable state: that is, the state of the
object and all state reachable from it by following references.
The type system permits explicitly excluding fields from the
abstract state of an object. For a statically type-safe lan-
guage, the type system guarantees reference immutability.
If the language is extended with immutability downcasts,
then run-time checks enforce the reference immutability con-
straints.

This research builds upon previous research in language
support for reference immutability. Improvements that are
new in this paper include distinguishing the notions of as-
signability and mutability; integration with Java 5’s generic
types and with multi-dimensional arrays; a mutability poly-
morphism approach to avoiding code duplication; type-safe
support for reflection and serialization; and formal type rules
and type soundness proof for a core calculus. Furthermore,
it retains the valuable features of the previous dialect, in-
cluding usability by humans (as evidenced by experience
with 160,000 lines of Javari code) and interoperability with
Java and existing JVMs.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—data types; F.3.1 [Logics and Meaning of

Programs]: Specifying and Verifying and Reasoning about
Programs; D.1.5 [Programming Techniques]: Object-or-
iented Programming

General Terms
Languages, Theory, Experimentation

Keywords
assignable, immutability, Java, Javari, mutable, readonly,
type system, verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

1. Introduction
The Javari programming language extends Java to allow

programmers to specify and enforce reference immutabil-
ity constraints. An immutable, or read-only, reference can-
not be used to modify the object, including its transitive
state, to which it refers. A type system enforcing refer-
ence immutability has a number of benefits: it can increase
expressiveness; it can enhance program understanding and
reasoning by providing explicit, machine-checked documen-
tation; it can save time by preventing and detecting errors
that would otherwise be very difficult to track down; and
it can enable analyses and transformations that depend on
compiler-verified properties.

Javari’s type system differs from previous proposals (for
Java, C++, and other languages) in a number of ways.
First, it offers reference, not object, immutability; reference
immutability is more flexible, as it provides useful guaran-
tees even about code that manipulates mutable objects. For
example, many objects are modified during a construction
phase but not thereafter. As another example, an interface
can specify that a method that receives an immutable refer-
ence as a parameter does not modify the parameter through
that reference, or that a caller does not modify a return
value. Furthermore, a subsequent analysis can strengthen
reference immutability into stronger guarantees, such as ob-
ject immutability, where desired.

Second, Javari offers guarantees for the entire transitively
reachable state of an object — the state of the object and
all state reachable by following references through its (non-
static) fields. A programmer may use the type system to
support reasoning about either the representation state of
an object or its abstract state; to support the latter, parts
of a class can be marked as not part of its abstract state.

Third, Javari combines static and dynamic checking in
a safe and expressive way. Dynamic checking is necessary
only for programs that use immutability downcasts, but such
downcasts can be convenient for interoperation with legacy
code or to express facts that cannot be proved by the type
system. Javari also offers parameterization over immutabil-
ity.

Experience with over 160,000 lines of Javari code, includ-
ing the Javari compiler itself, indicates that Javari is effec-
tive in practice in helping programmers to document their
code, reason about it, and prevent and eliminate errors [5].
Despite this success, deficiencies of a previous proposal for
the Javari language limit its applicability in practice. This
paper provides a new design that retains the spirit of the
previous proposal while revising the language to accommo-
date generic classes and arrays, to cleanly prevent code du-
plication, and to support reflection and serialization. Fur-

211

thermore, the new design clarifies the distinction between
assignability and mutability, and we provide type rules and
a soundness proof in the context of a core calculus based
on Featherweight Generic Java, among other new contribu-
tions.

The rest of this document is organized as follows. Sec-
tion 2 presents examples that motivate the need for ref-
erence immutability in a programming language. Section
3 describes the Javari language. Section 4 formalizes the
type rules of Javari. Section 5 demonstrates how method
templates can reduce code duplication. Section 6 discusses
how the language handles reflection and serialization. Sec-
tion 7 briefly discusses language features adopted from an
earlier proposal, including full interoperability with Java,
type-based analyses that build on reference immutability,
handling of exceptions, and dynamic casts, an optional fea-
ture that substitutes run-time for compile-time checking at
specific places in the program. Section 8 discusses related
work, including a previous dialect of the Javari language.
Section 9 concludes with a summary of contributions. Ap-
pendix A gives examples of each of Javari’s assignability and
mutability types being used. Finally, appendix B explains
why Java’s annotation mechanism is not expressive enough
to encode Javari’s constraints.

2. Motivation
Reference immutability provides a variety of benefits in

different situations. Many other papers and books (see sec-
tion 8) have justified the need for immutability constraints.
The following simple examples suggest a few uses of im-
mutability constraints and give a flavor of the Javari lan-
guage.

Consider a voting system containing the following routine:

ElectionResults tabulate(Ballots votes) { ... }

It is necessary to safeguard the integrity of the ballots. This
requires a machine-checked guarantee that the routine does
not modify its input votes. Using Javari, the specification
of tabulate could declare that votes is read-only:

ElectionResults tabulate(readonly Ballots votes) {

... // cannot tamper with the votes
}

and the compiler ensures that implementers of tabulate do
not violate the contract.

Accessor methods often return data that already exists
as part of the representation of the module. For example,
consider the Class.getSigners method, which returns the en-
tities that have digitally signed a particular implementation.
In JDK 1.1.1, its implementation is approximately:

class Class {
private Object[] signers;
Object[] getSigners() {

return signers;
}

}

This is a security hole, because a malicious client can call
getSigners and then add elements to the signers array.

Javari permits the following solution:

class Class {
private Object[] signers;
readonly Object[] getSigners() {

return signers;
}

}

The readonly keyword ensures that the caller of Class.get-
Signers cannot modify the returned array.

An alternate solution to the getSigners problem, which
was actually implemented in later versions of the JDK, is to
return a copy of the array signers [6]. This works, but is
error-prone and expensive. For example, a file system may
allow a client read-only access to its contents:

class FileSystem {
private List<Inode> inodes;
List<Inode> getInodes() {

... // Unrealistic to copy
}

}

Javari allows the programmer to avoid the high cost of copy-
ing inodes by writing the return type of the method as:

readonly List<readonly Inode> getInodes()

This return type prevents the List or any of its contents
from being modified by the client. As with all parameter-
ized classes, the client specifies the type argument, including
whether it is read-only or not, independently of the param-
eterized typed.

A similar form of dangerous, mutation-permitting aliasing
can occur when a data structure stores information passed
to it (for instance, in a constructor) and a client retains a
reference. Use of the readonly keyword again ensures that
either the client’s copy is read-only and cannot be modified,
or else the data structure makes a copy, insulating it from
changes performed by the client. In other words, the anno-
tations force programmers to copy only when necessary.

As a final example, reference immutability can be used,
in conjunction with a subsequent analysis, to establish the
stronger guarantee of object immutability: a value is never
modified, via any reference, if all references are immutable.
For example, there is only one reference when an object is
first constructed. As another simple example, some data
structures must be treated as mutable when they are be-
ing initialized, but as immutable thereafter; an analysis can
build upon Javari in order to make both the code and the
reasoning simple.

Graph g1 = new Graph();
... construct cyclic graph g1 ...
// Suppose no aliases to g1 exist.
readonly Graph g = g1;
g1 = null;

3. Language design
In Java, each variable or expression has an assignability

property, controlled by the final keyword, that determines
whether it may be the lvalue (left-hand side) in an assign-
ment. In Javari, each reference (non-primitive variable or
expression) additionally has a mutability property that de-
termines whether its abstract state may be changed (for
example, by setting its fields). Both properties are speci-
fied in the source code, checked at compile time, and need

212

no run-time representation. The assignability and mutabil-
ity properties determine whether various operations, such
as reassignment and calling side-effecting methods, are per-
mitted on a reference. Javari extends Java by providing
additional constraints that may be placed on the assigna-
bility and mutability of a reference. Javari’s keywords are
those of Java, plus four more: assignable (the complement
of final), readonly and its complement mutable, and romaybe,
a syntactic convenience that reduces code duplication.

Sections 3.1 and 3.2 introduce the concepts of assignability
and mutability, respectively, and discuss their application to
local variables. Section 3.3 discusses the assignability and
mutability of fields. Section 3.4 applies Javari’s constructs
to generic classes, and section 3.5 to arrays. Finally, section
3.6 summarizes Javari’s syntax.

3.1 Assignability and final references
Assignability determines whether a reference may be reas-

signed. By default, a local variable is assignable: it may be
reassigned. Java’s final keyword makes a variable unassign-
able — it cannot be reassigned. Javari retains the final key-
word, but provides greater control over the assignability of
references via the assignable keyword (see section 3.3.2).

Assignability does not affect the type of the reference.
Assignability constraints add no new types to the Java type
hierarchy, and there is no type final T (for an existing type
T).

final Date d = new Date(); // unassignable
Date e = new Date(); // assignable

e = d; // OK
d = e; // error: d cannot be reassigned

Except in section 7.5, all errors noted in code examples are
compile-time errors.

3.2 Mutability and read-only references
Mutation is any modification to an object’s abstract state.

The abstract state is (part of) the transitively reachable
state, which is the state of the object and all state reachable
from it by following references. It is important to provide
transitive (deep) immutability guarantees in order to cap-
ture the full abstract state represented by a Java object.
Clients of a method or other construct are typically inter-
ested in properties of the abstraction, not the concrete rep-
resentation. (Javari provides ways to exclude selected fields
from the abstract state; see section 3.3.2.)

Javari’s readonly type modifier declares immutability con-
straints. A reference that is declared to be of readonly type
cannot be used to mutate the object to which it refers. For
example, suppose a variable rodate declared to have type
readonly Date. A read-only reference can be used only to
perform actions on the Date object that do not modify it:

readonly Date rodate; // readonly reference to a Date object
...
rodate.getMonth(); // OK
rodate.setYear(2005); // error

For every Java reference type T, readonly T is a valid Javari
type and a supertype of T; see figure 1. A mutable reference
may be used where a read-only reference is expected, be-
cause it has all the functionality of a read-only reference.
A read-only reference may not be used where a mutable
reference is expected, because it does not have all the func-
tionality of a mutable reference: it cannot be used to modify
the state of the object to which it refers.

readonly
Date

readonly
Object

Date

Object

Figure 1: A portion of the Javari type hierarchy, which in-
cludes read-only and mutable versions of each Java reference
type. Arrows connect subtypes to supertypes.

The type readonly T can be thought of as an interface
that contains a subset of the methods of T (namely, those
that do not mutate the object) and that is a supertype of
T. However, Java interfaces cannot be used in place of the
readonly T construct; see section 8.2 for details.

Given the type hierarchy shown in figure 1, Java’s existing
type-checking rules enforce that mutable methods cannot be
called on read-only references and that the value referenced
by a read-only variable cannot be copied to a non-read-only
variable.

readonly Date rodate = new Date(); // read-only Date
/*mutable*/ Date date = new Date(); // mutable Date

rodate = date; // OK
rodate = (readonly Date) date; // OK
date = rodate; // error
date = (Date) rodate; // error: Java cast cannot make

// a read-only reference mutable.

A read-only reference type can be used in a declaration
of any variable, field, parameter, or method return type.
Local variables, including method parameters and return
types, are by default mutable (non-read-only). Primitive
types, such as int, float, and boolean, are immutable —they
contain no modifiable state. Thus, it is not meaningful to
annotate them with readonly, and Javari’s syntax prohibits
it.

Note that final and readonly are orthogonal notions in
a variable declaration: final makes the variable not assign-
able, but the object it references may still be mutable, while
readonly makes the referenced object non-mutable (through
that reference), but the variable may remain assignable. Us-
ing both keywords gives a variable whose transitively reach-
able state cannot be changed, except through a mutable
aliasing reference.

3.2.1 Read-only methods (this parameters)
Just as readonly may be applied to any explicit formal

parameter of a method, it may be applied to the implicit
this parameter by writing readonly immediately following
the parameter list. For example, an appropriate declaration
for the StringBuffer.charAt method in Javari is:

public char charAt(int index) readonly { ... }

Such a method is called a read-only method. In the context
of the method, this is readonly. Thus, it is a type error for
a read-only method to change the state of the receiver, and
it is a type error for a non-read-only method to be called
through a read-only reference.

