A Practical Type System and Language for Reference Immutability

Adrian Birka Michael D. Ernst

MIT Computer Science and Atrtificial Intelligence Lab
Cambridge, MA 02139 USA
{adbirka,mernst} @csail.mit.edu

Abstract 1. Introduction

This paper describes a type system that is capable of expressing This paper presents a type system for specifying reference im-
and enforcing immutability constraints. The specific constraint ex- mutability: the transitively reachable state of the object to which
pressed is that the abstract state of the object to which an immutablea given reference refers cannot be modified using the reference.
reference refers cannot be modified using that reference. The ab-The transitively reachable state is the object and all state reachable
stract state is (part of) the transitively reachable state: that is, the from it by following references. A type system enforcing reference
state of the object and all state reachable from it by following ref- immutability has a number of benefits: it can increase expressive-
erences. The type system permits explicitly excluding fields or ob- ness, enhance program understanding and reasoning by providing
jects from the abstract state of an object. For a statically type-safe €xplicit, machine-checked documentation, save time by prevent-
language, the type system guarantees reference immutability. If theing and detecting errors that would otherwise be very difficult to
language is extended with immutability downcasts, then run-time track down, or enable analyses and transformations that depend on
checks enforce the reference immutability constraints. compiler-verified properties.

In order to better understand the usability and efficacy of thetype ~ Our type system differs from previous proposals (for Java, C++,
system, we have implemented an extension to Java, called Javariand other languages) in a number of ways. It offers reference, not
that includes all the features of our type system. Javari is interop- object, immutability; reference immutability is more flexible, as it
erable with Java and existing JVMs. It can be viewed as a proposal provides useful guarantees even about code that manipulates muta-
for the semantics of the Jaeanst keyword, though Javari's syn- ble objects. For example, many objects are modified during a con-
tax usegeadonly instead. This paper describes the design and struction phase but not thereafter, or an interface can specify that a
implementation of Javari, including the type-checking rules for the method that receives an immutable reference as a parameter does
language. This paper also discusses experience with 160,000 linegi0t modify the parameter through that reference, or that a caller
of Javari code. Javari was easy to use and provided a number ofdoes not modify a return value. Furthermore, a subsequent analy-

benefits, including detecting errors in well-tested code. sis can strengthen reference immutability into stronger guarantees,
such as object immutability, where desired.
Categories and Subject Descriptors Our system offers guarantees for the entire transitively reachable

. state of an object. A programmer may use the type system to sup-
D.3.3 [Programming language$: Language Constructs and Fea- port reasoning about either the representation state of an object or
tures—elata typesF.3.1 [Logics and meanings of program§ Spec- jts abstract state; in order to support the latter, parts of a class can

ifying and Verifying and Reasoning about Programs; D.Pfof be marked as not part of its abstract state. The abstract state is (part

gramming techniqueg: Object-oriented programming of) the transitively reachable state: that is, the state of the object
and all state reachable from it by following references. Our type

General Terms system permits excluding specific fields from the abstract state.

Our system combines static and dynamic checking in a safe and
expressive way. Dynamic checking is necessary only for programs
that use immutability downcasts, but such downcasts can be con-

Languages, theory, experimentation

Keywords venient for interoperation with legacy code or to express facts that
type system, verification, immutabilitsgadonly , mutable ,Javari, ~ cannot be proved by the type system. Our system also offers pa-
Javaconst rameterization over immutability.

A type system is of limited interest if programmers cannot ef-
fectively use it. In the absence of experience using an implementa-
tion, the practicality of previous proposals is speculative. We have
designed and implemented Javari (which stands for “Java with ref-
erence immutability”), an extension to the Java language that per-
mits the specification and enforcement of reference immutability
Permission to make digital or hard copies of all or part of this work for CONStraints. Javari specifies immutability constraints using the key-
personal or classroom use is granted without fee provided that copies arewordreadonly . The language is backward compatible with Java.
not made or distributed for profit or commercial advantage and that copies In addition, Javari code is interoperable with legacy Java code, and
bear this notice and the full citation on the first page. To copy otherwise, to runs on an unmodified Java Virtual Machine. The Javari compiler
republish, to post on servers or to redistribute to lists, requires prior specific jg publicly available ahttp://pag.csail.mit.edu/javari/

permission and/or a fee. . . : ’
OOPSLA040ct. 24-28, 2004, Vancouver, British Columbia, Canada. We obtained experience with Javari by writing code in it, as well

Copyright 2004 ACM 1-58113-831-8/04/001G55.00. as by annotating Java code wittadonly to convert it to Javari.

35

/** This class represents a set of integers. **/
public class IntSet {

/** Integers in the set with no duplications. **/
private int[] ints;

/** Removes all elements from this that
* are not in set, without modifying set. **/
public void intersect(IntSet set) {

}

/** Makes an IntSet initialized from an int[].
* Throws BadArgumentException if there are
* duplicate elements in the argument ints. **/
public IntSet(int[] ints) {
if (hasDuplicates(ints))
throw new BadArgumentException();
this.ints = ints;

to return a copy of the arragts [5]. Our system permits a better
solution:

public readonly int[] toArray() {

Thereadonly keyword ensures that the calleriofSet.toArray

cannot modify the returned array, thus permitting the simple and
efficient implementation of the method to remain in place without
exposing the representation to undesired chahges.

Representation exposure occurs when implementation details are
accessible to clients. Java’s access control mechanisms (for exam-
ple, theprivate keyword) partly address this problem; Javari pre-
vents some additional problems. A system for immutability can
address the serious problemmiitationalrepresentation exposure,
which permits modification of values and violation of data structure

} invariants, but is not relevant ibservationatepresentation expo-
sure, which may be innocuous or desirable. For example, in the
/** Number of distinct elements of this. **/ IntSet example of figure 1, theArray accessor method exists

public int size() {

to provide external access to the object’s state.
return ints.length;

In the IntSet example, the content of the private data mem-

} berints is externally accessible through the reference passed to
public int] toArray() { the constructomtSet(int[])_ . C_:Iier_1t code can directly change
return ints; the state of thentSet object, which is undesirable. Even worse,
} client code can violate the representation invariant and puit&et
} object into an inconsistent state. For example, the client code could

put a duplicate integer into the arrays , which would cause the
methodintSet.size() to return an incorrect value.

Javari would catch this representation exposure at compile time.
Since the constructor ofitSet is not intended to change the ar-
gumentints , theintSet programmer would write

Figure 1: A partial implementation of a set of integers.

In total, we have over 160,000 lines of Javari code, including the

Javari compiler itself. This experience helped us design language

features for Javari to make it more useful and easier to use. In

addition, the experience helped clarify the benefits of using Javari. and the compiler would issue an error at the attempt to agstign
This paper is organized as follows. Section 2 gives examples of tothis.ints , preventing théntSet programmer from forgetting

the use of immutability constraints. Section 3 describes the Javarito do a deep copy in the constructor.

language, and section 4 presents our type-checking rules in the con-

text of Javari. Section 5 relates our experience with using Javari. 3. The Javari |anguage

Finally, section 6 surveys related work, and section 7 concludes.

public IntSet(readonly int[] ints) {

The Javari language extends Java with explicit mechanisms for
specifying immutability constraints, compile-time type checking to
2. Examples guarantee those constraints, and run-time checking for programs

Reference immutability provides a variety of benefits in different that use potentially unsafe casts.
situations. This section gives three simple examples of immutabil- Javari adds two new keywords to Jawsadonly ~andmutable .2
ity constraints. The examples show enforcement of interface con- The readonly keyword specifies immutability constraints. The
tracts, granting clients read-only access to internal data, and pre-mutable keyword indicates a field that is not part of the abstract
vention of certain representation exposures. (Section 3.8 discussestate of an object, or downcasts from read-only types to non-read-
how analyses can provide guarantees such as these by building oronly types. The keywords are used as follows:
reference immutability, possibly with the assistance of a limited es- readonly is used in three ways:
cape or alias analysis.) We use a class representing a set of integers -
(figure 1) to illustrate the problems and their solutions. 1. Asatype modifier: For every Java reference typeadonly

A method contract may state that the method does not modify T is a valid type in Javari (and is a supertypeTof and a
some of its arguments, as is the case witBet.intersect() variable of such a type is known as a read-only reference.
Compiler enforcement of this contract guarantees thatimplementersi The returned array is aliased by ties field, sointSet code
do not inadvertently violate the contract and permits clients to de- can still change it even if external code cannot. The (unspecified)
pend on this property. Javari allows the designenisfet to write semantics ofioArray may permit this. The method specifica-

tion might note that the returned reference reflects changes to the
public void intersect(readonly IntSet set) { IntSet ; alternately, the method specification, or an external analy-
sis, might require that the result is used before the next modification

and the compiler verifies the method’s specification about not mod- (Q)f thelntSet
ifying set . leiva reservesk, but d(()jes n(:t. ctLIJrrentIy use, th(\aN ke;r/]mmmi r,]so .
: only one new keyword is strictly necessary. We have chosen to
Accessor methqu often return data that already eX|st§ as part .« dice the new keyworckadonly instead of reusingonst
of the representation of the module. For example, consider the for two reasons. First, we believe thatdonly better describes
toArray method of theintSet class. It is simple and efficient, the concept of reference immutability. Second, we wish to avoid
but it exposedntSet ’s representation. A Java solution would be confusion with the C++ keywordonst (see section 6.1).

36

Read-only references cannot be used to change the state of StringBuffer buf = robuf; would cause a compile-time

the object or array to which they refer. A read-only reference error.
type can be used in a declaration of any variable, field, pa- e If a is a read-only reference, ardis a field of an object
rameter, or method return type. A read-only reference type referred to bya, thena.b cannot be assigned to and is a
can also appear in a type-cast. See section 3.1. read-only reference.

