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Abstract
This paper describes a type system that is capable of expressing
and enforcing immutability constraints. The specific constraint ex-
pressed is that the abstract state of the object to which an immutable
reference refers cannot be modified using that reference. The ab-
stract state is (part of) the transitively reachable state: that is, the
state of the object and all state reachable from it by following ref-
erences. The type system permits explicitly excluding fields or ob-
jects from the abstract state of an object. For a statically type-safe
language, the type system guarantees reference immutability. If the
language is extended with immutability downcasts, then run-time
checks enforce the reference immutability constraints.

In order to better understand the usability and efficacy of the type
system, we have implemented an extension to Java, called Javari,
that includes all the features of our type system. Javari is interop-
erable with Java and existing JVMs. It can be viewed as a proposal
for the semantics of the Javaconst keyword, though Javari’s syn-
tax usesreadonly instead. This paper describes the design and
implementation of Javari, including the type-checking rules for the
language. This paper also discusses experience with 160,000 lines
of Javari code. Javari was easy to use and provided a number of
benefits, including detecting errors in well-tested code.

Categories and Subject Descriptors
D.3.3 [Programming languages]: Language Constructs and Fea-
tures—data types; F.3.1 [Logics and meanings of programs]: Spec-
ifying and Verifying and Reasoning about Programs; D.1.5 [Pro-
gramming techniques]: Object-oriented programming
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1. Introduction
This paper presents a type system for specifying reference im-

mutability: the transitively reachable state of the object to which
a given reference refers cannot be modified using the reference.
The transitively reachable state is the object and all state reachable
from it by following references. A type system enforcing reference
immutability has a number of benefits: it can increase expressive-
ness, enhance program understanding and reasoning by providing
explicit, machine-checked documentation, save time by prevent-
ing and detecting errors that would otherwise be very difficult to
track down, or enable analyses and transformations that depend on
compiler-verified properties.

Our type system differs from previous proposals (for Java, C++,
and other languages) in a number of ways. It offers reference, not
object, immutability; reference immutability is more flexible, as it
provides useful guarantees even about code that manipulates muta-
ble objects. For example, many objects are modified during a con-
struction phase but not thereafter, or an interface can specify that a
method that receives an immutable reference as a parameter does
not modify the parameter through that reference, or that a caller
does not modify a return value. Furthermore, a subsequent analy-
sis can strengthen reference immutability into stronger guarantees,
such as object immutability, where desired.

Our system offers guarantees for the entire transitively reachable
state of an object. A programmer may use the type system to sup-
port reasoning about either the representation state of an object or
its abstract state; in order to support the latter, parts of a class can
be marked as not part of its abstract state. The abstract state is (part
of) the transitively reachable state: that is, the state of the object
and all state reachable from it by following references. Our type
system permits excluding specific fields from the abstract state.

Our system combines static and dynamic checking in a safe and
expressive way. Dynamic checking is necessary only for programs
that use immutability downcasts, but such downcasts can be con-
venient for interoperation with legacy code or to express facts that
cannot be proved by the type system. Our system also offers pa-
rameterization over immutability.

A type system is of limited interest if programmers cannot ef-
fectively use it. In the absence of experience using an implementa-
tion, the practicality of previous proposals is speculative. We have
designed and implemented Javari (which stands for “Java with ref-
erence immutability”), an extension to the Java language that per-
mits the specification and enforcement of reference immutability
constraints. Javari specifies immutability constraints using the key-
word readonly . The language is backward compatible with Java.
In addition, Javari code is interoperable with legacy Java code, and
runs on an unmodified Java Virtual Machine. The Javari compiler
is publicly available athttp://pag.csail.mit.edu/javari/ .

We obtained experience with Javari by writing code in it, as well
as by annotating Java code withreadonly to convert it to Javari.

35



/** This class represents a set of integers. **/
public class IntSet {

/** Integers in the set with no duplications. **/
private int[] ints;

/** Removes all elements from this that
* are not in set, without modifying set. **/

public void intersect(IntSet set) {
...

}

/** Makes an IntSet initialized from an int[].
* Throws BadArgumentException if there are
* duplicate elements in the argument ints. **/

public IntSet(int[] ints) {
if (hasDuplicates(ints))

throw new BadArgumentException();
this.ints = ints;

}

/** Number of distinct elements of this. **/
public int size() {

return ints.length;
}

public int[] toArray() {
return ints;

}
}

Figure 1: A partial implementation of a set of integers.