213

3.2.1.1 Overloading
Javari’s method overloading mechanism is identical to that

of Java, except that in Javari the mutability of the receiver
is part of the signature, along with the method name and
the parameter types.

Java performs two steps [19, §15.12] to determine which
implementation of a method will be executed by a particular
call site such as “z = foo(x, y);”. The first step, overload-
ing resolution, occurs at compile time, and the second step,
dynamic dispatch, occurs at run time.

At compile time, Java determines the set of all matching
signatures. A signature matches if its name is the same as
that used at the call site, and each of its formal parame-
ter types is a supertype of the declared types of the actual
arguments at the call site. Java selects the most specific
matching signature: the one whose formal parameters are
equal to or subtypes of the corresponding formals of every
other matching signature. If there are no matching signa-
tures, or there is no single most specific matching signature,
then Java issues a compile-time error.

At run time, Java uses dynamic dispatch to select an im-
plementation of the signature that was identified at compile
time. Dynamic dispatch selects the implementation whose
receiver type is least, but is still at least as great as the
run-time type of the receiver object.

Javari adopts the overloading resolution and dynamic dis-
patch mechanisms of Java without change.

void bar(readonly Date) { ... }
void bar(/*mutable*/ Date) { ... } // overloaded

In Javari, the signature of a method includes not only the
name of the method and the types of the parameters (as in
Java), but also the mutability of the this parameter. There-
fore, it is possible to have two methods declared in a single
class with the same name and parameters, if one is read-only
and the other is not. Such methods are resolved by over-
loading, not by overriding. Similarly, a read-only method
declared in a subclass overloads (not overrides) a non-read-
only method of same name and parameters declared in a
superclass, and vice versa.

class Foo {
void bar() readonly { System.out.println(0); }

// overloads, not overrides, bar() readonly:
void bar() /*mutable*/ { System.out.println(1); }
}

/*mutable*/ Foo f = new Foo();
readonly Foo rf = f;

rf.bar(); // Prints 0
f.bar(); // Prints 1

Use of dynamic dispatch instead of overloading does not
work. First, Javari does not require an implementation to
have a run-time representation of the mutability of a ref-
erence — all checking can occur at compile time, unless a
mutability downcast is used (see section 7.5). Second, for
technical reasons, use of dynamic dispatch introduces either
holes in the type system or unacceptably limits what actions
a method can perform.

Overloading is also required to make accessors act like
this-mutable fields, returning a read-only reference when in-
voked on a read-only receiver and a mutable reference when
invoked on a mutable receiver. For instance, consider the
getValue method of section 5.

Indiscriminate use of overloading can yield confusing code,
both in Java and in Javari. If overloading based on im-
mutability proves too troublesome in practice, we may re-
strict it in a future version of the language.

3.2.2 Immutable classes
A class or an interface can be declared to be immutable via

the readonly modifier in its declaration.1 This is a syntactic
convenience: the class’s non-static fields default to read-only
and final, and its non-static methods (and, for inner classes,
constructors) default to read-only. As a further syntactic
convenience, every reference to an object of immutable type
T is implicitly read-only. For example, String means the
same thing as readonly String (the latter is forbidden, for
syntactic simplicity), and that it is impossible to specify the
type “mutable String”.

readonly class String { ... }

/*readonly*/ String s1 = new String();
readonly String s2 = new String();

s1 = s2; // OK
s2 = s1; // OK

Subclasses or subinterfaces of immutable classes and in-
terfaces must be immutable. Any instance method inherited
by such a class or interface must be read-only. Any instance
field inherited by an immutable class or interface must be
final and read-only or have been excluded from the class’s
abstract state (see section 3.3.2).

3.3 Fields: this-assignable and this-mutable
By default, a field of an object inherits its assignability

and mutability from the reference through which the field is
accessed. This default is called this-assignability and this-

mutability. If the reference through which the field is ac-
cessed is read-only, then the field is unassignable (final)
and read-only. If the reference through which the field is
accessed is mutable, then the field is assignable and muta-
ble. These defaults ensure that mutability is transitive by
default. The defaults can be overridden through modifiers
including final, readonly, assignable and mutable (The lat-
ter two are introduced in section 3.3.2.). The behavior of
this-assignable and this-mutable fields is illustrated below.

class Cell {
/*this-assignable this-mutable*/ Date d;

}

/*mutable*/ Cell c; // mutable
readonly Cell rc; // read-only

c.d = new Date(); // OK: c.d is assignable
rc.d = new Date(); // error: rc.d is unassignable (final)

/*mutable*/ Date d1 = c.d; // OK: c.d is mutable
/*mutable*/ Date d2 = rc.d; // error: rc.d is read-only

c.d.setYear(2005); // OK: c.d is mutable
rc.d.setYear(2005); // error: rc.d is read-only

Only instance fields may be this-assignable or this-muta-
ble. Other references (such as formal parameters and local
variables) do not have a this to inherit their assignability
from.
1A “read-only type” is readonly T, for some T. An “immutable type”
is a primitive type, or a class or interface whose definition is marked
with readonly.

214

3.3.1 Field accesses within methods
No special rules are needed for handling field accesses

within method bodies. Within a read-only method, the de-
clared type of this is read-only; therefore, all this-mutable
fields are read-only and all this-assignable fields are un-
assignable. Within a non-read-only method, the declared
type of this is mutable; therefore, all this-mutable fields are
mutable and all this-assignable fields are assignable. These
rules are demonstrated below.

class Cell {
/*this-assignable this-mutable*/ Date d;

/*mutable*/ Date foo() readonly {// this is readonly
d = new Date(); // error: this.d is unassignable
d.setYear(2005); // error: this.d is readonly
return d; // error: this.d is readonly

}

/*mutable*/ Date bar() /*mutable*/ {// this is mutable
d = new Date(); // OK: this.d is assignable
d.setYear(2005); // OK: this.d is mutable
return d; // OK: this.d is mutable

}
}

3.3.2 Assignable and mutable fields
By default, fields are this-assignable and this-mutable.

Under these defaults, all the fields are considered to be a
part of the object’s abstract state and, therefore, can not be
modified through a read-only reference. The assignable and
mutable keywords enable a programmer to exclude specific
fields from the object’s abstract state.

3.3.2.1 assignable fields
Declaring a field assignable specifies that the field may

always be reassigned, even through a read-only reference.
This can be useful for caching or specifying that the iden-
tity of a field is not a part of the object’s abstract state. For
example, hashCode is a read-only method, which does not
modify the abstract state of the object. In order to record
the hash code, a programmer can use the assignable key-
word to exclude the field that the hash code is written to
from the object’s abstract state.

class Foo {
assignable int hc;
int hashCode() readonly {

if (hc == 0) {
hc = ... ; // OK: hc is assignable

}
return hc;

}
}

A this-mutable field accessed through a read-only refer-
ence is treated specially. As an rvalue (an expression in a
value-expecting context [1]), it is read-only— it may be as-
signed to a read-only reference but not a mutable reference.
However, as an lvalue (an expression in a location-expecting
context, such as on the left side of an assignment [1]), it is
mutable — it may be assigned with a mutable reference but
not a read-only reference.

/** Assignable Cell. */
class ACell {
assignable /*this-mutable*/ Date d;

}

readonly ACell rc = new ACell();
readonly Date rd = new Date();
rc.d = rd; // error: lvalue rc.d is mutable
rc.d.setYear(2005); // error: rvalue rc.d is read-only

Without this asymmetry, there would be a loophole in the
type system that could be used to convert a read-only refer-
ence to a mutable reference. This loophole is demonstrated
below.

/** Assignable Cell. */
class ACell {
assignable /*this-mutable*/ Date d;

}

/** Converts a read-only Date to a mutable date. */
static /*mutable*/ Date
convertReadonlyToMutable(readonly Date roDate) {
/*mutable*/ ACell mutCell = new ACell();
readonly ACell roCell = mutCell;
roCell.d = roDate; // error
/*mutable*/ Date mutDate = mutCell.d;
return mutDate;

}

Mutable references, and this-mutable fields of the same

object, may always be assigned to this-mutable fields.

3.3.2.2 mutable fields
The mutable keyword specifies that a field is mutable even

when referenced through a read-only reference. A mutable
field’s value is not a part of the abstract state of the object
(but the field’s identity may be). For example, in the code
below, log is declared mutable so that it may be mutated
within read-only methods such as hashCode.

class Foo {
final mutable List<String> log;

int hashCode() readonly {
log.add("entered hashCode()"); // OK: log is mutable
...

}
}

3.4 Generic classes
In Java, the client of a generic class controls the type of

any reference whose declared type is a type parameter. A
client may instantiate a type parameter with any type that
is equal to or a subtype of the declared bound. One can
think of the type argument being directly substituted into
the parameterized class wherever the corresponding type pa-
rameter appears.

Javari uses the same rules, extended in the natural way to
account for the fact that Javari types include a mutability
specification (figure 1). A use of a type parameter within
the generic class body has the exact mutability with which
the type parameter was instantiated. Generic classes require
no special rules for the mutabilities of type arguments, and
the defaults for local variables and fields are unchanged.

As with any local variable’s type, type arguments to the
type of a local variable may be mutable (by default) or read-
only (through use of the readonly keyword). Below, four
valid local variable, parameterized type declarations of List

are shown. Note that the mutability of the parameterized
type List does not affect the mutability of the type argu-
ment.

215

/*mutable*/ List</*mutable*/ Date> ld1; // add/rem./mut.

/*mutable*/ List<readonly Date> ld2; // add/remove
readonly List</*mutable*/ Date> ld3; // mutate
readonly List<readonly Date> ld4; // (neither)

As with any instance field’s type, type arguments to the
type of a field default to this-mutable, and this default can
be overridden by declaring the type argument to be readonly

or mutable:

class DateList {
// 3 readonly lists whose elements have different mutability
readonly List</*this-mutable*/ Date> lst;
readonly List<readonly Date> lst2;
readonly List<mutable Date> lst3;

}

There are no special rules for the handling of this-mutabil-
ity when applied to a type argument. As in any other case,
the mutability of a type with this-mutability is determined
by the mutability of the object in which it appears (not
the mutability of the parameterized class in which it might
be a type argument).2 In the case of DateList above, the
mutability of lst’s elements is determined by the mutability
of the reference to DateList, not by the mutability of lst

itself. The following example illustrates this behavior.

/*mutable*/ Date d;
/*mutable*/ DateList mutDateList = new DateList();
readonly DateList roDateList = mutDateList;

// The reference through which lst is accessed determines
// the mutability of the elements.
d = mutDateList.lst.get(0); // OK: elems are mutable
d = roDateList.lst.get(0); // error: elems are readonly

readonly List</*mutable*/ Date> rld;
readonly List<readonly Date> rlrd;

rld = mutdateList.lst; // OK
rld = roDateList.lst; // error: different type params
rlrd = mutDateList.lst; // error: different type params
rlrd = roDateList.lst; // OK

Within a parameterized class, a reference whose type is a
type parameter cannot be declared mutable. If such a type
parameter were instantiated with a read-only type, an illegal
downcast would occur. Similarly, Javari provides no way to
specify this-mutability for a reference whose type is a type
parameter. However, a type parameter may be declared
readonly, because such a declaration can only result in safe
upcasts. These rules are demonstrated below.

class Foo<T extends readonly Object> {
// a is not this-mutable. Its mutability is determined
// solely by the type that T is instantiated with.

T a; // OK
readonly T b; // OK: can only result in upcasts
mutable T c; // error: T can be instantiated with a

// read-only type that cannot be
// casted to a mutable type.

this-mutable T d; // error: and not valid syntax
}

2There is no need for a modifier that specifies that the type parame-
ter’s mutability should be inherited from the mutability of the param-
eterized class. The declaration of a reference to a parameterized class
specifies the parameterized class’s mutability, and the declaration can
specify the same mutability for the type argument. For example, a
List where the mutability of the type parameter matches the muta-
bility of the List’s this type can be declared as follows: List<Date>
or readonly List<readonly Date>.