2. As amethod/constructor modifieeadonly can be used af- e Only read-only methods (section 3.2) can be called on read-
ter the parameter list of a non-static method declaration (and only references.

likewise for an inner class constructor), making that method
a read-only method. Read-only methods cannot change theF
state of the receiver {tiis ") object. Only read-only meth-
ods can be called through a read-only reference. See section
3.2.

3. As a class modifiemeadonly can be used as a modifier in
a class or interface declaration. It specifies that instances of
that class or interface are immutable. See section 3.3.

Javari also allows declarations of arrays of read-only references.
or example(readonly StringBuffer)[] means an array of
read-only references ®tringBuffer objects. For such an array,
assignments into the array are allowed, while modifications of ob-
jects stored in the array are not. This is in contrasietalonly
StringBuffer[] , which specifies a read-only reference to an ar-
ray of StringBuffer s, and disallows both array element assign-
ment and modification of objects stored in the array.
mutable is used in two ways: A non-read-only reference can be implicitly converted to a read-

o . . only one by an assignment, including implicit assignment to param-

1. In a non-static field declaratiomutable = specifies that the g(ers during method or constructor invocations. A non-read-only

field is not part of the abstract state of the object. Muta- yeference can also be explicitly cast to a read-only one by using a
ble fields can be modified by read-only methods and through typecast with a type of the forireadonly T) . For example:

read-only references, while non-mutable fields cannot. See))
section 3.4. readonly StringBuffer robuf = new StringBuffer();

2. In a type castmutable converts a read-only reference to %ES?EUI%, buf = new StringBuffer(); oK
a non-read-only reference. Run-time checks are inserted to qp ¢ = (reédonly StringBuffer) buf, // OK
maintain soundness and enforce immutability at run time. buf = robuf; /I error

See section 3.6. buf = (StringBuffer) robuf; Il error

Javari supports type parameterization as a principled way to cre- See section 3.6 for more details about type casts.
ate related versions of code (section 3.5). Javari is backward com-
patible with Java: any Java program that uses none of Javari’'s key-‘?"2 Read_only methods and constructors
words is a valid Javari program, with the same semantics. Also, Read-only methods are methods that can be called through read-
Javari is interoperable with Java; Java and Javari code can call oneonly references. They are declared with the keywesttionly
another without recompilation (section 3.7). A postpass analysis immediately following the parameter list of the method. It is a
can build on Javari’'s guarantee of reference immutability in order compile-time error for a read-only method to change the state of
to make stronger guarantees about program behavior (section 3.8) the receiver object. For example, an appropriate declaration for the

StringBuffer.charAt method in Javari is:
3.1 Read-only references

A read-only reference is a reference that cannot be used to mod- _
ify the object to which it refers. A read-only reference to an object ~ Read-only constructors are constructors that can be called with
of type T has typereadonly T . For example, suppose a variable —enclosing instance given through a read-only reference. (The Java

public char charAt(int index) readonly

robuf is declared as Language Specification requires that a constructor for a (non-static)
_ inner class be called on an instance of the outer class; this instance
readonly StringBuffer robuf; is called the enclosing instance.) Read-only constructors are de-

clared with the keywordeadonly immediately following the pa-
rameter list of the constructor. It is a compile-time error for a read-
only constructor to change the state of the enclosing instance.

Read-only constructors can be used when the enclosing instance
is supplied through a read-only reference, as they promise not to
modify the enclosing object. Read-only constructors do not con-
strain the constructor’s effects on the object being constructed, nor
how the invoker uses the returned object.

Whether a method or constructor is read-only is part of its sig-
nature, and therefore it is possible to have two methods with the

enced object immutable (through that reference), but the variable same name and parameters, if one is rc_ead-only and the other is not.
Similarly, a read-only method declared in a subclass overloads (not

remains assignable. Using both keywords gives variables whose :
overrides) a non-read-only one of same name and parameters de-

transitively reachable state cannot be changed except through aclare din a suberclass. and vice versa
non+eadonly aliasing reference. P ' ’

The following rules for usage of read-only references (detailed 3.3 |mmutable classes
in section 4) ensure that_any code that qnly has access to read-only A class or an interface can be declared to be immutable via the
references to a given object cannot modify that object. readonly modifier in its declaratiofi. This means that all of its

* A read-only reference cannot be copied, either through as- s\yg yse the term “read-only type” to meamdonly T , for some

signment or by parameter passing, to a non-read-only ref- T and “immutable type” to mean a class or interface whose defini-
erence. In theobuf example above, a statement such as tion is marked withreadonly and which therefore is immutable.

Thenrobuf is a read-only reference toSringBuffer object; it
can be used only to perform actions on BtengBuffer object
that do not modify it. For examplepbuf.charAt(0) is valid,
but robuf.reverse() causes a compile-time error.

When a return type of a method is a read-only reference, the
code that calls the method cannot use the return value to modify
the object to which that value refers.

Note thatfinal andreadonly are orthogonal notions in a vari-
able declarationfinal makes the variable not assignable, but the
object it references is mutable, whileadonly makes the refer-

37

non-mutable non-static fields are implicitly read-only and final, and public <RO>
all of its non-static methods are implicitly read-only. In addition, RO List<RO Invariant> get(RO PptTopLevel ppt) RO;

if the class is an inner class, then all of its constructors are also)]) o
implicitly read-only. Java compiles generics via erasure (after type checking is com-

For an immutable class or interfateread-only and non-read- ~ Plete): the same bytecodes are used for all instantiations of the class

only references to objects of typeare equivalent. In particular, ~ ©F method. Our prototype compiler uses a different compilation
read-only references can be copied to non-read-only referencesStrategy (for immutability generics only): it duplicates the param-
something that is normally disallowed. Subclasses or subinterfaces€térized declaration. Care must be taken when dealing with the
of immutable classes and interfaces must be declared immutable different kinds of parameters —essentially, splitting them into pos-
Any instance field inherited by an immutable class or interface must Sibly overlapping parts and processing the parts separately. (First,
be either final and of read-only type, or mutable. Any instance duplicate code as necessary to eliminate all immutability parame-

method inherited by such a class or interface must be read-only. ~ terization, and then process the remaining parameters in the usual
way.) Likewise, when a cast changes both the Java type and whether

3.4 Mutable fields the type is read-only (section 3.6), the cast is converted into two

Mutable fields (declared with theutable modifier) are notcon- casts (one for the Java type and oneradonly), and each is
sidered to be part of the abstract state of an object. A mutable field Processed separately.
of an objectO can be changed through a read-only referena@.to
One use of mutable fields is to enable creation of read-only con- 3.6 Type casts
tainers that hold non-read-only elements. Another use of muta- EVvery non-trivial type system rejects some programs that are
ble fields is to cache results of read-only methods. For example, safe —they never perform an erroneous operation at run time —
this situation arises in the Javari compiler, where a name resolution but whose safety proof is beyond the capabilities of the type sys-

methodresolve() needs to cache the result of its computation. tem. Like Java itself, Javari allows such programs, but requires spe-
The solution looks somewhat like the following: cific programmer annotations (downcasts); those annotations trig-

ger Javari to insert run-time checks at modification points to guar-

class ASTName { antee that no unsafe operation is executed. Among other benefits,

|'o“rivate mutable Resolution res = null; programmers need not code around the type system’s constraints
public Resolution resolve() readonly { when they know their code to be correct, and interoperation with
if (res == null) legacy libraries is eased. The alternatives — prohibiting all pro-
res = doResolve(); // OK: res is mutable grams that cannot be proved safe (including many uses of arrays),
return res; or running such programs without any safety guarantee —are un-
} } satisfactory, and are also not in the spirit of Java.

_ _) If a program is written in the typesafe subset of Javari, then static
Without mutable fields, objects are unable to cache the results of type-checking suffices. For our purposes, the unsafe operation is
read-only methods, and consequently Javari would force the pro- the downcast, which converts a reference to a superclass into a ref-
grammer to either not label methods as read-only, or to take a sig-erence to a subclass. These can appear explicitly, and also in certain

nificant performance penalty. uses of arrays of references, for which Java’s covariant array types
Thereadonly , mutable , andfinal keywords capture distinct prevent sound static type-checking. An example of the latter, where

concepts. If a field is declared as botiutable andreadonly Bis a subtype of that defines_method , is

the transitive state of the object it refers to is unchangeable through

the field (because aéadonly), while the field itself is assignable B[] b_arr = new B[10];

(because ofmutable). If a field is declared as bothmutable All a_arr .

andfinal , it is not assignable (becausefofal), but the state 2 :rrz_”gwar/:fo'

of the object to which it refers is changeable through the field, a_ano] = a; ' /I ArrayStoreException

even when the field is accessed through a read-only reference (be- b_arr[0].b_method(); // statically OK

cause ofmutable). If a field is declared with all three keywords,

mutable has no effect. Java inserts checks at each down-cast (and array store), and throws

. . an exception if the down-cast fails.
3.5 Type parameterization JavariF’)s syntax for downcasting from a read-only type to a non-
Javari adopts the type (class and interface) and method param~ead-only type is(mutable) ~ expressioh Regular Java-style casts
eterization mechanisms of Java 1.5 [8], also known as “generics”. cannot be used to convert from read-only to non-read-only types.
Among other benefits, this feature reduces code duplication. For Special downcast syntax highlights that the cast is not an ordinary
example, it eases the definition of container classes, permitting Java one, and makes it easy to find such casts in the source code.
one definition ofvector to be instantiated either as a container (See section 5.1.)
of Object s or ofreadonly Object s, and either as a container Downcasting from a read-only to a non-read-only type, or poten-
whose abstract state includes the elements or excludes the elementsially storing a read-only reference in a non-read-only array, trig-
More importantly, parameterization permits a single method defini- gers the insertion of run-time checks, wherever a modification (an
tion to expand into multiple definitions that differ in the immutabil- assignment) may be applied to a reference that haseaadnly
ity of the parameters or of the method itself. cast away. The run-time checks guarantee that even if a read-only
Javari augments the generics of Java 1.5 to permit a type qualifierreference flows into a non-read-only reference, it is impossible for
(eitherreadonly or the empty type qualifier) as a type parameter. modifications to occur through the non-read-only reference. Thus,
This enables parameterization over whether a method is read-onlyJavari soundly maintains its guarantee that a read-only reference
(section 3.2). It also eases writing definitions in which references cannot be used, directly or indirectly, to modify its referent.
have different Java types but the same qualifier, such as this exam-

ple from thelnvMap class of Daikon (section 5.3):