In total, we have over 160,000 lines of Javari code, including the
Javari compiler itself. This experience helped us design language
features for Javari to make it more useful and easier to use. In
addition, the experience helped clarify the benefits of using Javari.

This paper is organized as follows. Section 2 gives examples of
the use of immutability constraints. Section 3 describes the Javari
language, and section 4 presents our type-checking rules in the con-
text of Javari. Section 5 relates our experience with using Javari.
Finally, section 6 surveys related work, and section 7 concludes.

2. Examples
Reference immutability provides a variety of benefits in different

situations. This section gives three simple examples of immutabil-
ity constraints. The examples show enforcement of interface con-
tracts, granting clients read-only access to internal data, and pre-
vention of certain representation exposures. (Section 3.8 discusses
how analyses can provide guarantees such as these by building on
reference immutability, possibly with the assistance of a limited es-
cape or alias analysis.) We use a class representing a set of integers
(figure 1) to illustrate the problems and their solutions.

A method contract may state that the method does not modify
some of its arguments, as is the case withIntSet.intersect() .
Compiler enforcement of this contract guarantees that implementers
do not inadvertently violate the contract and permits clients to de-
pend on this property. Javari allows the designer ofIntSet to write

public void intersect(readonly IntSet set) {

and the compiler verifies the method’s specification about not mod-
ifying set .

Accessor methods often return data that already exists as part
of the representation of the module. For example, consider the
toArray method of theIntSet class. It is simple and efficient,
but it exposesIntSet ’s representation. A Java solution would be

to return a copy of the arrayints [5]. Our system permits a better
solution:

public readonly int[] toArray() {

Thereadonly keyword ensures that the caller ofIntSet.toArray
cannot modify the returned array, thus permitting the simple and
efficient implementation of the method to remain in place without
exposing the representation to undesired changes.1

Representation exposure occurs when implementation details are
accessible to clients. Java’s access control mechanisms (for exam-
ple, theprivate keyword) partly address this problem; Javari pre-
vents some additional problems. A system for immutability can
address the serious problem ofmutationalrepresentation exposure,
which permits modification of values and violation of data structure
invariants, but is not relevant toobservationalrepresentation expo-
sure, which may be innocuous or desirable. For example, in the
IntSet example of figure 1, thetoArray accessor method exists
to provide external access to the object’s state.

In the IntSet example, the content of the private data mem-
ber ints is externally accessible through the reference passed to
the constructorIntSet(int[]) . Client code can directly change
the state of theIntSet object, which is undesirable. Even worse,
client code can violate the representation invariant and put anIntSet
object into an inconsistent state. For example, the client code could
put a duplicate integer into the arrayints , which would cause the
methodIntSet.size() to return an incorrect value.

Javari would catch this representation exposure at compile time.
Since the constructor ofIntSet is not intended to change the ar-
gumentints , theIntSet programmer would write

public IntSet(readonly int[] ints) {

and the compiler would issue an error at the attempt to assignints
to this.ints , preventing theIntSet programmer from forgetting
to do a deep copy in the constructor.

3. The Javari language
The Javari language extends Java with explicit mechanisms for

specifying immutability constraints, compile-time type checking to
guarantee those constraints, and run-time checking for programs
that use potentially unsafe casts.

Javari adds two new keywords to Java:readonly andmutable .2

The readonly keyword specifies immutability constraints. The
mutable keyword indicates a field that is not part of the abstract
state of an object, or downcasts from read-only types to non-read-
only types. The keywords are used as follows:

readonly is used in three ways:

1. As a type modifier: For every Java reference typeT, readonly
T is a valid type in Javari (and is a supertype ofT), and a
variable of such a type is known as a read-only reference.