If a type parameter is declared to extend a mutable type,
then augmenting a reference whose type is the type param-
eter to be this-mutable would be safe. No declaration about
such a type parameter’s mutability could result in an unsafe
downcast from a read-only type to a mutable type. However,
we do not believe that the benefits of such a declaration jus-
tify the syntactic complexity that would accompany it (such
as an additional keyword).

// T cannot be instantiated with a read-only type because
// no read-only type extends mutable Object.
class Foo<T extends /*mutable*/ Object> {

T a; // OK
readonly T b; // OK
mutable T c; // OK: not valid syntax, however,

// because T is already mutable
this-mutable T d; // OK: not valid syntax, however

}

3.5 Arrays
As with generic container classes, a programmer may in-

dependently specify the mutability of each level of an array.
As with any other local variable’s type, each level of an ar-
ray is mutable by default and may be declared read-only
with the readonly keyword. As with any other field’s type,
each level may be declared mutable with the mutable key-
word, read-only with the readonly keyword, or this-mutable
by default. Parentheses may be used to specify to which
level of an array a keyword is to be applied. Below, four
valid array local variable declarations are shown.

Date [] ad1; // add/remove, mutate
(readonly Date)[] ad2; // add/remove

readonly Date [] ad3; // mutate
readonly (readonly Date)[] ad4; // no add/rem., no mutate

The above syntax can be applied to arrays of any dimen-
sionality. For example, the type (readonly Date[])[] is a
two-dimensional array with a read-only inner-array and that
is otherwise mutable.

Java’s arrays are covariant. To maintain type safety, the
JVM performs a check when a object is stored to an array.
To avoid a run-time representation of immutability, Javari
does not allow covariance across the mutability of array el-
ement types.

Date [] ad1;
(readonly Date)[] ad2;

ad2 = ad1; // error: arrays are not covariant over mutability

3.6 Summary
Javari enables a programmer to independently declare the

assignability and mutability of a reference. Figure 2 sum-
marizes the assignability and mutability keywords of Javari:

final declares a reference to be unassignable.
assignable declares a reference always to be assignable even

if accessed through a read-only reference. Redundant
for references other than instance fields.

readonly declares a reference to be read-only. Redundant
for immutable types.

mutable declares a reference always to be mutable even if
accessed through a read-only reference. Redundant
for references other than instance fields. Cannot be
applied to type parameters (see section 3.4).

Figure 3 briefly gives the semantics of the keywords. Ap-
pendix A gives examples of each of the 9 combinations of
assignability and mutability.

216

Assignability Mutability
this- this-

Construct assignable unassignable assignable mutable read-only mutable
Instance fields assignable final (default) mutable readonly (default)
Static fields (default) final N/A (default) readonly N/A
Local variables (default) final N/A (default) readonly N/A
Formal parameters (default) final N/A (default) readonly N/A
Return values N/A N/A N/A (default) readonly N/A
this N/A (default) N/A (default) readonly N/A

Figure 2: Javari’s keywords. “N/A” denotes assignabilities or mutabilities that are not valid for a given construct. “(default)”
denotes that a given assignability or mutability is the default for that construct; no keyword is required, and redundant use
of keywords is prohibited (a compile-time error), in order to reduce confusion. This-assignable and this-mutable can only be
applied to instance fields because other references do not have a notion of this to inherit from. The mutability of this is
declared after the parameter list.

Resolved assignability of a.b

Declared assign- Resolved mutability of a

ability of b mutable read-only

assignable assignable assignable
unassignable unassignable unassignable
this-assignable assignable unassignable

Resolved mutability of a.b

Declared mut- Resolved mutability of a

ability of b mutable read-only

mutable mutable mutable
read-only read-only read-only
this-mutable assignable read-only*
*mutable as an lvalue, read-only as an rvalue

Figure 3: Semantics of Javari’s keywords: resolved type of
the expression a.b, given the resolved type of a and the
declared type of field b. Also see figure 9, which presents
the same information in a different form.

Javari is backward compatible with Java: any Java pro-
gram that uses none of Javari’s keywords is a valid Javari
program, with the same semantics. Javari’s defaults have
been chosen to ensure this property.

4. Type rules
This section presents the key type rules for Javari in the

context of a core calculus, Lightweight Javari, that captures
the essential features of Javari. Lightweight Javari builds
upon Featherweight Generic Java (FGJ) [20], a core calcu-
lus for Java including generic types. FGJ is a functional
language: it has no notion of assignment. Therefore, Sec-
tion 4.1 first introduces Lightweight Java (LJ), an extension
of FGJ that builds on ClassicJava [15] to support field
assignment and the final keyword. Then, Section 4.2 ex-
tends LJ to Lightweight Javari (LJR), which adds support
for reference immutability.

4.1 Lightweight Java
Lightweight Java (LJ) extends FGJ to include field as-

signment, expressed via the “set” construct. Fields may be
declared final; to make FGJ’s syntax fully explicit, non-
final fields must be declared assignable. LJ does not permit
parameters to be reassigned: such an extension is straight-
forward and does not demonstrate any interesting aspects

T ::= X

| N

N ::= C<T>

L ::= class C<X / N> / N { AF T f; K M}
K ::= C(T f) {super(f); this.f = f; }
M ::= <X / N> T m(T x){ return e; }
e ::= x

| e.f
| e.m<T>(e)
| new N(e)

| set e.f = e then e

AF ::= final

| assignable

Figure 4: Lightweight Java (LJ) syntax. Changes from
Featherweight Generic Java (FGJ) are indicated by boxes.

of the Javari type system. LJ omits casts because they are
not important for demonstrating the assignability and mu-
tability rules of Javari.

4.1.1 Syntax
The syntax of LJ is nearly identical to that of FGJ, with

the exception of the new set expression and the assignability
modifiers, final and assignable. The syntax of LJ is shown
in figure 4.

The metavariable C ranges over (unparameterized) class
names; f and g over field names; AF (assignability for fields)
over assignability modifiers; x over variables; e over expres-
sions; K over constructor declarations; and M over method
declarations. S, T, U, and V range over types; X, Y, and Z

over type variables; and N, P, and Q over nonvariable types.
x serves as shorthand for the (possibly empty) sequence

x1 . . . xn with the appropriate syntax separating the ele-
ments. In cases such as C f, the items are grouped in pairs:
C1 f1 . . . Cn fn. Sequences are concatenated with a comma.
this is considered a special variable implicitly bound to

the receiver of a method invocation.
The notation / stands for “extends” (LJ has no inter-

faces). A class is considered to have all the fields that are
declared in its body and its superclasses’ bodies. The field
names of a class must be distinct from the field names of its
superclasses —there is no field shadowing nor overloading.

217

Subtyping:

∆ ` T<: T (S-Refl)

∆ ` S<: T ∆ ` T<: U

∆ ` S<: U
(S-Trans)

∆ ` X<: ∆(X) (S-Var)

class C<X / N> / N {. . .}

∆ ` C<T> <: [T/X]N
(S-Class)

Figure 5: Lightweight Java (LJ) subtyping. These rules are
identical to those of Featherweight Generic Java (FGJ).

Every class is required to declare a single constructor. The
form of the constructor must be:

C(U g; T f){super(g); this.f = f; }

where g are the fields of the superclass of C and f are the
fields declared in the body of C.

LJ introduces the set construct to FGJ. “set e0.f =
ev then eb” reassigns the field f of the object to which e0

evaluates. The field’s new value is the value to which ev

evaluates. The set expression then evaluates the body ex-
pression eb. The set expression’s value is the value to which
eb evaluates. The set syntax was chosen to avoid the com-
plications of allowing multiple expressions within a method.
Method arguments and assignment expressions are evalu-
ated left-to-right (see figure 7).

4.1.2 Static semantics
The subtyping rules of LJ are unchanged from FGJ and

are shown in figure 5. The (reflexive, transitive) subtyping
relationship is denoted by “<:”. ∆ is the type environment,
a mapping from type variables to non-variable types.

The subtyping and reduction rules use the following aux-
iliary functions. The function fields(N) returns a sequence
of triplets, AF T f, with the assignability modifier, type, and
name of each of the fields of the nonvariable type N. The
function mtype(m, N) returns the type of method m of the
nonvariable type N. The type of a method is written as
<X / N>T → T where X, with the bounds N, are the type
parameters of the method, T are the types of the method’s
parameters, and T is the return type of the method. Be-
cause there is no overloading in LJ, mtype does not need
to know the types of the arguments to m. The function
mbody(m<V>, N) returns the pair x.e where x are the for-
mal parameters to m in N and e is the body of the method.
Finally, override(m, N, <Y / P>T → T) declares that method
m with type <Y / P>T → T) correctly overrides any meth-
ods with the same name possessed by the nonvariable type
N. Details and definitions of these auxiliary functions are
provided in the FGJ paper.

With the exception of the new rule for the set construct,
LJ’s typing rules are little changed from those of FGJ. The
typing rules are shown in figure 6. Γ is defined as the en-
vironment, a mapping from variables to types. bound∆(T)
calculates the upper bound of T in type environment ∆:
∆(T) if T is a type parameter, or T if T is a nonvariable type.
[a/b]c denotes the result of replacing b by a in c.

Expression typing:

∆; Γ ` x : Γ(x) (T-Var)

∆; Γ ` e0 : T0 fields(bound∆(T0)) = AF T f

∆; Γ ` e0.fi : Ti

(T-Get)

∆; Γ ` e0 : T0

mtype(m, bound∆(T0)) = <Y / P>U → U

∆ ` V ok ∆ ` V<: [V/Y]P
∆; Γ ` e : S ∆ ` S<: [V/Y]U

∆; Γ ` e0.m<V>(e) : [V/Y]U
(T-Invk)

∆ ` N ok fields(N) = AF T f

∆; Γ ` e : S ∆ ` S<: T

∆; Γ ` new N(e) : N
(T-New)

∆; Γ ` e0 : T0

fields(bound∆(T0)) = AF T f AFi = assignable

∆; Γ ` ev : Tv Tv <: Ti ∆; Γ ` eb : Tb

∆; Γ ` set e0.fi = ev then eb : Tb

(T-Set)

Method typing:

∆ ` X<: N, Y<: P ∆ ` T, T, P ok

∆; x : T, this : C<X> ` e0 : S
∆ ` S<: T class C<X / N> / N {. . .}

override(m, N, <Y / P>T → T)

<Y / P> T m(T x){ return e0; } OK IN C<X / N>
(T-Method)

Class typing:

X<: N ` N, N, T ok

fields(N) = U g M OK IN C<X / N>

K = C(U g, T f){super(g); this.f = f; }

class C<X / N> / N { AF T f; K M} OK

(T-Class)

Figure 6: Lightweight Java (LJ) typing rules. Changes from
Featherweight Generic Java (FGJ) are indicated by boxes.

The judgment ∆ ` T ok declares that type T is well formed
under context ∆. A type is well formed if its type parameters
respect the bounds placed on them in the class’s declaration.
The judgment M OK IN C declares that method declaration
M is sound in the context of class C. The judgment C OK

declares the class declaration of C to be sound.

4.1.3 Operational semantics
To support the assignment of fields, we introduce a store,

S, to the reduction rules. As in ClassicJava [15], the store
is a mapping from an object to a pair containing the nonva-
riable type of the object and a field record. A field record,
F , is a mapping from field names to values.

The reduction rules are shown in figure 7. Each reduction
rule is a relationship, 〈e, S〉 −→ 〈e′, S ′〉, where e with store
S reduces to e

′ with store S ′ in one step.
The addition of the assignment statement requires new

reduction and congruence rules to be added to those of FGJ.
The reduction rule for set binds the field to a new value, then
evaluates the “then” part of the expression.