38

3.6.1 Run-time checking Our main focus in this paper is the type system and its usability,
Conceptually, Javari's checking works in the following way. The Which are more important than run-time efficiency, and we have
system associates a single “readonly” Booleaywith each refer- not been hindered by these relatively small slowdowns. However,
encex (not with each object), regardless of the reference’s static We believe the optimizations listed above could substantially re-
type. Array references are treated similarly, but they need both a duce the overhead. Another approach is to modify the JVM di-
Boolean for the array and a Boolean for each reference element.rectly, rather than operating at the source level. For instance, we
The readonly Boolean is true for each non-read-only reference de-could place the readonly Boolean in an unused bit in Java refer-
rived from areadonly reference as a result of a downcast. ences. Such an approach would eliminate the need for new slots in
The readonly Boolean is set whesadonly is cast away, is Objects and for wrapper objects. No updating code would be nec-
propagated by assignments, and is checked whenever a modifica®Ssary for assignments: copying the reference would automatically
tion (i.., a field update) is performed on a non-read-only refer- COpYy the immutability Boolean. Checking code would still be re-
ence. Thdnstanceof operator checks the Boolean to determine 9uired, and the bit would need to be masked out when pointers are

whetherx instanceof mutable for x of non-read-only static dereferenced. Most seriously, a modified JVM would be required
type. in order to run Javari programs. We hope to investigate such opti-
The key rules for checking are as follows. [Tebe a typea and mizations in future work.

b be expressions, arfdbe a field name. First, each operation that - .

yields a reference is modified to also produce a readonly Boolean 3+ 7 Interoperability with Java

for that reference. Two such rules are Javari is interoperable with Java and existing JVMs. The lan-
@f 1o=are guage treats any Java method as a Javari method with no immutabil-
((mutable) a) . =true wherea is of read-only static type ity specification in the parameters or return type, or on the method

(and similarly for constructors, fields, and classes). Since the Javari

Second, each field update is modified to check the readonly Booleantype system does not know what a Java method can modify, it as-

for the reference being updated. The stateragnt b; becomes sumes that the method may modify anything.

This approach allows Javari to call Java code safely, without
if a xo then throw exception; any immutability guarantees being violated. However, in many
?éff)_ b; - b cases this analysis is over-conservative. For exanylect.to-

o o String() can safely be assumed to be a read-only method. There-
gore, Javari permits the user to specify alternative signatures for

Method calls are modeled as assignments from the actuals to th) s) X)
|methods, constructors, and fields in Java libraries or native code.

formals, plus an assignment from the return statement to the cal h i h . ith hecking th
result itself. The remainder of the rules are straightforward (for '€ COmpiler trusts these annotations without checking them.

example, array elements are treated analogously to fields) and are While Java _methods can be called fro_m Javari,_ Jave_t C(.)de can
omitted from this paper for brevity. only call Javari methods that do not contesadonly in their sig-

Many optimizations to the above rules are possible. For exam- natures. The Javari compiler achieves this by using standard Java
ple, an analysis such as CHA [10] or RTA [3] could determine names for non-read-only types, methods, and classes, and_by ‘man-
which classes an unsafe operation may be applied to, and Whichgllng” the names of read-only types, methods, and classes into ones

classes are reachable from those. Checks only need to be inserted1at c@nnot be referenced by legal Java code. If a Javari program

in reachable classes. Furthermore, checks never need be insertefS€S downcasts, which trigger the insertion of run-time checks (sec-

for immutable classes, nor for classes reached only via immutable 10N 3:6), then any called Java code must be recompiled with the
references. (In other words, the more instancesafonly in the Javari compiler, or the run-time checks must be inserted at the call

program, the less the overhead of run-time checking, if any, will site, or the call must be proved to never pass a downcasted refer-

be.) Checks can also be hoisted out of loops or eliminated where ence, or checks must be inserted by the JVM.

static analysis indicates them to be unnecessary. Explicit readonly The Javfam comp_ll_er guarant_ees that Javari code _m_amtams the
Booleans need not be created for intermediate results. reference immutability constraints. However, a malicious client

We have implemented a prototype implementation of the run- could subvert the type system by writing classes directly in JVM
time checking. It is inserted by a source-to-source postpass that isPYtecode. In order to prevent such loopholes, the bytecode verifier
invoked if the program being compiled contains any unsafe casts fShOUId _be ex_t_ended to verify the refe_erence |mmu_ta_b_|llty constraints,
or array uses. The resulting code then runs on an unmodified JyM.lustas it verifies other type constralnts t.hat are initially checked gt
Our implementation is not highly tuned; for instance, it includes the source code _Ievel. C_Iassflle checking suggests an altgrnatlve
none of the above optimizations except for a partial hoisting op- syntax: express |_nformat|_on about reference |mmuFab|I|ty (in the
timization. Furthermore, because it is a source-to-source transfor-SOUrce code and in classfiles) as metadata annotations, a new fea-
mation, itincurs substantial overhead by introducing many wrapper {Ur€ in Java 1.5. Such an approach would eliminate the need for the
classes to hold the readonly Boolean value that indicates whetherl—2 New keywords in our proposal.

a reference is immutabfeDespite all these inefficiencies, the pro-
totype introduces slowdowns averaging less than 10% on our suite

3.8 Type-based analyses

of real and benchmark programs containingraadonly anno- This section describes several type-based analyses that can be
tations. (We ran our experiments using the Sun 1.4.1 JDK on a run after Javari type-checking in order to provide stronger guaran-
Pentium 4 running Red Hat Linux 7.2.) tees. A type-based analysis assumes that the program type checks

. [27], but type-checking is independent of any subsequent analysis.
“In some cases the Boolean can be added as a new variable or i ; il
Javari enforces reference immutability —a read-only reference

field—for example, if fieldf exists, then Boolean fielél., is : .) ;
added and is ma%ipulated or checked whenevisrused. In other is never used to side-effect any object reachable from it. Refer-

cases, as for libraries for which source is not available, for arrays nce immutability itself has many benefits (section 5). However,
(which are not first-class objects), or for return values, wrapping is other guarantees may be desirable in certain situations. Four of
inevitable, introducing space and (especially) time costs. these guarantees are object immutability, thread non-interference,

39

parameter non-mutation, and return value non-mutation. One ad-experience leads us to believe that our approach should be easy to
vantage of reference immutability is that a subsequent analysis canextend to other languages — especially imperative object-oriented
often establish these other properties from it (as outlined below), languages, but most likely others as well. (The primary difficulty
but the converse is not true. with a language such as C++ is its lack of type safety; C++'s loop-
Extending reference immutability to stronger guarantees requires holes prevent making any guarantees even after type checking.)
escape analysis or partial information about aliasing. Determining We also believe that our approach, which combines static type
complete, accurate alias information remains beyond the state ofchecking with dynamic checking where necessary and appropriate
the art; fortunately, the analyses below do not require full alias anal- in order to keep the static rules simple and understandable by a
ysis. Obtaining alias information about a particular reference can programmer, should be extensible to other properties. For exam-
be easier and more precise than the general problem [1]. Many pro-ple, one interesting annotation would Wéteonly , which per-
grams use (some) pointers in disciplined and limited ways; these mits specific clients to set a variable while prohibiting them from
may correspond to, and may be motivated by, the places wherereading the value (for instance, seeing what others have written).
programmers desire to reason about immutability. As new alias A common paradigm that Javari supports (particularly when aug-
analyses become available, they can be applied to the below anal-mented by a type-based analysis) is an initialization phase followed
yses; this is preferable to embedding assumptions about a partic-by a read-only phase; this could be made explicit itriseonce
ular alias analysis in the type system. Programmers can use othemnnotation that (likeeadonly) permitted unlimited reading. Such
mechanisms for controlling or analyzing aliasing, such as owner- an analysis would be similar to a typestate analysis [34].
ship types [6], alias types [2], linear types [37, 13], or checkers of Further work is required to validate these intuitions and indicate
pointer properties [12, 15]. In the absence of an automated analy-the limits of our approach, but our success to date is encouraging.
sis, a programmer can use application knowledge about aliasing.
Object immutability. An object cannot be modified if all ref- 4, Type-checking rules
erences to the object are read-only references. For example, this : . .
is guaranteed if at instantiation an object is assigned to a read-only _. Javari hgs the same run-tlmg behgwor as Java (except for pos-
reference, because only one reference exists. A further side con-Slble _run-_tlme checl_<s as described m_s_ect_lon 3'6)'. However, at
! ’ compile time, Javari ensures that modification of objects through

dition is required: the constructor must not leak a non-read-only d-onlv ref imilar violati fthe | d
reference to the object or its parts. This circumstance is rare, and a cad-only eferences, or simrar vio atpn_s_ ofthe anguage, do not

- .) . ’ occur. Section 4.1 introduces some definitions. Section 4.2 presents
trivial analysis reveals that almost no classes in the JDK leak even

a read-only reference this . The object immutability analysis type-checking rules, in the style of the Java Language Specifica-

. . . : . tion [17]. A technical report [4] contains complete type checking
accommodates interning, logging, tracing, and other mechanisms) . A .
: rules. Section 4.3 gives intuitive explanations of our treatment of
that retain/leak read-only references.

Another example is data structures that are treated differently by inner classes and exceptions.
different phases of a program. For example, it is most natural for 4.1 Definitions
a graph or doubly-linked list to be mutable while being built, but
it may be used immutably elsewhere. A simple analysis can often 4,1.1 Javari's types
indicate when only immutable references remain after construction.