1The returned array is aliased by theints field, soIntSet code
can still change it even if external code cannot. The (unspecified)
semantics oftoArray may permit this. The method specifica-
tion might note that the returned reference reflects changes to the
IntSet ; alternately, the method specification, or an external analy-
sis, might require that the result is used before the next modification
of the IntSet .
2Java reserves, but does not currently use, the keywordconst , so
only one new keyword is strictly necessary. We have chosen to
introduce the new keywordreadonly instead of reusingconst
for two reasons. First, we believe thatreadonly better describes
the concept of reference immutability. Second, we wish to avoid
confusion with the C++ keywordconst (see section 6.1).
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Read-only references cannot be used to change the state of
the object or array to which they refer. A read-only reference
type can be used in a declaration of any variable, field, pa-
rameter, or method return type. A read-only reference type
can also appear in a type-cast. See section 3.1.

2. As a method/constructor modifier:readonly can be used af-
ter the parameter list of a non-static method declaration (and
likewise for an inner class constructor), making that method
a read-only method. Read-only methods cannot change the
state of the receiver (“this ”) object. Only read-only meth-
ods can be called through a read-only reference. See section
3.2.

3. As a class modifier:readonly can be used as a modifier in
a class or interface declaration. It specifies that instances of
that class or interface are immutable. See section 3.3.

mutable is used in two ways:

1. In a non-static field declaration,mutable specifies that the
field is not part of the abstract state of the object. Muta-
ble fields can be modified by read-only methods and through
read-only references, while non-mutable fields cannot. See
section 3.4.

2. In a type cast,mutable converts a read-only reference to
a non-read-only reference. Run-time checks are inserted to
maintain soundness and enforce immutability at run time.
See section 3.6.

Javari supports type parameterization as a principled way to cre-
ate related versions of code (section 3.5). Javari is backward com-
patible with Java: any Java program that uses none of Javari’s key-
words is a valid Javari program, with the same semantics. Also,
Javari is interoperable with Java; Java and Javari code can call one
another without recompilation (section 3.7). A postpass analysis
can build on Javari’s guarantee of reference immutability in order
to make stronger guarantees about program behavior (section 3.8).

3.1 Read-only references
A read-only reference is a reference that cannot be used to mod-

ify the object to which it refers. A read-only reference to an object
of typeT has typereadonly T . For example, suppose a variable
robuf is declared as

readonly StringBuffer robuf;

Thenrobuf is a read-only reference to aStringBuffer object; it
can be used only to perform actions on theStringBuffer object
that do not modify it. For example,robuf.charAt(0) is valid,
but robuf.reverse() causes a compile-time error.

When a return type of a method is a read-only reference, the
code that calls the method cannot use the return value to modify
the object to which that value refers.

Note thatfinal andreadonly are orthogonal notions in a vari-
able declaration:final makes the variable not assignable, but the
object it references is mutable, whilereadonly makes the refer-
enced object immutable (through that reference), but the variable
remains assignable. Using both keywords gives variables whose
transitively reachable state cannot be changed except through a
non-readonly aliasing reference.

The following rules for usage of read-only references (detailed
in section 4) ensure that any code that only has access to read-only
references to a given object cannot modify that object.

• A read-only reference cannot be copied, either through as-
signment or by parameter passing, to a non-read-only ref-
erence. In therobuf example above, a statement such as

StringBuffer buf = robuf; would cause a compile-time
error.

• If a is a read-only reference, andb is a field of an object
referred to bya, then a.b cannot be assigned to and is a
read-only reference.

• Only read-only methods (section 3.2) can be called on read-
only references.

Javari also allows declarations of arrays of read-only references.
For example,(readonly StringBuffer)[] means an array of
read-only references toStringBuffer objects. For such an array,
assignments into the array are allowed, while modifications of ob-
jects stored in the array are not. This is in contrast toreadonly
StringBuffer[] , which specifies a read-only reference to an ar-
ray of StringBuffer s, and disallows both array element assign-
ment and modification of objects stored in the array.

A non-read-only reference can be implicitly converted to a read-
only one by an assignment, including implicit assignment to param-
eters during method or constructor invocations. A non-read-only
reference can also be explicitly cast to a read-only one by using a
typecast with a type of the form(readonly T) . For example:

readonly StringBuffer robuf = new StringBuffer();
StringBuffer buf = new StringBuffer();
robuf = buf; // OK
robuf = (readonly StringBuffer) buf; // OK
buf = robuf; // error
buf = (StringBuffer) robuf; // error

See section 3.6 for more details about type casts.