218

v ::= an object
Computation:

S(v1) = 〈N, F〉 F(fi) = v2

〈v1.fi, S〉 −→ 〈v2, S〉
(R-Field)

S(v) = 〈N, F〉 mbody(m<V>, N) = x.e0

〈v.m<V>(v), S〉 −→ 〈[v/x, v/this]e0, S〉
(R-Invk)

v /∈ dom(S) F = [f 7→ v]

〈new N(v), S〉 −→ 〈v, S[v 7→ 〈N, F〉]〉
(R-New)

S(v1) = 〈N, F〉

〈set v1.fi = v2 then eb, S〉 −→
〈eb, S[v1 7→ 〈N, F [fi 7→ v2]〉]〉

(R-Set)

Congruence:

〈e0, S〉 −→ 〈e′0, S〉

〈e0.f, S〉 −→ 〈e′0.f, S〉
(RC-Field)

〈e0, S〉 −→ 〈e′0, S〉

〈e0.m<T>(e), S〉 −→ 〈e′0.m<T>(e), S〉
(RC-Invk-Recv)

〈ei, S〉 −→ 〈e′i, S〉

〈 v .m<V>(v , ei, e), S〉 −→

〈 v .m<V>(v , e′i, e), S〉

(RC-Invk-Arg)

〈ei, S〉 −→ 〈e′i, S〉

〈new N(v , ei, e), S〉 −→

〈new N(v , e′i, e), S〉

(RC-New-Arg)

〈e0, S〉 −→ 〈e′0, S〉

〈set e0.f = ev then eb, S〉 −→
〈set e

′

0.f = ev then eb, S〉

(RC-Set-LHS)

〈ev, S〉 −→ 〈e′v, S〉

〈set v.f = ev then eb, S〉 −→
〈set v.f = e

′

v then eb, S〉

(RC-Set-RHS)

Figure 7: Lightweight Java (LJ) reduction rules. Unlike
Featherweight Generic Java (FGJ), LJ’s reduction rules con-
tain a store. Other changes from FGJ are indicated by
boxes.

4.1.4 Properties
LJ can be shown to be type sound and to obey the as-

signment rules of final. If a term is well typed and reduces
to a normal form, an expression that cannot reduce any fur-
ther and, therefore, is an object, v, then it is a value of a
subtype of the original term’s type. Put differently, an eval-
uation cannot go wrong, which in our model means getting
stuck.

Theorem 1 (LJ Type Soundness). If ∅; ∅ ` e : T and

〈e, S〉 →∗ 〈e′, S ′〉 with e′ a normal form, then e′ is a value

v such that S ′(v) = 〈N, F〉 and ∅ ` N <: T.

The soundness of LJ can be proved using the standard
technique of subject reduction and progress theorems. The
reduction theorem states that each step taken in the evalu-
ation preserves the type correctness of the expression-store
pair. During each step of the reduction, the environment
and type environment must be consistent, `σ, with the store:

∆; Γ `σ S ⇐⇒

S(v) = 〈N, F〉 ⇒

Σ1 : ∆ ` N <: Γ(v)

Σ2 : and dom(F) = {f | AF T f ∈ fields(N)}

Σ3 : and rng(F) ⊆ dom(S)

Σ4 : and (F(f) = v′and AF T f ∈ fields(N)

⇒ ((S(v′) = 〈N′, F ′〉) ⇒ ∆ ` N
′ <: T))

Σ5 : and v ∈ dom(Γ) ⇒ v ∈ dom(S)

Σ6 : and dom(S) ⊆ dom(Γ)

Theorem 2 (LJ Subject Reduction). If ∆; Γ ` e :
T, ∆; Γ `σ S, and 〈e, S〉 −→ 〈e′, S ′〉, then there exists a Γ′

such that ∆; Γ′ ` e
′ : T and ∆′; Γ′ `σ S ′.

Proof [38]. By induction on the derivation of 〈e, S〉 −→
〈e′, S ′〉 with a case analysis on the reduction rule used. For
each case, we construct the new environment Γ′ and show
that (1) ∆; Γ′ ` e′ : T and (2) ∆′; Γ′ `σ S.

Theorem 3 (LJ Progress). If ∆; Γ ` e : T and

∆; Γ `σ S, then either e is a value or there exists an 〈e′, S ′〉
such that 〈e, S〉 −→ 〈e′, S ′〉.

Proof [38]. The proof is by analysis of the possible
cases for the current redex in e (in the case that e is not
a value).

The Type Soundness theorem is immediate from the Subject
Reduction and Progress theorems.

Additionally, LJ can be shown to obey the rules of final

references.

Theorem 4 (LJ Assignment Soundness). Outside

of an object’s constructor, assignments may only be made to

assignable fields.

Proof. Immediate from T-Set.

4.2 Lightweight Javari
We add Javari’s concept of reference immutability to LJ

to create the language Lightweight Javari (LJR). In LJR,
every type is modified by one of the mutability modifiers:
readonly, mutable, or (for field types only) this-mutable. In
addition to final and assignable, LJR also allows fields be
marked as this-assignable with the this-assignable keyword.

4.2.1 Syntax
The syntax of LJR is shown in figure 8. C continues to

range over class names. The other type meta-variables range
over both read-only and mutable types. Thus, a type is a
pair, ML B, consisting of a mutability and a “base” type. B

ranges over base types (which may be a parameterized class
but has no mutability information) and ML (mutability for
locals) ranges over readonly and mutable. F and G range over

219

T ::= X

| N

N ::= ML B

B ::= C<T>

F ::= MF B

| X

L ::= class C<X / N> / N {AF F f; K M}
K ::= C(T f) {super(f); this.f = f; }

M ::= <X / N> T m(T x) ML { return e; }
e ::= x

| e.f
| e.m<T>(e)
| new B(e)
| set e.f = e then e

AF ::= final

| assignable

| this-assignable

MF ::= ML

| this-mutable

ML ::= mutable

| readonly

Figure 8: Lightweight Javari (LJR) syntax. Changes from
Lightweight Java (LJ, figure 4) are indicated by boxes.

field type declarations, including those with this-mutability.
MF (mutability for fields) ranges over the mutabilities that
may be applied to a nonvariable type that is the type of a
field. A mutability modifier may not be applied to a field
whose type is a type parameter (see section 3.4). Thus, F
takes the form of either a type parameter, X, or a nonvariable
type with a field mutability modifier, MF B. All type meta-
variables other than F and G may not have this-mutability.
AF ranges over the assignabilities that a field may be declared
to have: assignable, final, and this-assignable.

4.2.2 Static semantics
Fields that are declared to be this-mutable are resolved to

have either a read-only or mutable type based on the mu-
tability of the reference through which the field is accessed.
Also, this-assignable fields are resolved to be either final
or assignable using the mutability of the reference through
which the field is accessed. A type that is declared readonly

or mutable trivially resolves to the read-only and mutable
types, respectively. Similarly, fields that are declared final

or assignable are trivially resolved.
The functions assignability(AF, ML) and mutability(MF, ML)

(shown in figure 9) are used to resolve the assignability and
mutability of a field. The first parameter to either function
is the keyword with which the field is declared. The second
parameter is the mutability of the reference through which
the field is accessed or the declared bound of a reference
whose declared type is a type parameter.

Additional subtyping rules must be added to those of LJ
to handle the subtyping relationship between mutable and
read-only types. The new rules are shown in figure 10. The
subtyping rules of LJ are changed to be in terms of base
types, B. This-mutability is not a part of the type hierarchy

Assignability resolving:

assignability(assignable, ML) = assignable

assignability(final, ML) = final

assignability(this-assignable, mutable) = assignable

assignability(this-assignable, readonly) = final

Mutability resolving:

mutability(mutable, ML) = mutable

mutability(readonly, ML) = readonly

mutability(this-mutable, mutable) = mutable

mutability(this-mutable, readonly) = readonly

Figure 9: Lightweight Javari (LJR): Resolving assignability
and mutability. Also see figure 3, which presents the same
information in a different form.

Subtyping:

∆ ` B1 <: B2

∆ ` ML B1 <: ML B2

∆ ` mutable B <: readonly B

Figure 10: Lightweight Javari (LJR) additional subtyping
rules.

and, thus, is not shown in the subtyping rules. The mutabil-
ity of a field declared this-mutable must be resolved before
subtyping relations may be calculated.

The type rules of LJR are shown in figure 11. The rules of
LJ are augmented to check that the mutability of an expres-
sion is correct for its context. For example, the mutability
of the receiver is a part of a method’s signature; thus, a non-
read-only method cannot be invoked on a read-only receiver.

Similar to bound∆(T) we define fbound∆(F) to calculate
the upper bound of F in type environment ∆: ∆(F) if F is a
type parameter or MF B if F is a nonvariable type.

As an lvalue, a field whose type is this-mutable must be
treated as mutable even if it was accessed through a read-
only reference (see section 3.3.2). In the T-Set rule for field
assignments, the mutability of the lvalue reference (through
which the field being set is accessed) is always treated as
mutable. Additionally, the T-Set-This assignment rule al-
lows two fields of the same object whose types are this-
mutable to be assigned to one another.

The rules for new expressions and constructor typing re-
quire that the object created is mutable because the object
may be assigned to a mutable reference. Therefore, when
calculating the mutability of this-mutable fields, the muta-
bility of the reference through which the fields are accessed
is given as mutable.

Auxiliary functions that are changed from LJ’s are shown
in figure 12. The functions for method type lookup and valid
method overriding must be modified because the mutability
of the receiver is part of a method’s signature. In the case
of method lookup, the function now returns the mutability
of the receiver as a part of the method’s type. The rule for

220

Expression typing:

∆; Γ ` x : Γ(x) (RT-Var)

∆; Γ ` e0 : T0

bound∆(T0) = ML0 B0 fields(B0) = AF F f

fbound
∆

(Fi) = MFi Bi MLi = mutability(MFi, ML0)

∆; Γ ` e0.fi : MLi Bi (RT-Get)

∆; Γ ` e0 : T0 bound∆(T0) = ML0 B0

mtype(m, B0) = <Y / P>U MLm → U

ML0 B0 <: MLm B0 ∆ ` V ok

∆ ` V<: [V/Y]P ∆; Γ ` e : S ∆ ` S<: [V/Y]U

∆; Γ ` e0.m<V>(e) : [V/Y]U (RT-Invk)

∆ ` B ok fields(B) = AF F f

fbound
∆

(F) = MF B ML = mutability(MF, mutable)

∆; Γ ` e : S ∆ ` S<: ML B

∆; Γ ` new B(e) : mutable B (RT-New)

∆; Γ ` e0 : T0

bound∆(T0) = ML0 B0 fields(B0) = AF F f

assignability(AFi, ML0) = assignable

fbound
∆

(Fi) = MFi Bi

MLi = mutability(MFi, mutable)

∆; Γ ` ev : Tv ∆ ` Tv <: MLi Bi ∆; Γ ` eb : Tb

∆; Γ ` set e0.fi = ev then eb : Tb (RT-Set)

∆; Γ ` this : ML0 C<X> fields(C<X>) = AF F f

assignability(AFi, ML0) = assignable

fbound
∆

(F) = MF B MFi = this-mutable

MFj = this-mutable ∆ ` Bj <: Bi ∆; Γ ` eb : Tb

∆; Γ ` set this.fi = this.fj then eb : Tb (RT-Set-this)

Method typing:

∆ ` X<: N, Y<: P

∆ ` T, T, P ok ∆; x : T, this : ML C<X> ` e0 : S
∆ ` S<: T class C<X / N> / B {. . .}

override(m, B, <Y / P>T ML → T)

<Y / P> T m(T x) ML {return e0; }
OK IN C<X / N> (RT-Method)

Class typing:

fbound
∆

(Fc) = MFc Bc

MLc = mutability(MFc, mutable) fields(B) = AFb Gb gb

fbound
∆

(Gb) = MFb Bb MLb = mutability(MFb, mutable)

K = C(MLb Bb g, MLc Bc f){super(g); this.f = f; }

X<: N ` N, B, Bc ok M OK IN C<X / N>

class C<X / N> / B {AFc Fc f; K M} OK (RT-Class)

Figure 11: Lightweight Javari (LJR) typing rules. Changes
from Lightweight Java (LJ, figure 6) are indicated by boxes.