Thread non-interference. Other threads cannot modify an ob- Javari's type hierarchy extends that of Java by including, for ev-

ject if no other thread has a non-read-only reference to the object. ?;ge“]rz\ﬁgﬁzef ncsrgﬁjes? I&?{%ggeo?dt;gé -tl;ut. Ciﬁ:]eorte ch:eussgg
Escape analysis for multithreaded programs [32] can indicate what to modify the object to which they refer. '

references escape to other threads. In some cases the guarantee Formally, the types in Javari are the following:

may be necessary only between synchronization points or within a ' ’
critical region, which may be easier than a program-wide analysis. 1. The null typenull

Parameter non-mutation. An object that is passed aseadonly 2. The Java primitive types.
parameter is not modified until control exits the callee so long as 3. Instance references. dfis any class or interface, thenis a
no non-read-only reference aliases the object within the procedure type representing a reference to an instance of
scope (or in another thread; see above). Effectively, this meansthat 4. Arrays. For any non-null typ€, T[] is a type, representing
the object should not be aliased by a non-read-only parameter or an array of elements of type
global variable. A variation on escape analysis [28, 9] can indicate 5. Read-only types. For any non-null typereadonly T isa
whether an object may be placed in a non-read-only global variable. type.

Parameter aliasing is simpler than the general alias problem, espe-
cially because parameters may be of incompatible types or may all
bereadonly

Return value non-mutation. An object returned as@adonly
result is not modified outside the callee’s module so long as no non-
read-only reference to the object escapes; this is a direct application
of escape analysis.

For convenience in the exposition later, we definedepthand
the baseof a type. Informally, the depth is just the nesting depth
of an array type, while the base of an array type is the type with all
array dimensions removed. Formally, for a typave define:
Depth:

- depth(T]) = depth(T) + 1

- depth(readonly T) = depth(T)

3.9 Extension to new properties and Ianguages - depth(T) = 0if Tis null, primitive, or an instance reference

This paper presents a type system for reference immutability and ~ Base:

develops it in the context of Java. While the intuition behind the - base(T[]) = base(T)

enforced constraints is simple, our type rules and implementation - base(readonly T) = base(T) if base(T) is a read-only type
cover the entire Java language. This permits us to explore how - base(readonly T) = readonly base(T)

the type system interacts with real-world constructs including sub- if base(T) is a non-read-only type
typing, inner types, exceptions, covariant arrays, and more. This - base(T) =T if Tis null, primitive, or an instance reference

40

readonl y
Obj ect

AN

readonl y
StringBuffer

NS

StringBuf fer

Ohj ect

Figure 2: A portion of the Javari type hierarchy, which includes
read-only and non-read-only versions of each Java reference type.
Arrows connect subtypes to supertypes.

4.1.2 Type equality and subtyping

The equality relation on types is defined as follows:

1. For primitive types, the null type, and references to instances
of classes and interfaces, two types are equal iff they are the
same Java type.

. readonly T andreadonly S are equal iffdepth(T)
depth(S) andbase(readonly T) = base(readonly S).

. T0 ands[] are equalifff andsS are equal.

. For a non-read-only type, T andreadonly S are equal iff
T andsS are equal, and is either primitive or is a reference to
an instance of an immutable class or interface (section 3.3).

Item 2 implies thateadonly int[][] andreadonly (readonly
int[H0 are equivalent. In other words, a read-only arrainof
arrays is the same as a read-only array of read-only arrays.
This is because read-only is a transitive property, and hence if a
level of an array is marked as read-only, then all the lower levels
are read-only.

Equal types are considered to be the same type. They are inter-
changeable in any Javari program.

A subtyping relationshipT(subtype ofS, written asT < S) is
also defined on types. It is the transitive reflexive closure of the
following:

1. byte < char ,byte < short ,char <int ,short <int ,
int <long ,long < float ,float < double .

2. null < T for any non-primitive typd.

3. If TandS are classes such thaextendss or interfaces such
thatT extendss, or S is an interface and is a class imple-
mentings, thenT < S.

. For any non-null types ands, if T < SthenT[] < S[] .

. For any non-read-only non-null tyge T < readonly T

. For any non-read-only non-null typgsands, if T < Sthen
readonly T < readonly S

. For any non-null typd, T[] < java.io.Serializable ,
T[] < Cloneable ,andT[] < Object .

. For any non-read-only non-null type(readonly T)[]

readonly T[]

o 0

<

Figure 2 shows an example of the subtype hierarchy.

4.1.3 Definitions relating to method invocations

1 to n, the type ofA; is a subtype of the declared type of thh
parameter of\/.

Specificity: Given two methods of the same name or two con-

structors of the same clas&{; and M-, we say thatM; is more
specific than\/ if the following three conditions hold:

1. M, and M, take the same number of parameters, say with
types Py, Ps, ... P, for My, andQ1,Q2,...Q, for M,
and for eachi from 1 to n, P; is a subtype 0€);.

2. The class (respectively, interface) in whikh is declared is
a subclass (subinterface) of the one whefgis declared, or
M; and M, are declared in the same class (interface).

3. EitherM; is not read-only ofM/; is read-only (or both).

4.2 Type-checking rules

4.2.1 Programs
A program type checks if every top-level class and interface dec-

laration in the program type checks.

4.2.2 Class/interface declarations
A class or interface declaration type checks if all of the following

hold:

1. One of the following two conditions holds:

(a) The class or interface is immutable and each method
inherited from any superclass or superinterface is static,
or read-only, and each of the inherited fields inherited
is static, mutable, or both final and of a read-only type.

(b) The class or interface is not immutable, and neither is
its direct superclass nor any of its direct superinterfaces.

. No two fields of the same name are declared within the body
of the class/interface.

. No two methods of the same name and signature are declared
within the body of the class/interface. The signature includes
the number and declared types of the parameters, as well as
whether the method is read-only.

. No two constructors of the same signature are declared within
the body of the class/interface.

. Every field, method, constructor, member type, instance ini-
tializer, and static initializer declared within the class or in-
terface type checks.

4.2.3 Variable declarations
For a field or local variable declaration of type T:

o [fit does not have an initializer, it type checks.

e Ifit has an initializer of the form# E” for an expressior¥,
it type checks iff the assignment of the expressioto a left
hand side with typ& would type check.

e Ifithas aninitializer ofthe form*“= { 1;,...1, } ", where
I areinitializers, ittype checksiff = S[] orT = readonly
S[] for some types, and the declaratio® v = I orreadonly
S v = I, respectively would type check for evetypetween
1 andn.

4.2.4 Method declarations
A method, constructor, instance initializer, or static initializer

These definitions are the same as those in Java [17], except fortype checks if every expression, local variable declaration, and lo-
the presence of the third clause in the definition of specificity. Our cal type declaration in the body type checks.

definitions and rules do not consider constructors to be methods;
we always specify which (or both) we mean.

Compatibility: Given a method or constructdd and a list of ar-
gumentsd,, Ao, ... A,, we say that the arguments are compatible
with M if M is declared to take parameters, and for eaclirom

41

4.2.5 Expressions

Each expression has a type and a boolean property cetign-
ability. An expression is type checked recursively, with all subex-
pressions type checked first. If the subexpressions type check, then

their types and assignability are used to type check the given ex- Exceptionthrow E: Javari prohibits read-only exceptions from
pression and deduce its type and assignability. Otherwise, the givenbeing thrown. A technical report [4] describes other approaches
expression does not type check. that we rejected because they introduced loopholes into the type
For brevity, this paper gives only the type-checking rules for ex- system or they require a complicated analysis that would provide
pressions that are substantially different from those of Java; a tech-very little benefit.
nical report [4] contains the complete type checking rules. Special rule: Any reference to an instance of an immutable class
Assignment: The rules for type checking assignments are the C, when used inside the body of a non-immutable superclass or
same as in Java, except that the assignment expression does not typgiperinterface, is of typeadonly C
check if the Ivalue is not assignable. The type of any assignment .
expression that type checks is the same as the type of the Ivalue,4-3 Inner classes and exceptions
and the expression is not assignable. Previous work on language-level immutability has not addressed
Typecast(T) A: In addition to the Java rules, a type cast must inner classes or exceptions. This section explains how we handle
not cast from a read-only type to a non-read-only type. The type of them. It also provides an intuitive explanation of some of Javari’s
the cast expression ©sand the expression is not assignable. type checking rules.
Mutability typecastmutable) A: Always type checks. If the

type of A is non-read-only, this expression is of the same type. If 4.3.1 Inner classes

the type ofA isreadonly S[] for somes, then the type of this The type-checking rules guarantee that read-only methods do not
expression igreadonly S)[| . If the type of A is readonly change any non-static non-mutable fieldshif . The inner class

S wheredepth(S) = 0, the type of this expression & The ex- feature of Java adds complexity to this guarantee. Javari must en-
pression is never assignable. This expression also triggers run-timesure that no code inside an inner class can violate an immutabil-
checks (see section 3.6). ity constraint. There are three places in an inner class where im-

Receiver referencgis : In a static contexthis does not type mutability violations could occur: in a constructor, in a field or
check. In a non-static contextis has typeCif Cis a class and instance initializer, or in a method. The Javari type-checking rules
this appears inside a non-read-only method, a non-read-only con- (section 4) prevent any such violation. This section explains the
structor, or an initializer o€. Inside a read-only method or aread- rules by way of an example.

only constructor ofC, this has typereadonly C . this is not class Outer {

assignable. inti = 1:

Containing object referenagamethis : Type checks if it oc- Il foo is readonly, so foo should not change i
curs in a non-static context in a method, constructor, or initializer public void foo() readonly {
of a clasg , andnamenames a classfor which| is aninner class. class Local() {
The type of the expression Gunless it appears inside a read-only Local() readonly { _ .
method or a read-only constructor lof in which case the type is J' _ 21 Z (E)EROR. changes i
readonly C . This expression is not assignable. } '