3.2 Read-only methods and constructors
Read-only methods are methods that can be called through read-

only references. They are declared with the keywordreadonly
immediately following the parameter list of the method. It is a
compile-time error for a read-only method to change the state of
the receiver object. For example, an appropriate declaration for the
StringBuffer.charAt method in Javari is:

public char charAt(int index) readonly

Read-only constructors are constructors that can be called with
enclosing instance given through a read-only reference. (The Java
Language Specification requires that a constructor for a (non-static)
inner class be called on an instance of the outer class; this instance
is called the enclosing instance.) Read-only constructors are de-
clared with the keywordreadonly immediately following the pa-
rameter list of the constructor. It is a compile-time error for a read-
only constructor to change the state of the enclosing instance.

Read-only constructors can be used when the enclosing instance
is supplied through a read-only reference, as they promise not to
modify the enclosing object. Read-only constructors do not con-
strain the constructor’s effects on the object being constructed, nor
how the invoker uses the returned object.

Whether a method or constructor is read-only is part of its sig-
nature, and therefore it is possible to have two methods with the
same name and parameters, if one is read-only and the other is not.
Similarly, a read-only method declared in a subclass overloads (not
overrides) a non-read-only one of same name and parameters de-
clared in a superclass, and vice versa.

3.3 Immutable classes
A class or an interface can be declared to be immutable via the

readonly modifier in its declaration.3 This means that all of its
3We use the term “read-only type” to meanreadonly T , for some
T, and “immutable type” to mean a class or interface whose defini-
tion is marked withreadonly and which therefore is immutable.
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non-mutable non-static fields are implicitly read-only and final, and
all of its non-static methods are implicitly read-only. In addition,
if the class is an inner class, then all of its constructors are also
implicitly read-only.

For an immutable class or interfaceT, read-only and non-read-
only references to objects of typeT are equivalent. In particular,
read-only references can be copied to non-read-only references,
something that is normally disallowed. Subclasses or subinterfaces
of immutable classes and interfaces must be declared immutable.
Any instance field inherited by an immutable class or interface must
be either final and of read-only type, or mutable. Any instance
method inherited by such a class or interface must be read-only.

3.4 Mutable fields
Mutable fields (declared with themutable modifier) are not con-

sidered to be part of the abstract state of an object. A mutable field
of an objectO can be changed through a read-only reference toO.

One use of mutable fields is to enable creation of read-only con-
tainers that hold non-read-only elements. Another use of muta-
ble fields is to cache results of read-only methods. For example,
this situation arises in the Javari compiler, where a name resolution
methodresolve() needs to cache the result of its computation.
The solution looks somewhat like the following:

class ASTName {
...
private mutable Resolution res = null;
public Resolution resolve() readonly {

if (res == null)
res = doResolve(); // OK: res is mutable

return res;
}

}

Without mutable fields, objects are unable to cache the results of
read-only methods, and consequently Javari would force the pro-
grammer to either not label methods as read-only, or to take a sig-
nificant performance penalty.

Thereadonly , mutable , andfinal keywords capture distinct
concepts. If a field is declared as bothmutable and readonly ,
the transitive state of the object it refers to is unchangeable through
the field (because ofreadonly ), while the field itself is assignable
(because ofmutable ). If a field is declared as bothmutable
and final , it is not assignable (because offinal ), but the state
of the object to which it refers is changeable through the field,
even when the field is accessed through a read-only reference (be-
cause ofmutable ). If a field is declared with all three keywords,
mutable has no effect.

3.5 Type parameterization
Javari adopts the type (class and interface) and method param-

eterization mechanisms of Java 1.5 [8], also known as “generics”.
Among other benefits, this feature reduces code duplication. For
example, it eases the definition of container classes, permitting
one definition ofVector to be instantiated either as a container
of Object s or of readonly Object s, and either as a container
whose abstract state includes the elements or excludes the elements.
More importantly, parameterization permits a single method defini-
tion to expand into multiple definitions that differ in the immutabil-
ity of the parameters or of the method itself.