Method type lookup:

class C<X / N> / B{AF F f; K M}

<Y / P> U m(U x) ML { return e; } ∈ M

mtype(m, C<T>) = [T/X](<Y / P>U ML → U)

class C<X / N> / B{AF F f; K M} m /∈ M

mtype(m, C<T>) = mtype(m, [T/X]B)

Valid method overriding:

mtype(m, B) = <Z / Q>U ML1 → U0 implies

P, T = [Y/Z](Q, U) and Y<: P ` T0 <: [Y/Z]U0 and ML1 = ML0

override(m, B, <Y / P>T ML0 → T0)

Figure 12: Lightweight Javari (LJR) auxiliary functions.
Changes from Lightweight Java (LJ) are indicated by boxes.

valid method overriding now checks that the mutability of
the receiver in the overriding method matches the mutability
of the receiver in the overridden method. Because LJ and
LJR do not allow method overloading, there cannot be a
read-only and a non-read-only version of a method.

4.2.3 Operational semantics
The reduction rules for LJR are unchanged from those

of LJ (see figure 7) with the exception that the store, new
expression, and mbody function operate on base types, B,
which do not include mutability information.

4.2.4 Properties
LJR has a similar Type Soundness theorem as LJ. It is

modified slightly due to the store operating on base types
without mutability information.

Theorem 5 (LJR Type Soundness). If ∅; ∅ ` e :
ML B and 〈e, S〉 →∗ 〈e′, S ′〉 with e

′ a normal form, then e
′

is a value v such that S ′(v) = 〈B′, F〉 and ∅ ` B
′ <: B.

Note that the type soundness theorem is in terms of base
types since there is no run-time concept of mutability. LJR’s
type soundness theorem is proved using the same reduction
and progress theorems as LJ. The proofs of these theo-
rems [38] are similar to those of LJ.

LJR’s mutability constraints also allow a theorem about
which state of an object, when referenced through a read-
only reference, is protected from modification. This state
is referred to as “protected state.” (Protected state corre-
sponds to the intuitive notion of “abstract state” that was
used in the informal presentation.) A field, f, that is reach-
able from the object v is in v’s protected state if f is not
declared assignable and the object to which f belongs can
only be reached from v through series of fields where each
field resolves to have a read-only type when v is referred to
through a read-only reference (see figure 9).

Theorem 6. A read-only reference, x, to object v cannot

be used to reassign any field, f, within the protected state of

v.

Proof. If f is declared assignable, then it is not in the
protected state. If f is declared final, then it can never be

221

reassigned by rules RT-Set and RT-Set-This. Thus, the
rest of the proof examines the case that f is declared to be
this-assignable.

Without loss of generality, let v′ be the object of which f

is a field. By the definition of protected state, v′ can only
be reached from x through a reference that resolves to be
read-only. Therefore, through all paths from x, f’s assign-
ability resolves to final (see figure 9). The rules RT-Set
and RT-Set-This show that f, resolving to final, cannot be
reassigned through the reference x.

Now, one must examine the case that x or a field on the
path between x and v′ is assigned to a reference creating a
aliasing, mutable reference to v′. If one could create such
a reference, it could be used to reassign f. We proceed by
case analysis on the reduction rules. The relevant cases are
R-Set, R-Invk, R-New.

R-Set RT-Set allows references that resolve to be read-
only to be assigned only to fields declared readonly; thus,
x and all the fields between x and v′ can only be assigned
to read-only references by this rule.

RT-Set-This allows a this-mutable field, fj , which re-
fers to object v′′, to be assigned to another this-mutable
field, fi, if fj and fi are fields of the same object. Suppose
fj and, therefore, v′′ lie on the path from x to f. If a muta-
ble reference to v′′ through fi is obtained by assigning fj

to fi, it could be used to reassign f. We show, by contra-
diction, that there cannot exist a mutable reference to v′′

after the assignment. Being from the same object, fi and
fj ’s mutability will always be identically resolved through
any given reference. Thus, if there exists a mutable refer-
ence to v′′ from x through fi after the assignment, there
must have already existed a mutable reference to v′′ from
x through fj before the assignment. However, the prior
existence of a mutable reference to v′′ from x through fj

contradicts the fact that f is in the protected state of v.
R-Invk, R-New RT-Invk and RT-New allow references

that resolve to be read-only only to be assigned to readonly

formal parameters or fields, respectively.

5. Templatizing methods over mutability
to avoid code duplication

In Java, each (non-generic) class definition defines exactly
one type. By contrast, in Javari, class C { ... } creates two

types: C and readonly C. C contains some methods that are
absent from readonly C, and a given method may have differ-
ent signatures in the two classes (even though the method’s
implementation is otherwise identical).

Javari permits a programmer to specify the two distinct
types using a single class definition, without any duplication
of methods. (The alternative, code duplication, is unaccept-
able.)

Javari provides the keyword romaybe to declare that a
method should be templated over the mutability of one or
more formal parameters. If the type modifier romaybe is ap-
plied to any formal parameter (including this), then the
type checker conceptually duplicates the method, creating
two versions of it. (As noted earlier, it is not necessary for
two versions of a class or method to exist at run time.) In
the first version of the method, all instances of romaybe are
replaced by readonly. In the second version, all instances
of romaybe are removed. For example, the following code
defines a DateCell class:

class DateCell {
Date value;
void setValue(Date d) /*mutable*/ { value = d; }
romaybe Date getValue() romaybe { return value; }
static romaybe Date cellDate(romaybe DateCell c) {
return c.getValue();

}
}

Its effect is the same as writing the following (syntactically
illegal) code:

class readonly DateCell {
Date value;
readonly Date getValue() readonly {
return value;

}
static readonly Date
cellDate(readonly DateCell c) {
return c.getValue();

}
}

class DateCell extends readonly DateCell {
Date value;
void setValue(Date d) { value = d; }
/*mutable*/ Date getValue() /*mutable*/ {
return value;

}
static /*mutable*/ Date
cellDate(/*mutable*/ DateCell c) {
return c.getValue();

}
}

Note that setValue only appears in DateCell, not readonly

DateCell, because setValue is a mutable method. Also note
that DateCell cannot inherit readonly DateCell’s getValue:
the signatures are different due to the type of this.

Only one mutability type parameter (romaybe) is needed.
Within a templated method, the mutability of the method
parameters, including this, cannot affect the behavior of the
method because the method must be valid for both read-
only and mutable types. However, templated parameters
can affect the types of the method’s references, including the
method’s return type. Thus, the only reason for a romaybe

template is to ensure that the method has the most spe-
cific return type possible. Since a method has only one de-
clared return type, only one mutability template parameter
is needed.3

5.1 Template inference
As an alternative to explicitly specifying method tem-

plates, Javari could instead use type inference to create a
version of a method with a read-only return type. Many
languages, such as ML [26], use type inference to permit
programmers to write few or no type annotations in their
programs; this is especially important when the types are
complicated to write. Javari could similarly infer method
templates, reducing the number of template annotations
(romaybe) in the code.

Lack of explicit immutability constraints would eliminate
the documentation benefits of Javari, or would cause method
signatures to describe what a method does rather than what

3A method that both takes an array as a parameter and returns an
array is an exception to this rule because an array can have multi-
ple mutability modifiers. We feel that this case occurs too rarely in
practice to warrant more complex templating syntax.

222

it is intended to do. Furthermore, programming environ-
ments would need to re-implement the inference, in order to
present the inferred types to users.

Despite these problems, there are countervailing advan-
tages to inference. For example, although we have not found
it onerous in our experience so far, it is a concern that many
methods and arguments would be marked as read-only, clut-
tering the code. (Were backward compatibility not an issue,
we would have chosen different defaults for our keywords.)
In future work, we plan to implement such an inference and
determine whether users find it helpful.

A separate type inference issue is the need to build an
inference system for existing Java libraries. Unannotated
libraries use non-read-only types. This renders them essen-
tially un-usable by Javari code: the type system prevents
read-only references from being passed to libraries (lest they
be modified by the library code). Programmers must be
able to convert unannotated Java libraries (including those
available only in compiled form) into versions with readonly

annotations. This is an implementation issue rather than a
language design issue, so we do not discuss it further in this
paper.

6. Code outside the type system
Certain Java constructs, such as reflection and serializa-

tion, create objects in a way that is not checked by the
Java type-checker, but must be verified at run time. We
discuss how to integrate checking of mutability with these
mechanisms, even though mutability has no run-time repre-
sentation.

6.1 Reflection
Reflection enables calling a method whose return type

(including mutability) is unknown at compile time. This
prevents checking immutability constraints at compile time.
We desire to maintain type soundness (reflective calls that
should return a readonly reference must do so) and flexibil-
ity (reflective calls that should return a mutable reference
can do so).

In particular, consider the invoke method:

package java.lang.reflect;
class Method {

// existing method in Java (and Javari):
/*mutable*/ Object invoke(java.lang.Object,

java.lang.Object...);
// new method in Javari:
readonly Object invokeReadonly(java.lang.Object,

java.lang.Object...);
}

The three dots at the end of the parameter lists are not
an ellipsis indicating elided code, but the Java 5 syntax for
variable-argument routines.

Javari requires programmers to rewrite some uses of invoke
into invokeReadonly, where invokeReadonly returns a readonly

Object rather than an Object as Method.invoke does. For ex-
ample:

Method m1 = ...;
Method m2 = ...;
Date d1 = (Date) m1.invoke(...);
readonly Date d2 =

(readonly Date) m2.invokeReadonly(...);

invokeReadonly returns a read-only reference and does no
special run-time checking. invoke returns a mutable refer-
ence, but performs a run-time check to ensure that the re-
turn type of the method being called is non-read-only. Note
that this is a check of the invoked method’s signature, not a
check of the object or reference being returned. This check-
ing is local and fast, unlike the immutability checking that
is required to support general downcasts (section 7.5). To
enable this check, the JVM can record the mutability of the
return type of each method as the method is loaded.

This proposal takes advantage of the fact that the type-
checker knows the compile-time types of the arguments to
invoke. That is, in a call foo(d), it knows whether the de-
clared type of d is read-only. That information is necessary
for resolving overloading: determining whether foo(d) is a
call to foo(Date) or to foo(readonly Date) when both exist.

6.2 Serialization
Like reflection, serialization creates objects in a way that

is outside the purview of the Java type system, and we
wish to guarantee that code cannot use serialization to vio-
late immutability constraints. Javari’s serialized form in-
cludes a bit indicating whether the serialized object was
referenced through a read-only reference. A bit is only
needed for the top-level object that is deserialized (the ar-
gument to writeObject, which will become the this result of
readObject).

There are two versions of ObjectInputStream.readObject,
similarly to Method.invoke. The readObjectReadonly version
returns a readonly Object and does no checking. The read-

Object version returns a mutable Object, but throws an ex-
ception if the read-only bit in the serialized representation
is set.

7. Other language features
This section briefly explains several Javari features that

have not changed from the Javari2004 dialect described in a
previous paper and technical report [5, 4]. Full details can
be found in those references.

7.1 Interoperability with Java
Javari is interoperable with Java and existing JVMs. The

language treats any Java method as a Javari method with
no immutability specification in the parameters (including
this) or return type (and similarly for constructors, fields,
and classes). Since the Javari type system does not know
what a Java method can modify, it assumes that the method
may modify anything.

While all Java methods can be called from Javari, Java
code can only call Javari methods that does not use readonly

in their return types. An implementation could enforce
this by using standard Java names for non-read-only types,
methods, and classes, and by “mangling” (at class loading
time) the names of read-only types, methods, and classes
into ones that cannot be referenced by legal Java code.

7.2 Type-based analyses
Javari enforces reference immutability — a read-only ref-

erence is never used to side-effect any object reachable from
it. Reference immutability itself has many benefits. How-
ever, other guarantees may be desirable in certain situations.
Four of these guarantees are object immutability (an object
cannot be modified), thread non-interference (other threads

223

cannot modify an object), parameter non-mutation (an ob-
ject that is passed as a readonly parameter is not modi-
fied), and return value non-mutation (an object returned as
a readonly result is not modified). One advantage of refer-
ence immutability is that a subsequent type-based analysis
(which assumes that the program type checks [30]) can often
establish these other properties from it, but the converse is
not true.