Instance creationew T(...) : For creation of an inner class, if int j = (i=4) /l ERROR: changes i
the enclosing reference is read-only, then only read-only construc- void bar() readonly {
tors are eligible. If there is no enclosing reference, or the enclosing i =5 /I ERROR: changes i
reference is not read-only, all constructors are eligible. The ex- }
pression type checks if there is a most specific accessible eligible /I' Would be erroneous if either Local()
constructor compatible with the arguments to the class instance cre- /I or bar() were not declared as readonly.
ation expression. The type of the expressioreiglonly T if the new Local().bar();
enclosing reference is a read-only reference, Botherwise. This }
expression is never assignable. }

Array dereferenced[E]: Type checks ifE is of integral type
and A is of typeT[] orreadonly T[] for some typeT; the type
of the expression is respectivelyor readonly T . The expression
is assignable in the first case, and not assignable in the second.
Field access: LeT be the declared type of the field being ac-
cessed. IfT is a read-only type, or the field is accessed through
a non-read-only reference, or the field is a mutable or static field,
then the type of the expressionTisOtherwise, the type of the ex-

pression igeadonly T . The expression is assignable if the field if the constructor ofLocal() is not read-only, it cannot be in-

is mutable or static, or if the reference through which the field is voked, since Javari allows only read-only constructors to be in-

is not a read-only reference. As an exceptional in- S .
a_ccessed s not a read-only reference S an exceptional case, Iny ., o q through a read-only enclosing instance, and the enclosing
side a read-only constructor, barename field access expressions for

fields of the class that is being constructed are assignable instance is implicitlythis , a read-only reference insidan()
Method invocationfZ.m(. ..): If the invoking reference is read- Initializers: If atleast one read-only constructor exists in a given

only, only static or read-only methods are eligible. If there is no class or if an anonymous class is being constructed with read-only

invoking reference, only static methods are eligible. Otherwise, all enclosin_g i”?“’?‘f‘c.e’ the co_mpiler treats_instance initializers and in-
methods are eligibie The expression type checks i.f there is a r’noststance field initializers as if thgy were in the body of a read-only
specific accessible éligible method compatible with the arguments constructor. The sgcoqd_ case 1s necessary b(_acause anonymous con-

; . R structors have an implicit constructor, which is considered a read-
to the method invocation. The type of the expression is the declared

return tvoe of the method. A method invocation expression is never only constructor if the enclosing instance is read-only. This rule
assigne)lll?le : P prevents modifications to the state of a read-only enclosing instance

from initializers of inner classes.

Constructors: Read-only constructors (see section 3.2) prevent
this change. There are two possibilities for a changé af a
constructor ofLocal . This change could happen inside a read-
only constructor, or inside a non-read-only one. If the constructor
of Local is read-only, the assignment 2 will not type check:
read-only constructor bodies type check like read-only method bod-
ies, except that a field of the class being constructed accessed by
simple name is assignable and non-read-only. On the other hand,

42

Methods: The rule thatew Local() must have typesadonly The benefits of reference immutability included improving doc-
Local if the enclosing instance is read-only prevents modification umentation (and making it consistent with the implementation), en-
of the enclosing instance. Har() is declared as read-only, the hancing our understanding of the programs, eliminating errors, ex-

assignment to inside it will fail to type check. Ifoar() is not cising convoluted code, and efficiency improvements (by eliminat-

declared as read-only, then the calbto() in the example above ing copying).

does not type check, becausew Local() has typereadonly We found writing code from scratch to be faster, easier, and

Local . more natural than annotating existing code. The effort of adding
readonly annotations seemed to be subsumed by that of writing

4.3.2 Exceptions the types, and we felt the ability to specify reference immutability

Our desire for interoperability with Java and the JVM compli- caused us to think more formally about interfaces and make fewer

cates Javari’'s handling of exceptions. An exception thrown with a design and implementation mistakes. Annotating existing code was

only be catchable by aatch statement whose parameter is de- by module, relying primarily on local reasoning.
clared aseadonly , because otherwise thatch statement would The bulk of our annotation effort was consumed in reverse en-

be able to change the exception’s state. gineering (determining both what the code did and what it ought
Javari prohibits read-only exceptions from being thrown. There- t0 do) and in debugging. We strove to minimize disruptive code
fore, the type-checker rejects some safe uses of read-only refer-changes, but found that some problems could not be worked around
ences to exceptions. This restriction has so far caused no difficulty entirely within the type system. The Javari problems (section 5.4.2)
in practice (see section 5). were few in number (rarer than Java casts) and most could be worked
A technical report [4] describes other approaches that we re- faround by use of downcasts, though six unsafe uses required rewrit-
jected because they introduced loopholes into the type system or!ng-)
they require a complicated analysis that would provide very lit- Our experience led us to add language features for parameter-
tle benefit. The key idea underlying these approaches is to wrapization and for downcasts. The parameterization feature was not
some exceptions at run-time in special wrapper objects, so that non-Strictly necessary, but it did prevent significant code duplication.
readonly catch statements do not catch read-only exceptions. Overall, adding parameterization was an easy task, especially when
Since Javari runs on an unmodified Java Virtual Machine and inter- it parameterized over the immutability of the receiver object or
operates with legacy bytecode files, each wrapper class should be vhen it was added identically to all subclasses of a class, as hap-
subtype ofThrowable (which Java treats specially). However, in pened for several class hlgrarchles. See section 5.5 for more deta|l§.
Javari,readonly Throwable is a supertype ofhrowable (see The downcast mechanism was necessary because of legacy li-
figure 2). Reconciling these problems is possible, but it is compli- braries, the pre-existing design of the software, and facts beyond
cated, introduces possibilities for error in the type system and the the type system. We conclude that a fully statically enforced im-

implementation, and provides little practical benefit. mutability type system is likely to be of limited applicability in
practice. Using an explicit keywordn(itable) for immutability

) downcasts was critical in preventing us from accidentally leaving a
5. Experience Java cast in place but forgetting to agddonly to its type. Such

This section presents our experience with using Javari. Our pri- & cast, if permitted to affect immutability, would cause Javari to
mary goal was to gain qualitative experience, and our key result is Silently insert run-time checks, and the error would be discovered
that the type system and language are practical, usable, and effeconly at run time. Without such a feature, or an analysis to indicate
tive. Section 5.1 expands on our observations. Then, the remain-Which casts are immutability downcasts, we estimate that at least
der of this section provides supporting details about our experience. 2 third, and perhaps many more, of th_e annotation errors we made
Section 5.2 describes the Javari programs. Section 5.3 discusses th@ould not have been caught until run time.
annotation process. Section 5.4 categorizes every type-checking er- Our experience with Javari also convinced us that reference im-
ror that occurred while annotating two of the five codebases, with mutability is often sufficient. We were rarely able to use immutable
examples of errors in each category. Section 5.5 discusses our exlyPes (object immutability); it is possible that redesigning the pro-

perience with generics. grams from the ground up may have increased the applicability of
object immutability, but doing so would have had a severe perfor-
5.1 Qualitative results mance cost. By contrast, reference immutability enabled us to rea-

A type system should be easy to use and understand. The lan-S°N about interfaces and program phases. We found human reason-

guage design should not overly constrain programmers, and it shouIéqegcteigr?g'\ée;b\l:\;ewgagug()tegpg]lgm\igﬁg Lt;éyﬁ;—b;s 23 ;}n;lgf: s of
fit with the way they work. Because practicality was one of our - P y P i

goals, we evaluated our type system, language, and implementa- Our experience revealeq some Weakngsses of our type system.
tion by both writing code in Javari and also annotating existing In complex systems, transmve_ |mmutap|I|ty may be _too strong a

Java code withreadonly Writing code in Javari provides ex- constraint. For example, all Swing containers have child and parent
perience with the Ianguaée the way many programmers would usereferences, so transitive immutability of any reference implies that

it. In addition, it permits greater flexibility in working around type- alm_ost every container is unchangeable. Thus, fe".“ r_eferences to
checking errors than working with existing code does, and it can Swmg containers can be annotated as read-only. S'.“.“"ar'y’ legacy
be more beneficial than annotation of existing code, since it pro- libraries may need access to a portion of the transitive state of a

vides earlier indication of errors. On the other hand, annotation of Liﬁ-orzysresftzrn?n;seg?:o?guexa(:?tprlghsgfozecﬁ?:sg'4}?&;7'12612}1
existing code is more quantifiable, since it is possible to track the ype sy PP : P

time spent annotating and the problems discovered in original code.EeI solved by run-tltr)nedctlectl_<5, but the); reduc_tla :Jt{;\varl s ability to
Also, it permits evaluation of how Javari fits with the existing prac- €lp programmers by detecting errors at compiie-time.

tice of code written by programmers who did not have immutability

in mind while coding.