Javari augments the generics of Java 1.5 to permit a type qualifier
(eitherreadonly or the empty type qualifier) as a type parameter.
This enables parameterization over whether a method is read-only
(section 3.2). It also eases writing definitions in which references
have different Java types but the same qualifier, such as this exam-
ple from theInvMap class of Daikon (section 5.3):

public <RO>
RO List<RO Invariant> get(RO PptTopLevel ppt) RO;

Java compiles generics via erasure (after type checking is com-
plete): the same bytecodes are used for all instantiations of the class
or method. Our prototype compiler uses a different compilation
strategy (for immutability generics only): it duplicates the param-
eterized declaration. Care must be taken when dealing with the
different kinds of parameters — essentially, splitting them into pos-
sibly overlapping parts and processing the parts separately. (First,
duplicate code as necessary to eliminate all immutability parame-
terization, and then process the remaining parameters in the usual
way.) Likewise, when a cast changes both the Java type and whether
the type is read-only (section 3.6), the cast is converted into two
casts (one for the Java type and one forreadonly ), and each is
processed separately.

3.6 Type casts
Every non-trivial type system rejects some programs that are

safe — they never perform an erroneous operation at run time —
but whose safety proof is beyond the capabilities of the type sys-
tem. Like Java itself, Javari allows such programs, but requires spe-
cific programmer annotations (downcasts); those annotations trig-
ger Javari to insert run-time checks at modification points to guar-
antee that no unsafe operation is executed. Among other benefits,
programmers need not code around the type system’s constraints
when they know their code to be correct, and interoperation with
legacy libraries is eased. The alternatives — prohibiting all pro-
grams that cannot be proved safe (including many uses of arrays),
or running such programs without any safety guarantee — are un-
satisfactory, and are also not in the spirit of Java.

If a program is written in the typesafe subset of Javari, then static
type-checking suffices. For our purposes, the unsafe operation is
the downcast, which converts a reference to a superclass into a ref-
erence to a subclass. These can appear explicitly, and also in certain
uses of arrays of references, for which Java’s covariant array types
prevent sound static type-checking. An example of the latter, where
B is a subtype ofA that definesb method , is

B[] b_arr = new B[10];
A[] a_arr;
A a = new A();
a_arr = b_arr;
a_arr[0] = a; // ArrayStoreException
b_arr[0].b_method(); // statically OK

Java inserts checks at each down-cast (and array store), and throws
an exception if the down-cast fails.

Javari’s syntax for downcasting from a read-only type to a non-
read-only type is “(mutable) expression”. Regular Java-style casts
cannot be used to convert from read-only to non-read-only types.
Special downcast syntax highlights that the cast is not an ordinary
Java one, and makes it easy to find such casts in the source code.
(See section 5.1.)

Downcasting from a read-only to a non-read-only type, or poten-
tially storing a read-only reference in a non-read-only array, trig-
gers the insertion of run-time checks, wherever a modification (an
assignment) may be applied to a reference that has hadreadonly
cast away. The run-time checks guarantee that even if a read-only
reference flows into a non-read-only reference, it is impossible for
modifications to occur through the non-read-only reference. Thus,
Javari soundly maintains its guarantee that a read-only reference
cannot be used, directly or indirectly, to modify its referent.
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3.6.1 Run-time checking
Conceptually, Javari’s checking works in the following way. The

system associates a single “readonly” Booleanxro with each refer-
encex (not with each object), regardless of the reference’s static
type. Array references are treated similarly, but they need both a
Boolean for the array and a Boolean for each reference element.
The readonly Boolean is true for each non-read-only reference de-
rived from areadonly reference as a result of a downcast.

The readonly Boolean is set whenreadonly is cast away, is
propagated by assignments, and is checked whenever a modifica-
tion (i.e., a field update) is performed on a non-read-only refer-
ence. Theinstanceof operator checks the Boolean to determine
whetherx instanceof mutable for x of non-read-only static
type.

The key rules for checking are as follows. LetT be a type,a and
b be expressions, andf be a field name. First, each operation that
yields a reference is modified to also produce a readonly Boolean
for that reference. Two such rules are

(a.f) ro = aro

((mutable) a) ro = true wherea is of read-only static type

Second, each field update is modified to check the readonly Boolean
for the reference being updated. The statementa.f = b; becomes

if a ro then throw exception;
a.f = b;
(a.f) ro = bro;

Method calls are modeled as assignments from the actuals to the
formals, plus an assignment from the return statement to the call
result itself. The remainder of the rules are straightforward (for
example, array elements are treated analogously to fields) and are
omitted from this paper for brevity.