Extending reference immutability to stronger guarantees
requires escape analysis or partial information about alias-
ing. Determining complete, accurate alias information re-
mains beyond the state of the art; fortunately, the analyses
do not require full alias analysis. Obtaining alias informa-
tion about a particular reference can be easier and more
precise than the general problem [2]. Programmers can use
application knowledge about aliasing, new analyses as they
become available, or other mechanisms for controlling or
analyzing aliasing, such as ownership types [11, 3, 7], alias
types [3], linear types [39, 14], or checkers of pointer prop-
erties [12, 17].

7.3 Inner classes
Javari protects a read-only enclosing instance from being

mutated through an inner class. Placing readonly immedi-
ately following the parameter list of a method of an inner
class declares the receiver and all enclosing instances of the
receiver to be read-only.

Inner class constructors have no receiver, but placing the
keyword readonly immediately following the parameter list
of an inner class constructor declares all enclosing instances
to be read-only. Such a constructor may be called a read-
only constructor, by analogy with “read-only method”. It
is important to note that the “read-only” in “read-only con-
structor” refers to the enclosing instance. Read-only con-
structors do not constrain the constructor’s effects on the
object being constructed, nor how the client uses the newly-
constructed object.

It is a type error for a read-only method or constructor
to change the state of the enclosing instance, which is read-
only. Furthermore, a non-read-only method or constructor
cannot be called through a read-only reference.

7.4 Exceptions
Javari prohibits read-only exceptions from being thrown.

This restriction, which has so far caused no difficulty in prac-
tice, is caused by our desire for interoperability with the ex-
isting Java Virtual Machine, in which (mutable) Throwable

is a supertype of every other Throwable. It is possible to
modify Javari to lift the restriction on throwing read-only
exceptions, but the result is complicated, introduces possi-
bilities for error in the type system and the implementation,
and provides little practical benefit.

7.5 Downcasts
Every non-trivial type system rejects some programs that

are safe —they never perform an erroneous operation at run
time — but whose safety proof is beyond the capabilities of
the type system. Like Java itself, Javari allows such pro-
grams, but requires specific programmer annotations (down-
casts); those annotations trigger Javari to insert run-time
checks at modification points to guarantee that no unsafe
operation is executed. Among other benefits, program-
mers need not code around the type system’s constraints

when they know their code to be correct, and interoperation
with legacy libraries is eased. The alternatives —prohibiting
all programs that cannot be proved safe, or running such
programs without any safety guarantee — are unsatisfactory,
and are also not in the spirit of Java.

If a program is written in the type-safe subset of Javari,
then static type-checking suffices. For our purposes, the
unsafe operation is the downcast, which converts a reference
to a superclass into a reference to a subclass. (In Java but
not in Javari, these can also appear implicitly in certain uses
of arrays of references, for which Java’s covariant array types
prevent sound static type-checking.) Java inserts checks at
each down-cast (and array store), and throws an exception
if the down-cast fails.

Javari’s syntax for downcasting from a read-only type to a
mutable type is “(mutable)expression”. Regular Java-style
casts may not be used to convert from read-only to mutable
types. Special downcast syntax highlights that the cast is
not an ordinary Java one, and makes it easy to find such
casts in the source code.

Downcasting from a read-only to a mutable type triggers
the insertion of run-time checks, wherever a modification
(an assignment) may be applied to a reference that has had
readonly cast away. (In the worst case, every assignment in
the program, including libraries, must be checked.) The run-
time checks guarantee that even if a read-only reference flows
into a mutable reference, it is impossible for modifications to
occur through the mutable reference. Thus, Javari soundly
maintains its guarantee that a read-only reference cannot be
used, directly or indirectly, to modify its referent.

A previous paper [5] describes an efficient technique for
checking these casts at run time. It associates a “readonly”
Boolean with each reference (not with each object). The
readonly Boolean is true for each non-read-only reference
derived from a readonly reference as a result of a downcast.
The readonly Boolean is set when readonly is cast away,
is propagated by assignments, and is checked whenever a
modification (i.e., a field update) is performed on a non-
read-only reference.

The following example illustrates the behavior of run-time
casts.

class Foo {
Date d;
void setD() /*mutable*/ {

d = new Date();
}

}

Foo f1 = new Foo();
readonly Foo rf = f1;

Foo f2 = (mutable) rf;

f1.d = new Date(); // OK
f2.d = new Date(); // run-time error
f1.setD(); // OK
f2.setD(); // run-time error: at the second line of setD

Just as most new Java 5 code contains few Java casts, we
believe that well-written new Javari code will contain few
mutability downcasts. In a previous experiment, there was
approximately one cast per 1000 lines [5]. However, that
experiment annotated existing code (without improving its
design) and used an earlier dialect of the Javari language
that lacks many features that make casts less necessary.

224

8. Related work

8.1 Javari2004
The Javari language presented in this paper is an evolu-

tionary improvement of an earlier dialect [5], which we call
“Javari2004”.

Experience with 160,000 lines of Javari2004 code indicated
that Javari2004 is an easy-to-use language that retains the
flavor and style of Java while providing substantial bene-
fits, including improved documentation, extended ability to
reason about code, and detecting errors in well-tested code.
However, the Javari2004 design is deficient in a number of
ways.

1. Conflates notions of assignability and mutability
2. Incompatible with generic types
3. Inflexible multi-dimensional arrays
4. Extra-linguistic macro-expansion templates
5. No support for reflection and serialization
6. No formal type rules or type soundness proof

The current Javari language corrects these problems. The
changes are significant but are relatively small from the
point of view of a user: most uses of the language, and
its overall character, remain the same.

Javari2004’s mutable keyword declares that a field is both
assignable and mutable: there is no way to declare that a
field is only assignable or only mutable. Javari’s assignable

and mutable keywords (section 3.3.2) highlight the orthogo-
nality of assignability and mutability, and increase the ex-
pressiveness of the language. See appendix A for examples
of the use of assignable and mutable.

This paper provides a detailed treatment of generic classes
that smoothly integrates reference immutability into them.
Javari2004 does not supports generic classes, though the
OOPSLA 2004 paper speculates about a macro expansion
mechanism that is syntactically, but not semantically, sim-
ilar to the way that Java 5 treats type parameters. Java 5
compiles type parameters via type erasure, but Javari2004
treated the mutability parameters (which appeared in the
same list as the type parameters) via code duplication; this
distinction complicates implementation, understanding, and
use.

Javari2004 also proposed that a generic class could declare
whether a field whose type is a type parameter is a part of
the object’s abstract state. We have discovered that such
a declaration makes no sense. For a field whose type is a
type parameter to be a part of the object’s abstract state, it
must be this-mutable; however, such a field cannot be this-
mutable (section 3.2). Javari also disallows type parameters
be modified with the mutable keyword (section 3.4).

As with generic classes, Javari permits programmers to in-
dependently specify the mutability of each level of an array
(section 3.5). By contrast, Javari2004’s specification states:
“readonly int[][] and readonly (readonly int[]) are equiv-
alent,” forbidding creation of a read-only array of mutable
items.

Javari2004 integrated the syntax for templating a method
over mutability with the syntax for Java 5’s generic types.
Whether a parameter is intended to be a normal type param-
eter or a mutability type parameter must be inferred from
its usage, greatly complicating a compiler (and the proto-
type Javari2004 implementation required distinct syntax to
ease the compiler’s task [4, 5]).

Furthermore, Javari2004 allows declaring a multiple mu-
tability type parameters. As noted in section 5, only a single
mutability type parameter is sufficient, so Javari uses a much
simpler mechanism (romaybe) for indicating a variable mu-
tability. This new approach highlights the orthogonality of
the Java 5’s generic types and Javari’s mutability polymor-
phism for methods. Furthermore, it does not require any
run-time representation of the polymorphism.

Reflection and serialization create objects whose types are
not known to the static type checker. In Javari2004 (as
in many other proposed type systems for Java), reflection
and serialization create loopholes in the type system. The
current Javari language is sound with respect to reflection
and serialization, by introducing quick, local checks that can
be performed at run time. See section 6.

Javari2004’s type-checking rules [5, 4] are stated, for the
full Javari2004 language (including inner classes and other
Java idiosyncrasies) in the semi-formal style of the Java Lan-
guage Specification [19]. This formulation is natural for
many Java programmers, but it unsatisfying to others. This
paper formalizes a core calculus for the Javari language. It
builds on Featherweight Generic Java [20], adding side ef-
fects and assignability and mutability type modifiers. By
presenting the typing rules for a language that is stripped to
the bare essentials, we have made it easier to grasp the key
features of Javari. Equally importantly, the formalization
enables a type soundness proof for the Javari type system.

8.2 Other immutability proposals
Many other researchers have noticed the need for a mecha-

nism for specifying and checking immutability. This section
discusses other proposals and how ours differs from them.

Similarly to Javari, JAC [21] has a readonly keyword in-
dicating transitive immutability, an implicit type readonly T

for every class and interface T defined in the program, and a
mutable keyword. However, the other aspects of the two lan-
guages’ syntax and semantics are quite different. For exam-
ple, JAC provides a number of additional features, such as
a larger access right hierarchy (readnothing < readimmutable

< readonly < writeable) and additional keywords (such
as nontransferrable) that address other concerns than im-
mutability. The JAC authors propose implementing JAC by
source rewriting, creating a new type readonly T that has as
methods all methods of T that are declared with the keyword
readonly following the parameter list (and then compiling
the result with an ordinary Java compiler). However, the
return type of any such method is readonly. For example,
if class Person has a method public Address getAddress()

readonly, then readonly Person has method public readonly

Address getAddress() readonly. In other words, the return
type of a method call depends on the type of the receiver
expression and may be a supertype of the declared type,
which violates Java’s typing rules. Additionally, JAC is ei-
ther unsound for, or does not address, arrays of readonly ob-
jects, casts, exceptions, inner classes, and subtyping. JAC
readonly methods may not change any static field of any
class. The JAC paper suggests that readonly types can be
supplied as type variables for generic classes without change
to the GJ proposal, but provides no details. By contrast to
JAC, in Javari the return type of a method does not depend
on whether it is called through a read-only reference or a
non-read-only one. Javari obeys the Java type rules, uses
a type checker rather than a preprocessor, and integrates

225

immutability with type parameterization. Additionally, we
have implemented Javari and evaluated its usability [5].

The above comments also explain why use of read-only
interfaces in Java is not satisfactory for enforcing reference
immutability. A programmer could define, for every class
C, an interface RO C that declares the readonly methods and
that achieves transitivity through changing methods that re-
turned (say) B to return RO B. Use of RO C could then replace
uses of Javari’s readonly C. This is similar to JAC’s ap-
proach and shares similar problems. For instance, to permit
casting, C would need to implement RO C, but some method
return and argument types are incompatible. Furthermore,
this approach does not allow readonly versions of arrays or
even Object, since RO Object would need to be implemented
by Object. It also forces information about a class to be
maintained in two separate files, and it does not address
run-time checking of potentially unsafe operations or how to
handle various other Java constructs. Javari sidesteps these
fundamental problems by extending the Java type system
rather than attempting to work within it.

Skoglund and Wrigstad [34] take a different attitude to-
ward immutability than other work: “In our point of [view],
a read-only method should only protect its enclosing ob-
ject’s transitive state when invoked on a read reference but
not necessarily when invoked on a write reference.” A read

(read-only) method may behave as a write (non-read-only)
method when invoked via a write reference; a caseModeOf

construct permits run-time checking of reference writeabil-
ity, and arbitrary code may appear on the two branches.
This suggests that while it can be proved that read refer-
ences are never modified, it is not possible to prove whether
a method may modify its argument. In addition to read
and write references, the system provides context and any

references that behave differently depending on whether a
method is invoked on a read or write context. Compared to
this work and JAC, Javari’s type parameterization gives a
less ad hoc and more disciplined way to specify families of
declarations.