43

New codg An_notatngava code Daikon is a tool for dynamic detection of likely invariants in
Program ﬁxa Javari '{i\i{a |bzar‘r|1|o- Daikon programs [11]. The annotation was perform_ed, without any help,
Code size by a programmer who had no previous experience with Daikon (not
classes 42 191 29 118 781 even as a user). The annotation time included time to understand
methods 373 1049 331 671! 7454 this large, complex system well enough to annotate it.
lines 2412 {16089 7666 | 15480|121607 .
NCNB lines 1740 || 9826 2793| 9276| 81269 5.3 Annotation process
Opportunities Our methodology for annotating Java programs wétdonly
Afr?ﬁg(t);tl?/ons 1312 || 4615 1269 2357 31687 proceeded in three stages. During the first stage of the annotation
readonly 854 2235 724 520| 10369 (“Signature” in the bottom section of figure 3), we read the docu-
mutable 24 28 9 17 110 mentation and the signatures of all public and protected methods in
generics 105 66| 94 13 717 the program, and marked the parameters, return types, and methods
downcast 3 3] 14 6 85 themselves witheadonly . For example, if the documentation for
readonly uses a method specified that the method does not modify a parameter,
#?eﬁgl % 422 93 68 16338 we marked it withreadonly . The second stage of the annotation
parameter 152 211 180 69| 2148 (“Implementation” in figure 3) was to annotate the signatures of
cast 19 3771 29 271 1148 private methods and the implementations of all methods. The third
return type 154 88| 85 24 459 stage (“Type check and fix errors”) involved running the compiler
method 197 462 114 212 | 2913 on the resulting program, and considering and correcting any type
class 1 37 1 3 94 checking failures.
generics arg 234 538 213| 116| 1856 Our annotation experience represents a pessimistic upper bound
Clgggu?\zreor:tsati on N7A N7A | N7A 2 1 on the time cost, for six reasons.
Q%'%Ty?gtat'on % 12 1. The programmer was not familiar with the code, so the time
Javari problems includes program understanding and error diagnosing.
Inflexibility 3 23 2. Completed code was annotated, but our experience indicates
Reflection 1 2 that the effort is significantly smaller when writing new code,
Annotation errorg because programmers already make design decisions about
Signature 111 124 immutability, and catching errors would have recouped part
:_r:wbelaerr;/wentatlon 3% 4?2 or all of the cost.
Time (AR-mm) NTA NTA T NIA 3. The Javari system was still under development and contained
Signature 2:40 | 5:30 some limitations and bugs.
Implementation 4:30| 7:35 4. Recording every type-checking error message (732 in all)
Type check ang 6:10 | 55:05 was time-consuming and distracting.
fix errors 5. The code contained no generic types, which would have eased

. . . . the process.
Figure 3: Programs written in Javari or converted from Java to 6. We Fr)1ad no mechanical assistance such as type inference.
Javari. The number of classes includes both classes and interfaces.

The number of methods includes constructors. “NCNB lines”isthe Despite these problems, the annotation process was quick and
number of non-comment, non-blank lines. “Opportunities” counts represented a small fraction of the original development time (un-
the number of places whereadonly could appear (not includ- der 5% for Gizmoball and considerably less for Daikon; 1200 and
ing primitive types or common immutable classes suchtesg 1800 lines per hour, respectively).

and subclasses ®fumber, and counting each multi-dimensional . i

array as only one opportunity). Section 5.4 explains the error cat- 9.4 Error classifications

egories. Section 5.3 explains the time categories. Errors and time The Javari compiler issues an error for three general reasons.
were recorded for only two of the programs. First, the code may be erroneous, or the documentation may in-
correctly describe it. Second, the Javari type system may be too
restrictive, issuing an error about code that does not type check but

5.2 Javari programs that would be safe if it were run. Third, the user may have made
We wrote many of the container classes injtve. util pack- an error during annotation, which the compiler has discovered. Fig-

age from scratch in Javari, both to gain experience with Javari and ure 3 classifies each type checking error encountered while annotat-

because Javari requires parameterized container classes. ing the Gizmoball and Daikon systems, which together are 137,000
We also annotated four existing Java codebases. lines of code (91,000 non-comment non-blank lines). The final an-

Javari’s compiler was our first major annotation experience. The notated code passed the Javari type checker without errors. This
annotation was intermixed with changes to the language and bugsection describes the categorization of figure 3 and gives examples
fixes in the compiler. of errors in each category. A technical report [4] describes all 59 of

Sun container classes.We complemented the parameterized the code errors and Javari problems.
container classes we had written from scratch by annotating ad-
ditional classes from the Sun JDK 1.4.1 reference implementation. 9-4.1 Code errors
We found an instance of bad coding style (see section 5.4). Code errors are problems with the original Java program that

Gizmoball, an extensible pinball game, is the final project in were discovered during the annotation and type checking process.
a software engineering class at MIT (6.170 Laboratory in Software These errors had remained in the code despite extensive testing;
Engineering). It was designed and written in two months by a group for example, Daikon has a worldwide user base and an 8-hour-long
of four people that included the first author of this paper, who wrote regression test that runs nightly.
about a third of the code.

44

We subdivided code errors into three subcategories. Another way to prevent the problem would be to change the lan-

Documentation: This subcategory represents errors in the doc- guage to introduce a new syntax for array constructors:
umentation of a class or a public or protected method, causing an
incorrect annotation. For example, the documentation of Daikon’s ~ foo(new readonly A[] { a });
process _sample method did not document that the second param-))) .
eter,ValueTuple vt , is mutated by side effect. We updated the As another example, consider the following Gizmoball code snip-
documentation to indicate this fact. pet:

Implementation: This subcategory represents bugs in the orig-
inal code, found during the type checking of the annotated code.
The Gizmoball error was a representation exposure caused by a

public class BuildDriver {
private JFrame jf;

method improperly returning a reference to private data. We fixed it b"rivate void askForLoad() readonly {
by addingreadonly to the return type of the misbehaving method. final JDialog jd = new JDialog(jf, true);
An example of a Daikon error was a method that sorted its input /I"use dialog box jd only to get a filename

array before computing some statistics about the array. We fixed
this error by rewriting the method to do an array copy first. It was

obvious that some of the errors could lead to user-visible failures; TheJbialog constructor (not shown) is declared to take a mutable

ho;ve(\j/esr,tml/e. dT"r’].“Ot Vs “f)t/ this for every etrrotr. hecking fail JFrame , becauseéDialog.getOwner() returns theJFrame , and
a yle. This subcategory represents typ€ Checking faiiures o o ofgetOwner often needs to modify the result. Thus, the

caused by bad coding style. The code_ that causes these EITorsew JDialog expression in the above code does not type check.
does not, to our knowledge, cause run-time failures, but it could

h v b itten in a better stvle that Id not only all Method askForLoad never callsjd.getOwner() , nor doesjd
ave easily been writlen In a better style that would not only allow escape that method, but those facts are beyond the type checker’s
the code to type check, but would also make the program easier to

maintain and debug static analysis, and so the compiler rejects this safe code. We fixed
. . . the problem by adding downcasts, similarly to adding a cast to work
For example, Gizmoball recalculates the size of gizmos that are P y g ' y 9

displayed to the screen during egetint() call. A better alterna- around Java's type system,

i hich d also t heck under Javari's rul Id be t Reflection: This subcategory represents uses of reflection in the
V€, which would also type cheéck under Javari's rules, would be to original program. Analysis of reflection is beyond our type sys-
recalculate only when the window size changes.

Daikon’s methodanCreateAndwrit Jonlv File fil tem, and other Java type systems of which we are aware. (Indeed,
tests IWhetheﬁIe c:\nn [Je;(‘:arer;tedn SS?::II?:@;; clrialteel)\lew reflection already permits Java code to violate accessibility modi-
> T fiers and modify the contents ofSri .) The dynamic checks
File() andfile.delete() . These calls fail to type-check, since fy fing) y

they modify theFile (and the file system). It is cleaner, and ade- of section 3.6 can ensure safety in the presence of reflection.
quate for the purpose, to test whether the directory containing the 5 4.3 Annotation errors
file is writable.

Another example of bad coding style that is caught by the type
system is ijava.util. TreeMap . This class has a private method
buildFromSorted ~ thattakes afterator ~ parameter; thigera-
tor iterates either over keys or over entries in the map, depending
on the value of a different parameter. It would be preferable to have
two separate code paths for the two different iterators. (The code
authors feared that if they duplicated this particularly subtle imple-
mentation, then in the future a maintainer might change one copy
but not the other [19].) In Javari there is no correct typing of the
lterator ~ parameter. The early release Java 1.5 libraries use a raw
rather than a parameterized type for thatator

}

This category represents mistakes committed by us during the
annotation process. Usually, these were due to unfamiliarity with
the code or to poor documentation. T&@nature Misannotation
subcategory represents errors due to an incorrect annotation of a
signature of a public or protected method during the first stage
of the annotation. Thiamplementation Misannotatiosubcategory
represents the errors caused by an incorrect annotation of the type
of a private field, the signature of a private method, the type of a
local variable, or a type used in a cast expression.ikary Mis-
annotationsubcategory represents the errors caused by an incorrect
annotation of a library method, for example an AWT method. (As
noted in section 3.7, Javari provides annotated Java libraries. The
5.4.2 Javari problems library annotation time is not included in figure 3, but we discov-
ered some errors in the library annotations while annotating client

In order to guarantee safety, type systems tend to conservativelyCO de.)

reject programs thanight behave unsafely —i.e., that cannot be
proved to behave safely. 5.5 Generics

Inflexibility of the language: This subcategory represents safe
code rejected by the type system’s conservative analysis. We WOI’kete,,
around them by omittingeadonly ~ annotations, by adding down-
casts, or by rewriting code.

Half of all the type system inflexibility problems (13 instances in
Daikon) were due to code of the form

Our annotation introduced a fairly large amount of genericity
generics” in figure 3). Of the uses of genericity in Daikon, 24
(3%) are parameterized types and the other 97% are parameterized
methods. 48% of the parameterization appears in two external li-
braries that are included in the Daikon distribution, and they caused
additional genericity at uses of the libraries. Overall, for method

readonly A a = new A(); parameterization, the type parameters were used in the following
foo(new A[] { a }); /I ERROR ways:
.) in return type 56%

The array created byew A[] is typed ad\[] ,S(.).cannot contain in formal types 59%

areadonly A. The problem was fixed by rewriting the code as in method type 79%
readonly A a = new A(); as type parameter 50% _ N
readonly A[] as = { a }; We found it natural and flexible to declare the immutability of a
foo(as); reference at a variable declaration, rather than using an immutable

45

type (which Javari also supports). Furthermore, adding a type pa- reference writeability, and arbitrary code may appear on the two
rameter would have required a change to all client code that men-branches. This suggests that while it can be proved that read ref-
tioned the type name. As a minor point, method parameterization erences are never modified, it is not possible to prove whether a

resulted in less code duplication. Perhaps some of the generic-

ity could have been converted from method to type generics; this
would further reduce the number of annotations required.

6. Related work

Many other researchers have noticed the need for a mechanism®

for specifying and checking immutability. This section discusses
other proposals and how ours differs from them.