Many optimizations to the above rules are possible. For exam-
ple, an analysis such as CHA [10] or RTA [3] could determine
which classes an unsafe operation may be applied to, and which
classes are reachable from those. Checks only need to be inserted
in reachable classes. Furthermore, checks never need be inserted
for immutable classes, nor for classes reached only via immutable
references. (In other words, the more instances ofreadonly in the
program, the less the overhead of run-time checking, if any, will
be.) Checks can also be hoisted out of loops or eliminated where
static analysis indicates them to be unnecessary. Explicit readonly
Booleans need not be created for intermediate results.

We have implemented a prototype implementation of the run-
time checking. It is inserted by a source-to-source postpass that is
invoked if the program being compiled contains any unsafe casts
or array uses. The resulting code then runs on an unmodified JVM.
Our implementation is not highly tuned; for instance, it includes
none of the above optimizations except for a partial hoisting op-
timization. Furthermore, because it is a source-to-source transfor-
mation, it incurs substantial overhead by introducing many wrapper
classes to hold the readonly Boolean value that indicates whether
a reference is immutable.4 Despite all these inefficiencies, the pro-
totype introduces slowdowns averaging less than 10% on our suite
of real and benchmark programs containing noreadonly anno-
tations. (We ran our experiments using the Sun 1.4.1 JDK on a
Pentium 4 running Red Hat Linux 7.2.)

4In some cases the Boolean can be added as a new variable or
field — for example, if fieldf exists, then Boolean fieldf ro is
added and is manipulated or checked wheneverf is used. In other
cases, as for libraries for which source is not available, for arrays
(which are not first-class objects), or for return values, wrapping is
inevitable, introducing space and (especially) time costs.

Our main focus in this paper is the type system and its usability,
which are more important than run-time efficiency, and we have
not been hindered by these relatively small slowdowns. However,
we believe the optimizations listed above could substantially re-
duce the overhead. Another approach is to modify the JVM di-
rectly, rather than operating at the source level. For instance, we
could place the readonly Boolean in an unused bit in Java refer-
ences. Such an approach would eliminate the need for new slots in
objects and for wrapper objects. No updating code would be nec-
essary for assignments: copying the reference would automatically
copy the immutability Boolean. Checking code would still be re-
quired, and the bit would need to be masked out when pointers are
dereferenced. Most seriously, a modified JVM would be required
in order to run Javari programs. We hope to investigate such opti-
mizations in future work.

3.7 Interoperability with Java
Javari is interoperable with Java and existing JVMs. The lan-

guage treats any Java method as a Javari method with no immutabil-
ity specification in the parameters or return type, or on the method
(and similarly for constructors, fields, and classes). Since the Javari
type system does not know what a Java method can modify, it as-
sumes that the method may modify anything.

This approach allows Javari to call Java code safely, without
any immutability guarantees being violated. However, in many
cases this analysis is over-conservative. For example,Object.to-
String() can safely be assumed to be a read-only method. There-
fore, Javari permits the user to specify alternative signatures for
methods, constructors, and fields in Java libraries or native code.
The compiler trusts these annotations without checking them.

While Java methods can be called from Javari, Java code can
only call Javari methods that do not containreadonly in their sig-
natures. The Javari compiler achieves this by using standard Java
names for non-read-only types, methods, and classes, and by “man-
gling” the names of read-only types, methods, and classes into ones
that cannot be referenced by legal Java code. If a Javari program
uses downcasts, which trigger the insertion of run-time checks (sec-
tion 3.6), then any called Java code must be recompiled with the
Javari compiler, or the run-time checks must be inserted at the call
site, or the call must be proved to never pass a downcasted refer-
ence, or checks must be inserted by the JVM.

The Javari compiler guarantees that Javari code maintains the
reference immutability constraints. However, a malicious client
could subvert the type system by writing classes directly in JVM
bytecode. In order to prevent such loopholes, the bytecode verifier
should be extended to verify the reference immutability constraints,
just as it verifies other type constraints that are initially checked at
the source code level. Classfile checking suggests an alternative
syntax: express information about reference immutability (in the
source code and in classfiles) as metadata annotations, a new fea-
ture in Java 1.5. Such an approach would eliminate the need for the
1–2 new keywords in our proposal.