The functional methods of Universes [28] are pure meth-
ods that are not allowed to modify anything (as opposed to
merely not being allowed to modify the receiver object).

Pechtchanski and Sarkar [31] provide a framework for im-
mutability specification along three dimensions: lifetime,
reachability, and context. The lifetime is always the full
scope of a reference, which is either the complete dynamic
lifetime of an object or, for parameter annotations, the du-
ration of a method call. The reachability is either shallow
or deep. The context is whether immutability applies in
just one method or in all methods. The authors provide
5 instantiations of the framework, and they show that im-
mutability constraints enable optimizations that can speed
up some benchmarks by 5–10%. Javari permits both of the
lifetimes and supplies deep reachability, which complements
the shallow reachability provided by Java’s final keyword.

Capabilities for sharing [10] are intended to generalize
various other proposals for immutability and uniqueness.
When a new object is allocated, the initial pointer has 7
access rights: read, write, identity (permitting address com-
parisons), exclusive read, exclusive write, exclusive identity,
and ownership (giving the capability to assert rights). Each
(pointer) variable has some subset of the rights. These ca-
pabilities give an approximation and simplification of many
other annotation-based approaches.

Porat et al. [32] provide a type inference that determines
(deep) immutability of fields and classes. (Foster et al. [16]
provide a type inference for C’s (non-transitive) const.) A
field is defined to be immutable if its value never changes
after initialization and the object it refers to, if any, is im-
mutable. An object is defined to be immutable if all of
its fields are immutable. A class is immutable if all its in-
stances are. The analysis is context-insensitive in that if a
type is mutable, then all the objects that contain elements
of that type are mutable. Libraries are neither annotated
nor analyzed: every virtual method invocation (even equals)
is assumed to be able to modify any field. The paper dis-
cusses only class (static) variables, not member variables.
The technique does not apply to method parameters or lo-
cal variables, and it focuses on object rather than reference
immutability, as in Javari. An experiment indicted that
60% of static fields in the Java 2 JDK runtime library are
immutable. This is the only other implemented tool for im-
mutability in Java besides ours, but the tool is not publicly
available for comparison.

Effect systems [23, 37, 29] specify what state (in terms of
regions or of individual variables) can be read and modified
by a procedure; they can be viewed as labeling (procedure)
types with additional information, which the type rules then
manipulate. Type systems for immutability can be viewed
as a form of effect system. Our system is finer-grained than
typical effect systems, operates over references rather than
values, and considers all state reachable from a reference.

Our focus in this paper is on imperative object-oriented
languages. In such languages, fields are mutable by default.
In our type system, when a type is read-only, the default
is for each field to be immutable unless the user explicitly
marks it as mutable. Functional languages such as ML [25]
use a different policy: they default all fields to being im-
mutable. OCaml [22] combines object-orientation with a
mutable annotation on fields (for example, references are im-
plemented as a one-field mutable record). However, without
a notion of read-only types, users are forced to hide mutabil-
ity via use of interfaces and subtyping, which is less flexible
and expressive than our proposal.

A programming language automatically provides a sort of
immutability constraint for parameters that are passed, or
results that are returned, by value. Since the value is copied
at the procedure call or return, the original copy cannot
be modified by the implementation or client, respectively.
Pass- and return-by-value is typically used for values that
are small. Some programming languages, such as Pascal and
Ada, permit variables to be explicitly annotated as in, out,
or in/out parameters; this is an early and primitive form of
compiler-enforced immutability annotation.

8.3 C++ const

C++’s const keyword is intended to aid in interfaces, not
symbolic constants [36]. Our motivation is similar, but our
notion of immutability, and our type system, differ from
those of C++, thus avoiding the pitfalls that led Java’s de-
signers to omit const.

Because of numerous loopholes, the const notation in C++
does not provide a guarantee of immutability even for ac-
cesses through the const reference. An unchecked cast can
remove const from a variable, as can (mis)use of type system
weaknesses such as unions and varargs (unchecked variable-
length procedure arguments).

226

C++ permits the contents of a read-only pointer to be
modified: read-only methods protect only the local state of
the enclosing object. To guarantee transitive non-mutability,
an object must be held directly in a variable rather than in a
pointer. However, this precludes sharing, which is a serious
disadvantage. Additionally, whereas C++ permits specifi-
cation of const at each level of pointer dereference, it does
not permit doing so at each level of a multi-dimensional ar-
ray. Finally, C++ does not permit parameterization of code
based on the immutability of a variable.

By contrast to C++, Javari is safe: its type system con-
tains no loopholes, and its downcast is dynamically checked.
Furthermore, it differs in providing guarantees of transitive
immutability, and in not distinguishing references from ob-
jects themselves; these differences make Javari’s type system
more uniform and usable. Unlike C++, Javari permits mu-
tability of any level of an array to be specified, and permits
parameterization based on mutability of a variable. Javari
also supports Java features that do not appear in C++, such
as nested classes.

Most C++ experts advocate the use of const (for ex-
ample, Meyers advises using const wherever possible [24]).
However, as with many other type systems (including those
of C++ and Java), some programmers feel that the need
to specify types outweighs the benefits of type checking.
At least three studies have found that static type check-
ing reduces development time or errors [27, 18, 33]. We are
not aware of any empirical (or other) evaluations regarding
the costs and benefits of immutability annotations. Java
programmers seem eager for compiler-checked immutabil-
ity constraints: as of March 2005, support for const is the
second most popular Java request for enhancement. (See
http://bugs.sun.com/bugdatabase/top25_rfes.do. The most
popular request is “Provide documentation in Chinese.”)

A common criticism of const is that transforming a large
existing codebase to achieve const correctness is difficult,
because const pervades the code: typically, all (or none) of
a codebase must be annotated. This propagation effect is
unavoidable when types or externally visible representations
are changed. Inference of const annotations (such as that
implemented by Foster et al. [16]) eliminates such manual
effort. Even without a type inference, we found the work
of annotation to be greatly eased by fully annotating each
part of the code in turn while thinking about its contract or
specification, rather than inserting partial annotations and
attempting to address type checker errors one at a time. The
proper solution, of course, is to write const annotations in
the code from the beginning, which takes little or no extra
work.

Another criticism of C++’s const is that it can occasion-
ally lead to code duplication, such as the two versions of
strchr in the C++ standard library. Mutability templates
(section 5) make the need for such duplication rare in Javari.
Finally, the use of type casts (section 7.5) permits a pro-
grammer to soundly work around problems with annotating
a large codebase or with code duplication.

8.4 Related analyses
Reference immutability can help to prevent an important

class of problems, in a simple and intuitive way. However, it
is no panacea. Other techniques can address some of these

issues, and there are many software engineering challenges
that reference immutability does not address. We mention
just a sample of other techniques.

Boyland [9] observes that mutational representation expo-
sure (in which external code can corrupt a data structure)
and observational exposure (in which external code can ob-
serve an internal representation changing) are duals: in each
case, modifications on one side of an abstraction boundary
are observable on the other. Reference immutability does
not address observational exposure. Boyland argues that a
language extension should not solve one of these problems
without also solving the other. However, the problems are
arguably different, since the latter is a result of a client im-
properly retaining a reference “too long,” and even a value
returned from size() may become out of date if it is re-
tained too long (though it will never become an invalid in-
teger). Mechanisms for solving all representation exposure
problems are less mature, and it may be valuable to solve
some important problems without solving them all.

Ownership types [11, 3, 7] provide a compiler-checked
mechanism for preventing aliasing to the internal state of
an object. As noted previously, alias, escape, and owner-
ship analyses can enhance reference immutability. How-
ever, they do not directly address issues of immutability,
including those not associated with abstraction boundaries.
Ownership type annotations such as rep describe whether
a reference is part of the object’s state, whereas mutabil-
ity annotations such as readonly indicate whether it can be
modified; each approach has its advantages, and it would
be interesting to combine them. Fractional permissions [8]
are another mechanism for helping to avoid representation
exposure. Finally, a type system based on linear logic [39,
14] can prevent multiple uses of a value, which may be use-
ful, for example, when preventing representation exposure
through constructor arguments.

9. Conclusion
We have presented a type system that is capable of ex-

pression, compile-time verification, and run-time checking of
reference immutability constraints. Reference immutability
guarantees that the reference cannot be used to perform any
modification of a (transitively) referred-to object. The type
system should be generally applicable to object-oriented lan-
guages, but for concreteness we have presented it in the con-
text of Javari, an extension to the full Java 5 language, in-
cluding generic types, arrays, reflection, serialization, inner
classes, exceptions, and other idiosyncrasies. Immutability
polymorphism (templates) for methods are smoothly inte-
grated into the language, reducing code duplication. We
have provided a set of formal type rules for a core calcu-
lus that models the Javari language, and we have used it to
prove type soundness for the type system.

Javari provides a practical and effective combination of
language features. For instance, we describe a type sys-
tem for reference rather than object immutability. Refer-
ence immutability is useful in more circumstances, such as
specifying interfaces, or objects that are only sometimes im-
mutable. Furthermore, type-based analyses can run after
type checking in order to make stronger guarantees (such
as object immutability) or to enable verification or transfor-
mation. The system is statically type-safe, but optionally
permits downcasts that transform compile-time checks into
run-time checks for specific references, in the event that a

227

programmer finds the type system too constraining. The
language is backward compatible with Java and the Java
Virtual Machine, and is interoperable with Java. Together
with substantial experience with a prototype for a closely re-
lated dialect [5], these design features provide evidence that
the language design is effective and useful.

Because our initial experience with Javari has been so
positive, we are implementing the current version of the
language, including type inference, in order to obtain more
experience. This will permit realistic evaluation of Javari’s
strengths and weaknesses.

Acknowledgments
Adrian Birka implemented the Javari2004 prototype compiler.
We are grateful to Joshua Bloch, John Boyland, Gilad Bracha,
Doug Lea, Sandra Loosemore, and Jeff Perkins for their com-
ments on the Javari design. The anonymous referees made helpful
comments on an earlier version of this paper. This work was sup-
ported in part by NSF grants CCR-0133580 and CCR-0234651,
DARPA contract FA8750-04-2-0254, and gifts from IBM and Mi-
crosoft.

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, Massachusetts, 1986.

[2] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio
Terauchi. Checking and inferring local non-aliasing. In
PLDI, pages 129–140, June 2003.

[3] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias annotations for program understanding.
In OOPSLA, pages 311–330, October 2002.

[4] Adrian Birka. Compiler-enforced immutability for the Java
language. Technical Report MIT-LCS-TR-908, MIT Lab for
Computer Science, June 2003. Revision of Master’s thesis.

[5] Adrian Birka and Michael D. Ernst. A practical type
system and language for reference immutability. In
OOPSLA, pages 35–49, October 2004.

[6] Joshua Bloch. Effective Java Programming Language
Guide. Addison Wesley, Boston, MA, 2001.

[7] Chandrasekhar Boyapati, Barbara Liskov, and Liuba
Shrira. Ownership types for object encapsulation. In
POPL, pages 213–223, January 2003.

[8] John Boyland. Checking interference with fractional
permissions. In SAS, pages 55–72, June 11–13, 2003.

[9] John Boyland. Why we should not add readonly to Java
(yet). In FTfJP, July 2005.

[10] John Boyland, James Noble, and William Retert.
Capabilities for sharing: A generalisation of uniqueness and
read-only. In ECOOP, pages 2–27, June 2001.

[11] David G. Clarke, James Noble, and John M. Potter. Simple
ownership types for object containment. In ECOOP, pages
53–76, June 2001.

[12] David Evans. Static detection of dynamic memory errors.
In PLDI, pages 44–53, May 1996.

[13] David Evans, John Guttag, James Horning, and
Yang Meng Tan. LCLint: A tool for using specifications to
check code. In FSE, pages 87–97, December 1994.

[14] Manuel Fähndrich and Robert DeLine. Adoption and focus:
Practical linear types for imperative programming. In
PLDI, pages 13–24, June 2002.