Similarly to Javari, JAC [18] has aeadonly keyword in-
dicating transitive immutability, an implicit typeeadonly T
for every class and interfacg defined in the program, and a
mutable keyword. However, the other aspects of the two lan-
guages’ syntax and semantics are quite different. For exam-
ple, JAC provides a number of additional features, such as a
larger access right hierarchyeédnothing < readimmutable
< readonly < writeable) and additional keywords (such as
nontransferrable) that address other concerns than immutabil-
ity. The JAC authors propose implementing JAC by source rewrit-
ing, creating a new typeeadonly T that has as methods all
methods ofT that are declared with the keywordadonly fol-
lowing the parameter list (and then compiling the result with an
ordinary Java compiler). However, the return type of any such
method isreadonly . For example, if class Person has a method
public Address getAddress() readonly , then readonly
Person has methog@ublic readonly Address getAddress()
readonly . In other words, the return type of a method call de-
pends on the type of the receiver expression and may be a super
type of the declared type, which violates Java’s typing rules. Ad-
ditionally, JAC is either unsound for, or does not address, arrays
of readonly objects, casts, exceptions, inner classes, and subtyp-
ing. JACreadonly methods may not change any static field of
any class. The JAC paper suggests tileationly types can be
supplied as type variables for generic classes without change to th
GJ proposal, but provides no details. By contrast to JAC, in Javari
the return type of a method does not depend on whether it is called
through a read-only reference or a non-read-only one. Javari obey

the Java type rules, uses a type checker rather than a preprocesso

and integrates immutability with type parameterization. Addition-
ally, we have implemented Javari and evaluated its usability.

The above comments also explain why use of read-only inter-
faces in Java is not satisfactory for enforcing reference immutabil-
ity. A programmer could define, for every clagsan interfac&kQC

that declares the readonly methods and that achieves transitivity by

changing methods that returned (sayp returnRQB. Use ofRQC
could then replace uses of Javaréadonly C . This is similar

to JAC’s approach and shares similar problems. For instance, to
permit castingC would need to implemerrQc, but some method

return and argument types are incompatible. Furthermore, this ap-

proach does not allow readonly versions of arrays or @igect |,
sinceRQObject would need to be implemented IQbject . It

also forces information about a class to be maintained in two sep-
arate files, and it does not address run-time checking of potentially
unsafe operations or how to handle various other Java constructs.

Skoglund and Wrigstad [33] take a different attitude toward im-

mutability than other work: “In our point of [view], a read-only
method should only protect its enclosing object’s transitive state

when invoked on a read reference but not necessarily when invoked

on a write reference.” Aead (read-only) method may behave
as awrite (non-read-only) method when invoked viawaite
reference; aaseModeOf construct permits run-time checking of

46

[S)

S.

method may modify its argument. In addition to read and write
references, the system providesitext andany references that
behave differently depending on whether a method is invoked on
a read or write context. Compared to this work and JAC, Javari's
type parameterization (adopted from Java 1.5) gives a less ad hoc
nd more disciplined way to specify families of declarations.

The functional methods of Universes [25] are pure methods that
are not allowed to modify anything (as opposed to merely not being
allowed to modify the receiver object).

Pechtchanski and Sarkar [29] provide a framework for immutabil-
ity specification along three dimensions: lifetime, reachability, and
context. The lifetime is always the full scope of a reference, which
is either the complete dynamic lifetime of an object or, for param-
eter annotations, the duration of a method call. The reachability is
either shallow or deep. The context is whether immutability applies
in just one method or in all methods. The authors provide 5 instan-
tiations of the framework, and they show that immutability con-
straints enable optimizations that can speed up some benchmarks
by 5-10%. Javari permits both of the lifetimes and supplies deep
reachability, which complements the shallow reachability provided
by Java’'sinal keyword.

Capabilities for sharing [7] are intended to generalize various
other proposals for immutability and uniqueness. When a new ob-
ject is allocated, the initial pointer has 7 access rights: read, write,
identity (permitting address comparisons), exclusive read, exclu-
sive write, exclusive identity, and ownership (giving the capability
to assert rights). Each (pointer) variable has some subset of the
rights. These capabilities give an approximation and simplification
of many other annotation-based approaches.

Porat et al. [30] provide a type inference that determines (deep)
immutability of fields and classes. (Foster et al. [14] provide a type
inference for C’s (non-transitivejonst .) A field is defined to be
immutable if its value never changes after initialization and the ob-
ject it refers to, if any, is immutable. An object is defined to be
immutable if all of its fields are immutable. A class is immutable
if all its instances are. The analysis is context-insensitive in that

a type is mutable, then all the objects that contain elements of
hat type are mutable. Libraries are neither annotated nor analyzed:
every virtual method invocation (evemuals) is assumed to be
able to modify any field. The paper discusses only class (static)
variables, not member variables. The technique does not apply
to method parameters or local variables, and it focuses on object
rather than reference immutability, as in Javari. An experiment in-
dicted that 60% of static fields in the Java 2 JDK runtime library are
immutable. This is the only other implemented tool for immutabil-
ity in Java besides ours, but the tool is not publicly available for
comparison.

Effect systems [21, 36, 26] specify what state (in terms of regions
or of individual variables) can be read and modified by a procedure;
they can be viewed as labeling (procedure) types with additional
information, which the type rules then manipulate. Type systems
for immutability can be viewed as a form of effect system. Our
system is finer-grained than typical effect systems, operates over
references rather than values, and considers all state reachable from
a reference.

Our focus in this paper is on imperative object-oriented languages.
In such languages, fields are mutable by default. In our type sys-
tem, when a type is read-only, the default is for each field to be im-
mutable unless the user explicitly marks it as mutable. Functional
languages such as ML [23] use a different policy: they default all

fields to being immutable. OCaml [20] combines object-orientation must be annotated. This propagation effect is unavoidable when
with a mutable annotation on fields (for example, references are types or externally visible representations are changed. Inference
implemented as a one-field mutable record). However, without a of const annotations (such as that implemented by Foster et al. [14])
notion of read-only types, users are forced to hide mutability via eliminates such manual effort. Even without a type inference, we
use of interfaces and subtyping, which is less flexible and expres- found the work of annotation to be greatly eased by fully annotat-
sive than our proposal. ing each part of the code in turn while thinking about its contract or
A programming language automatically provides a sort of im- specification, rather than inserting partial annotations and attempt-
mutability constraint for parameters that are passed, or results thating to address type checker errors one at a time. The proper solu-
are returned, by value. Since the value is copied at the proceduretion, of course, is to writeonst annotations in the code from the
call or return, the original copy cannot be modified by the imple- beginning, which takes little or no extra work.
mentation or client, respectively. Pass- and return-by-vale is typi- Another criticism of C++'sonst is that it can occasionally lead
cally used for values that are small. Some programming languages,to code duplication, such as the two versionstathr in the C++
such as Pascal and Ada, permit variables to be explicitly annotatedstandard library. Immutability parameters (section 3.5) make the
as in, out, or in/out parameters; this is an early and primitive form need for such duplication rare in Javari. Finally, the use of type

of compiler-enforced immutability annotation. casts (section 3.6) permits a programmer to soundly work around
problems with annotating a large codebase or with code duplica-
6.1 C++ const tion.

C++'sconst keyword is intended to aid in interfaces, not sym-
bolic constants [35]. Our motivation is similar, but our notion of 7. Conclusion
immutability, and our type system, differ from those of C++, thus
avoiding the pitfalls that led Java’s designers to amitst .

Because of numerous loopholes, toast notation in C++ pro-
vides no guarantee of immutability even for accesses through the
const reference. An unchecked cast can remowest from a
variable, as can (mis)use of type system weaknesses such as unio
and varargs (unchecked variable-length procedure arguments).

C++ permits the contents of a read-only pointer to be modi-
fied: read-only methods protect only the local state of the enclos-
ing object. To guarantee transitive non-mutability, an object must
be held directly in a variable rather than in a pointer. However,
this precludes sharing, which is a serious disadvantage. Addition-
ally, whereas C++ permits specificationafst at each level of
pointer dereference, it does not permit doing so at each level of a
multi-dimensional array. Finally, C++ does not permit parameteri-
zation of code based on the immutability of a variable.

By contrast to C++, Javari is safe: its type system contains no
loopholes, and its downcast is dynamically checked. Furthermore,
it differs in providing guarantees of transitive immutability, and in
not distinguishing references from objects themselves; these differ-
ences make Javari’'s type system more uniform and usable. Unlike
C++, Javari permits mutability of any level of an array to be spec-
ified, and permits parameterization based on mutability of a vari-
able. Javari also supports Java features that do not appear in C++
such as nested classes.

We have presented a type system that is capable of expression,
compile-time verification, and run-time checking of reference im-
mutability constraints. Reference immutability guarantees that the
reference cannot be used to perform any modification of a (tran-
nsitively) referred-to object. The type system should be generally

5pp|icab|e to object-oriented languages, but for concreteness we
have presented it in the context of Javari, an extension to the full
Java language. We have implemented the language and presented
experience with non-trivial Javari programs. The evidence suggests
that, although a language designer’s budget (in terms of new lan-
guage features) is limited, reference immutability is worthy of se-
rious consideration and further investigation.

Our goal is not to produce a complicated and subtle new type
system, but a solution to an important problem that others have
grappled with unsuccessfully. Many of the components of our ap-
proach have previously appeared in the literature. We have synthe-
sized these pieces in a novel way, resulting in a simple and effective
approach. This paper’s contributions include the following.

We chose a practical and effective combination of language fea-
tures. For instance, we describe a type system for reference rather
than object immutability. Reference immutability is useful in more
circumstances, such as specifying interfaces, or objects that are
only sometimes immutable.