3.8 Type-based analyses
This section describes several type-based analyses that can be

run after Javari type-checking in order to provide stronger guaran-
tees. A type-based analysis assumes that the program type checks
[27], but type-checking is independent of any subsequent analysis.

Javari enforces reference immutability — a read-only reference
is never used to side-effect any object reachable from it. Refer-
ence immutability itself has many benefits (section 5). However,
other guarantees may be desirable in certain situations. Four of
these guarantees are object immutability, thread non-interference,
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parameter non-mutation, and return value non-mutation. One ad-
vantage of reference immutability is that a subsequent analysis can
often establish these other properties from it (as outlined below),
but the converse is not true.

Extending reference immutability to stronger guarantees requires
escape analysis or partial information about aliasing. Determining
complete, accurate alias information remains beyond the state of
the art; fortunately, the analyses below do not require full alias anal-
ysis. Obtaining alias information about a particular reference can
be easier and more precise than the general problem [1]. Many pro-
grams use (some) pointers in disciplined and limited ways; these
may correspond to, and may be motivated by, the places where
programmers desire to reason about immutability. As new alias
analyses become available, they can be applied to the below anal-
yses; this is preferable to embedding assumptions about a partic-
ular alias analysis in the type system. Programmers can use other
mechanisms for controlling or analyzing aliasing, such as owner-
ship types [6], alias types [2], linear types [37, 13], or checkers of
pointer properties [12, 15]. In the absence of an automated analy-
sis, a programmer can use application knowledge about aliasing.

Object immutability. An object cannot be modified if all ref-
erences to the object are read-only references. For example, this
is guaranteed if at instantiation an object is assigned to a read-only
reference, because only one reference exists. A further side con-
dition is required: the constructor must not leak a non-read-only
reference to the object or its parts. This circumstance is rare, and a
trivial analysis reveals that almost no classes in the JDK leak even
a read-only reference tothis . The object immutability analysis
accommodates interning, logging, tracing, and other mechanisms
that retain/leak read-only references.

Another example is data structures that are treated differently by
different phases of a program. For example, it is most natural for
a graph or doubly-linked list to be mutable while being built, but
it may be used immutably elsewhere. A simple analysis can often
indicate when only immutable references remain after construction.

Thread non-interference. Other threads cannot modify an ob-
ject if no other thread has a non-read-only reference to the object.
Escape analysis for multithreaded programs [32] can indicate what
references escape to other threads. In some cases the guarantee
may be necessary only between synchronization points or within a
critical region, which may be easier than a program-wide analysis.

Parameter non-mutation. An object that is passed as areadonly
parameter is not modified until control exits the callee so long as
no non-read-only reference aliases the object within the procedure
scope (or in another thread; see above). Effectively, this means that
the object should not be aliased by a non-read-only parameter or
global variable. A variation on escape analysis [28, 9] can indicate
whether an object may be placed in a non-read-only global variable.
Parameter aliasing is simpler than the general alias problem, espe-
cially because parameters may be of incompatible types or may all
bereadonly .

Return value non-mutation. An object returned as areadonly
result is not modified outside the callee’s module so long as no non-
read-only reference to the object escapes; this is a direct application
of escape analysis.

3.9 Extension to new properties and languages
This paper presents a type system for reference immutability and

develops it in the context of Java. While the intuition behind the
enforced constraints is simple, our type rules and implementation
cover the entire Java language. This permits us to explore how
the type system interacts with real-world constructs including sub-
typing, inner types, exceptions, covariant arrays, and more. This

experience leads us to believe that our approach should be easy to
extend to other languages — especially imperative object-oriented
languages, but most likely others as well. (The primary difficulty
with a language such as C++ is its lack of type safety; C++’s loop-
holes prevent making any guarantees even after type checking.)

We also believe that our approach, which combines static type
checking with dynamic checking where necessary and appropriate
in order to keep the static rules simple and understandable by a
programmer, should be extensible to other properties. For exam-
ple, one interesting annotation would bewriteonly , which per-
mits specific clients to set a variable while prohibiting them from
reading the value (for instance, seeing what others have written).
A common paradigm that Javari supports (particularly when aug-
mented by a type-based analysis) is an initialization phase followed
by a read-only phase; this could be made explicit in awriteonce
annotation that (likereadonly ) permitted unlimited reading. Such
an analysis would be similar to a typestate analysis [34].