[15] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. In POPL, pages 171–183,
January 1998.

[16] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken.
A theory of type qualifiers. In PLDI, pages 192–203, June
1999.

[17] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken.

Flow-sensitive type qualifiers. In PLDI, pages 1–12, June
2002.

[18] John D. Gannon. An experimental evaluation of data type
conventions. CACM, 20(8):584–595, August 1977.

[19] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification. Addison Wesley, Boston, MA,
second edition, 2000.

[20] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
Featherweight Java: a minimal core calculus for Java and
GJ. ACM TOPLAS, 23(3):396–450, May 2001.

[21] Günter Kniesel and Dirk Theisen. JAC — access right
based encapsulation for Java. Software: Practice and
Experience, 31(6):555–576, 2001.

[22] Xavier Leroy. The Objective Caml system, release 3.07,
September 29, 2003. with Damien Doligez, Jacques
Garrigue, Didier Rémy and Jérôme Vouillon.

[23] John M. Lucassen and David K. Gifford. Polymorphic
effect systems. In POPL, pages 47–57, January 1988.

[24] Scott Meyers. Effective C++. Addison-Wesley, second
edition, 1997.

[25] Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. MIT Press, 1990.

[26] Robin Milner, Mads Tofte, Robert Harper, and Dave
MacQueen. The Definition of Standard ML (Revised). MIT
Press, 1997.

[27] James H. Morris. Sniggering type checker experiment.
Experiment at Xerox PARC, 1978. Personal
communication, May 2004.

[28] P. Müller and A. Poetzsch-Heffter. Universes: A type
system for alias and dependency control. Technical Report
279, Fernuniversität Hagen, 2001.

[29] F. Nielson and H. R. Nielson. Type and effect systems. In
Correct System Design, number 1710 in LNCS, pages
114–136. Springer-Verlag, 1999.

[30] Jens Palsberg. Type-based analysis and applications. In
PASTE, June 2001.

[31] Igor Pechtchanski and Vivek Sarkar. Immutability
specification and its applications. In Java Grande, pages
202–211, November 2002.

[32] Sara Porat, Marina Biberstein, Larry Koved, and Bilba
Mendelson. Automatic detection of immutable fields in
Java. In CASCON, November 2000.

[33] Lutz Prechelt and Walter F. Tichy. A controlled
experiment to assess the benefits of procedure argument
type checking. IEEE TSE, 24(4):302–312, April 1998.

[34] Mats Skoglund and Tobias Wrigstad. A mode system for
read-only references in Java. In 3rd Workshop on Formal
Techniques for Java Programs, June 18, 2001. Revised.

[35] Daniel Dominic Sleator and Robert Endre Tarjan.
Self-adjusting binary search trees. Journal of the ACM,
32(3):652–686, July 1985.

[36] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, Boston, MA, special edition, 2000.

[37] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect
discipline. In LICS, pages 162–173, June 1992.

[38] Matthew S. Tschantz and Michael D. Ernst. Javari:
Adding reference immutability to Java. Technical report,
MIT Lab for Computer Science, August 2005.

[39] Philip Wadler. Linear types can change the world! In IFIP
TC 2 Working Conference on Programming Concepts and
Methods, pages 347–359, Sea of Galilee, Israel, April 1990.

A. Assignability and mutability examples
As shown in figure 2, each instance field can be declared with

one of three assignabilities (assignable, unassignable, or this-as-
signable) and also with one of three mutabilities (mutable, read-
only, and this-mutable). This appendix illustrates the use of
Javari’s reference immutability system through examples of all
nine possibilities. As with the rest of this paper, we omit most
visibility modifiers (public, private, . . .) for brevity. Further-

228

more, for brevity this appendix does not explicitly address uses
of type parameters.

A.1 this-assignable, this-mutable
This is the standard type for a field in a possibly-mutable class.

All fields not declared final in Java code are interpreted as this
type.

Suppose there is a class Wheel that is mutable (its pressure can
change) and a class Bicycle that contains two Wheels that may
be changed (different wheels for different terrains).

class Wheel {
int pressure;

}

class Bicycle {
Wheel frontWheel;
...

}

A read-only reference to a Bicycle cannot be used to modify
the Bicycle by reassigning frontWheel or mutating frontWheel
by reassigning pressure. A mutable reference can modify Bicycle
by reassigning frontWheel or changing its pressure.

A.2 final, this-mutable
Consider a file abstraction that contains a StringBuffer hold-

ing the contents of the file.

class MyFile {
final StringBuffer contents;

}

The contents of a read-only file cannot be changed. contents
should not be reassigned, and StringBuffer operations can be
used to alter non-read-only files’ contents as needed.

A.3 assignable, this-mutable
assignable fields can be used for caching. In the case of an

assignable this-mutable field, it is caching an object that is this-
mutable. For example, recall the Bicycle example from above.
Suppose one wished to provide a method that returned the wheel
with the greatest aerodynamic drag. If this method was costly
to execute, one would wish to cache the result until one of the
Wheels changed.

class Bicycle {
Wheel frontWheel;
Wheel backWheel;

private assignable Wheel mostDrag;
romaybe Wheel mostDrag() romaybe {

if (mostDrag == null || /*wheels have changed*/) {
mostDrag = ...;

}
return mostDrag;

}
}

Even when the reference to the Bicycle is read-only, mostDrag
can be assigned with the result of the method. The cache and
what it is caching — one of the Wheels —are this-mutable.

A.4 this-assignable, readonly
Consider a class, ChessPiece, that represents a chess piece in-

cluding the piece’s position on a board. The position field, pos,
should be modifiable for mutable references but not for read-only
references. If the programmer wishes to reassign pos, instead of
mutating the object assigned to the field, each time the piece is
moved, then the field should be declared to be this-assignable and
read-only.

class ChessPiece {
readonly Position pos;

readonly Position getPosition() readonly {
return pos;

}

void setPosition(readonly Position pos) {
this.pos = pos;

}
}

A.5 final, readonly
final readonly fields are useful for state that should never

change, including constants. A ChessPiece’s color should never
change.

class ChessPiece {
final readonly Color color;

}

A.6 assignable, readonly
Suppose that ChessPiece has a costly method, bestMove, that

returns the best possible move for that piece. Since the method
is costly, one would like the method to cache its result in case it is
called again (before anything on the board has altered). Calling
the bestMove method does not change the abstract state of the
class, so it should be a readonly method. However, to allow the
bestMove method to assign to the field that caches its result, the
field must be declared assignable. Furthermore, since there is
never a reason to mutate the position calculated, the field should
be declared readonly to avoid programmer error.

class ChessPiece {
private assignable readonly Position bestMove;
readonly Position bestMove() readonly {

if ((bestMove == null) || /* board changed */) {
bestMove = ...;

}
return bestMove;

}
}

A.7 this-assignable, mutable
Suppose one wishes to represent a set by an array and, for

efficiency, move the last successfully queried item to the beginning
of the array. The author must declare the array to be mutable to
allow moving the last successfully queried item to the beginning
of the array even when the set is read-only. The array must be
declared this-assignable to allow reassigning the array when it
reaches its capacity due to calls to addElm.

class MoveToFrontSet {
private mutable Object[] elms;
private int size;
boolean contains(Object obj) readonly {

for (int i = 0; i < size; i++) {
if (elms[i].equals(obj)) {

// should also check for null
moveToFront(elms, i);
return true;

}
}
return false;

}

// Be sure to not declare method readonly
void add(Object elm) {

if (elms.length == size) {
Object[] tmp = new Object[2*elms.length];
for (int i = 0; i < elms.length; i++) {

tmp[i] = elms[i];
}
elms = tmp;

}
elms[size] = elm;
size++;

}

229

// Be sure to return readonly Object[]
readonly Object[] toArray() readonly {

return elms;
}

}

The order that the elements appear in elms is not a part of the
abstract state of the Set object; however, the fact that they are
contained by the array assigned to elms is a part of the abstract
state. This relationship is too complicated for the type system to
capture, so the field must be declared mutable.

elms must be mutable so that the elements can be rearranged
even when the instance of Set is read-only. Unfortunately, meth-
ods that add or delete elements could be declared readonly and
still type check. Therefore, when writing code such as this, the
programmer must be careful not to declare those methods read-
only and to ensure that a mutable reference to elms does not
escape.

A.8 final, mutable
Suppose one wishes to monitor the users who access a file. A

simple way to do this is to require a user ID to be passed as an
argument to the file’s accessors and then record the ID in a set.

class File {
final mutable Set<UserID> accessedFile;
StringBuffer contents;

readonly StringBuffer
getContents(UserID id) readonly {

accessed.add(id);
return contents;

}
}

The set accessedFile must be mutable so that a users ID may
be added to it within the read-only method getContents.

A.9 assignable, mutable
Consider an implementation of a splay tree [35]:

class SplayTree<T extends readonly Comparable> {

// The internal representation of a splay tree
assignable mutable BinarySearchTreeNode<T> root;

// Adjusts the tree so that newRoot becomes the root.
splay(BinarySearchTreeNode newRoot) { ... }

void insert(T val) { root.insert(val); }
void delete(T val) { root.delete(val); }

boolean find(T val) readonly {
BinarySearchTreeNode node = root.find(val);
if (node == null) {

return false;
} else {

splay(node);
return true;

}
}

}

In this example assignable and mutable are used because the
type system is unable to capture how the abstract state of the
class relates to its data structure at the field root. Without the

assignable keyword, the root of the tree could not be reassigned
by the splay method. The mutable keyword is also needed be-
cause the splay method needs to mutate the nodes rooted at root
while rearranging the nodes within the tree.

B. Annotations
It is impractical to implement reference immutability using an-

notations instead of direct changes to the syntax of the Java lan-
guage. This section discusses the issues involved. We believe that
Javari should either use all keywords or all annotations; it would
be confusing, and would offer little benefit, to mix the two.

Use of annotations is attractive. It ensures that Javari code
is valid Java code. This guarantees interoperability with exist-
ing tools: Javari code can be compiled using any Java compiler,
then run either by a JVM whose byte code verifier checks the
immutability types encoded in the annotations, or by any JVM
(losing the benefits of immutability checking). The Javari sys-
tem could additionally work as a stand-alone type-checker. There
would be no worries about breaking existing code that uses Javari
keywords as identifiers. Avoiding changes to the programming
language could encourage programmers to adopt Javari.

Unfortunately, the current Java annotation system is too weak
to use to implement a reference immutability system. There are
two main problems.

1. Annotations can only be applied to type declarations, not
to other uses of types.

(a) Annotations cannot be applied to a cast.
(b) Annotations cannot be applied to the receiver (this) of

a method. This could be worked around with a new an-
notation such as @rothis, which is syntactically applied
to the method return type but semantically applies to
the receiver type.

(c) Annotations cannot be inserted at arbitrary locations
within arrays. To express “(readonly Date[])[][]”,
one would need to write something like the (unintu-
itive) annotation @readonly(2) Date[][][] where the
integer argument to the annotation indicates at what
level the read-only modifier should be applied.

(d) Annotations are not permitted on type parameters, so
expressing this type would be difficult:
Map<List<readonly Date>, readonly Set<Number>>.

2. Annotations on local variables are not recorded within the
classfile by the javac compiler. Therefore, if we wish to
use annotations and perform type checking on classfiles, we
would be required to extend the annotation system. This
would require changing the compiler, possibly by recording
local variables’ annotations within the local variable symbol
table. A compiler change eliminates one of the benefits of
using annotations: not requiring people to use a new com-
piler to check reference immutability constraints. (But the
Javari code would remain backward-compatible with other
Java compilers.)

A language change could still achieve backward compatibility
with standard Java compilers by providing a special comment syn-
tax where any comment that begins with “/*=” is considered as
part of the code by the Javari compiler. (This approach was taken
in LCLint [13], for example.) This feature allows the program-
mer to annotate an existing Java program with Javari’s keywords
without losing the ability to compile that program with a normal
Java compiler. That comment mechanism could be supported by
external tools, but should not be part of Javari proper.

230