' We proposed a set of type-based analyses that can run after type
checking in order to make stronger guarantees or to enable verifi-

Most C++ experts advocate the useofist (for example, Mey- cation or transformation. For example, we show how to guarantee
ers advises usingpnst wherever possible [22]). However, as with ~ object immutability. The type-based analyses require only limited
many other type systems (including those of C++ and Java), somealiasing information; usually a simple escape or alias analysis suf-
programmers feel that the need to specify types outweighs the ben-fices, but an arbitrary alias analysis may be used.
efits of type checking. At least three studies have found that static We combined compile-time and run-time checking to create an
type checking reduces development time or errors [24, 16, 31]. We effective, practical, and safe system. The system detects all vio-
are not aware of any empirical (or other) evaluations regarding the lations of the immutability constraints at compile time, in the ab-
costs and benefits of immutability annotations. Java programmerssence of immutability downcasts. If a programmer chooses to use
seem eager for compiler-checked immutability constraints: as of downcasts (which are sometimes essential for interoperability with
May 2004, support foronst is the fourth most popular Java re- legacy code or to express application invariants), then efficient run-

quest for enhancement. time checking at modification points catches all unsafe uses while
A common criticism ofconst is that transforming a large ex- ~ permitting safe ones.
isting codebase to achievenst correctness is difficult, because We provided a safe type system for transitive immutability in the

const pervades the code: typically, all (or none) of a codebase context of a full, real, object-oriented language, Java, rather than
5See hitp://developer java.sun.com/developer/bugPa a model or subset. It is simple to see how our ideas would apply
rade/top25rfes. html . The first and third most popular requests to an idealized toy language, but it was nontrivial to support a real

(generics and covariant return types) are addressed by the Java 1.5nguage with all its wrinkles. Our success indicates that the system
language, and the second most popular request is “Provide docu-s comprehensible and usable in practice.
mentation in Chinese.” The syntax and semantics of Javari are backward compatible

47

with Java and the Java Virtual Machine. Java and Javari code can
call one another in a safe manner. This compatibility and inter-
operability with Java eases the transition between the languages;
developers can continue to use existing libraries and can adopt a [9]
pay-as-you-go strategy to annotating their code with immutability
constraints. Javari is also faithful to the spirit of Java: it feels like
Java and introduces run-time checks only as a result of constructs

that already result in Java run-time checks.

We have provided the firstimplementation and evaluation of tran- [10]
sitive (deep) immutability in the context of a safe language. Experi-
ence with 160,000 lines of Javari code demonstrates that the syntax,
rules, and checking are workable in practice. Even a user unfamil-
iar with a 120,000-line program was able to annotate it quickly and
discover errors. Our study provides insight into what immutability-

related errors users make in the absence of Javari's features.

Javari revealed over two dozen real errors in well-tested code.
The benefits, especially in reducing wasted time and clarifying spec-
ifications, are potentially much greater when Javari is used through-
out the development cycle rather than after the fact. Even the guar-
antee of reference immutability alone is enough to improve docu-

mentation, find errors, and expose other problems.

Acknowledgments

luliu Vasilescu implemented the prototype run-time checking sys-

tem. We are grateful to Adam Kien, Chandra Boyapati, Craig

Chambers, Walter Tichy, and the anonymous referees for their help-
ful comments on a draft of this paper. This work was supported in
part by NSF grant CCR-0133580 and a gift from TIBCO Software.

References

[1] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi.
Checking and inferring local non-aliasing. Rroceedings of
the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementatigages 129-140, San
Diego, CA, June 9-11, 2003.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias
annotations for program understandingQhject-Oriented
Programming Systems, Languages, and Applications
(OOPSLA 2002)pages 311-330, Seattle, WA, USA,

Oct. 28-30, 2002.

[3] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++
virtual function calls. InConference on Object-Oriented
Programming, Systems, Languages, and Applicatipages
324-341, San Jose, CA, USA, Oct. 6-10, 1996.

[4] A. Birka. Compiler-enforced immutability for the Java
language. Technical Report MIT-LCS-TR-908, MIT
Laboratory for Computer Science, Cambridge, MA, June
2003. Revision of Master’s thesis.

[5] J. Bloch.Effective Java Programming Language Guide
Addison Wesley, Boston, MA, 2001.

[6] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. IRroceedings of the 30th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languagepages 213-223, New Orleans, LA,
Jan. 15-17, 2003.

[7] J. Boyland, J. Noble, and W. Retert. Capabilities for sharing:
A generalisation of unigueness and read-onh\EGOOP
2001 — Object-Oriented Programming, 15th European
Conferencepages 2—27, Budapest, Hungary, June 18-22,
2001.

[8] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding genericity to the
Java programming language.@bject-Oriented

48

Programming Systems, Languages, and Applications
(OOPSLA '98) pages 183-200, Vancouver, BC, Canada,
Oct. 20-22, 1998.

J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.

Midkiff. Escape analysis for Java. [Dbject-Oriented

Programming Systems, Languages, and Applications

(OOPSLA '99) pages 1-19, Denver, Colorado, Nov. 3-5,

1999.

J. Dean, D. Grove, and C. Chambers. Optimization of

object-oriented programs using static class hierarchy

analysis. IECOOP 95, the 9th European Conference on

Object-Oriented Programmingages 77-10Rarhus,

Denmark, Aug. 7-11, 1995.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to

support program evolutiohEEE Transactions on Software

Engineering 27(2):1-25, Feb. 2001. A previous version

appeared inCSE '99, Proceedings of the 21st International

Conference on Software Engineerjpgges 213—-224, Los

Angeles, CA, USA, May 19-21, 1999.

D. Evans. Static detection of dynamic memory errors. In

Proceedings of the SIGPLAN '96 Conference on

Programming Language Design and Implementatjzages

44-53, Philadelphia, PA, May 21-24, 1996.

M. Fahndrich and R. DeLine. Adoption and focus: Practical

linear types for imperative programming. froceedings of

the ACM SIGPLAN 2002 Conference on Programming

Language Design and Implementatj@ages 13-24, Berlin,

Germany, June 17-19, 2002.

J. S. Foster, M. &hndrich, and A. Aiken. A theory of type

qualifiers. InProceedings of the ACM SIGPLAN '99

Conference on Programming Language Design and

Implementationpages 192—-203, Atlanta, GA, May 1-4,

1999.

J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type

qualifiers. InProceedings of the ACM SIGPLAN 2002

Conference on Programming Language Design and

Implementationpages 1-12, Berlin, Germany, June 17-19,

2002.

J. D. Gannon. An experimental evaluation of data type

conventionsCommunications of the ACM0(8):584-595,

Aug. 1977.

[17] J. Gosling, B. Joy, G. Steele, and G. Brachlae Java
Language Specificatio®ddison Wesley, Boston, MA,
second edition, 2000.

[18] G. Kniesel and D. Theisen. JAC — access right based
encapsulation for Jav&oftware: Practice and Experience
31(6):555-576, 2001.

[19] D. Lea. Personal communication, Aug. 1, 2004.

[20] X. Leroy.The Objective Caml system, release 38&pt. 29,
2003. with Damien Doligez, Jacques Garrigue, Didienfy
and &rdme Vouillon.

[21] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. IrfProceedings of the Fifteenth Annual ACM
Symposium on Principles of Programming Languagesies
47-57, San Diego, CA, Jan. 1988.

[22] S. MeyersEffective C++ Addison-Wesley, second edition,
1997.

[23] R. Milner, M. Tofte, and R. Harpel he Definition of
Standard ML MIT Press, 1990.

[24] J. H. Morris. Sniggering type checker experiment.
Experiment at Xerox PARC, 1978. Personal communication,
May 2004.

[11]

[12]

[13]

[14]

[15]

[16]

[25] P. Muller and A. Poetzsch-Heffter. Universes: A type system
for alias and dependency control. Technical Report 279,
Fernuniversit Hagen, 2001.

F. Nielson and H. R. Nielson. Type and effect systems. In

E. R. Olderog and B. Steffen, editofSprrect System

(26]

Design number 1710 in Lecture Notes in Computer Science,

pages 114-136. Springer-Verlag, 1999.

[27] J. Palsberg. Type-based analysis and applicationSCi
SIGPLAN/SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE’03howbird,
Utah, USA, June 18-19, 2001.

[28] Y. G. Park and B. Goldberg. Escape analysis on lists. In
Proceedings of the SIGPLAN '92 Conference on
Programming Language Design and Implementatjmeges
116-127, San Francisco, CA, June 17-19, 1992.

[29]
its applications. Idoint ACM-ISCOPE Java Grande
Conferencepages 202-211, Seattle, WA, Nov. 3-5, 2002.

[30] S. Porat, M. Biberstein, L. Koved, and B. Mendelson.
Automatic detection of immutable fields in Java. In
CASCON Mississauga, Ontario, Canada, Nov. 13-16, 2000.

[31] L. Prechelt and W. F. Tichy. A controlled experiment to
assess the benefits of procedure argument type checking.
IEEE Transactions on Software Engineeri24(4):302-312,
Apr. 1998.

49

[32] A. Salcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs. Broceedings of the 8th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming pages 12-23, Snowbird, Utah, June 18-20
2001.

M. Skoglund and T. Wrigstad. A mode system for read-only
references in Java. Brd Workshop on Formal Techniques
for Java ProgramsBudapest, Hungary, June 18, 2001.
Revised.

R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliabil BEE
Transactions on Software EngineerjrgE-12(1):157-171,
Jan. 1986.

[33]

(34]

[35] B. StroustrupThe C++ Programming Language

Addison-Wesley, Boston, MA, special edition, 2000.

I. Pechtchanski and V. Sarkar. Immutability specification and [36] J.-P. Talpin and P. Jouvelot. The type and effect discipline. In

Proceedings of the Seventh Annual IEEE Symposium on
Logic in Computer Sciengpages 162-173, Santa Cruz, CA,
June 22-25 1992.

[37] P. Wadler. Linear types can change the worldIRtP TC 2

Working Conference on Programming Concepts and
Methods pages 347-359, Sea of Galilee, Israel, Apr. 1990.