Further work is required to validate these intuitions and indicate
the limits of our approach, but our success to date is encouraging.

4. Type-checking rules
Javari has the same run-time behavior as Java (except for pos-

sible run-time checks as described in section 3.6). However, at
compile time, Javari ensures that modification of objects through
read-only references, or similar violations of the language, do not
occur. Section 4.1 introduces some definitions. Section 4.2 presents
type-checking rules, in the style of the Java Language Specifica-
tion [17]. A technical report [4] contains complete type checking
rules. Section 4.3 gives intuitive explanations of our treatment of
inner classes and exceptions.

4.1 Definitions

4.1.1 Javari’s types
Javari’s type hierarchy extends that of Java by including, for ev-

ery Java reference typeT, a new typereadonly T . References of
type readonly T are just like those of typeT, but cannot be used
to modify the object to which they refer.

Formally, the types in Javari are the following:

1. The null typenull .
2. The Java primitive types.
3. Instance references. IfC is any class or interface, thenC is a

type representing a reference to an instance ofC.
4. Arrays. For any non-null typeT, T[] is a type, representing

an array of elements of typeT.
5. Read-only types. For any non-null typeT, readonly T is a

type.

For convenience in the exposition later, we define thedepthand
the baseof a type. Informally, the depth is just the nesting depth
of an array type, while the base of an array type is the type with all
array dimensions removed. Formally, for a typeT, we define:

Depth:
- depth(T[] ) = depth(T) + 1
- depth(readonly T ) = depth(T)
- depth(T) = 0 if T is null, primitive, or an instance reference

Base:
- base(T[] ) = base(T)
- base(readonly T )=base(T) if base(T) is a read-only type
- base(readonly T ) = readonly base(T)

if base(T) is a non-read-only type
- base(T) = T if T is null, primitive, or an instance reference
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Figure 2: A portion of the Javari type hierarchy, which includes
read-only and non-read-only versions of each Java reference type.
Arrows connect subtypes to supertypes.

4.1.2 Type equality and subtyping
The equality relation on types is defined as follows:

1. For primitive types, the null type, and references to instances
of classes and interfaces, two types are equal iff they are the
same Java type.

2. readonly T and readonly S are equal iffdepth(T) =
depth(S) andbase(readonly T ) = base(readonly S ).

3. T[] andS[] are equal iffT andS are equal.
4. For a non-read-only typeT, T andreadonly S are equal iff

T andS are equal, andT is either primitive or is a reference to
an instance of an immutable class or interface (section 3.3).

Item 2 implies thatreadonly int[][] andreadonly (readonly
int[])[] are equivalent. In other words, a read-only array ofint
arrays is the same as a read-only array of read-onlyint arrays.
This is because read-only is a transitive property, and hence if a
level of an array is marked as read-only, then all the lower levels
are read-only.

Equal types are considered to be the same type. They are inter-
changeable in any Javari program.

A subtyping relationship (T subtype ofS, written asT < S) is
also defined on types. It is the transitive reflexive closure of the
following:

1. byte < char , byte < short , char < int , short < int ,
int < long , long < float , float < double .

2. null < T for any non-primitive typeT.
3. If T andS are classes such thatT extendsS or interfaces such

that T extendsS, or S is an interface andT is a class imple-
mentingS, thenT < S.

4. For any non-null typesT andS, if T < S thenT[] < S[] .
5. For any non-read-only non-null typeT, T < readonly T .
6. For any non-read-only non-null typesT andS, if T < S then

readonly T < readonly S .
7. For any non-null typeT, T[] < java.io.Serializable ,

T[] < Cloneable , andT[] < Object .
8. For any non-read-only non-null typeT, (readonly T)[] <

readonly T[] .

Figure 2 shows an example of the subtype hierarchy.

4.1.3 Definitions relating to method invocations
These definitions are the same as those in Java [17], except for

the presence of the third clause in the definition of specificity. Our
definitions and rules do not consider constructors to be methods;
we always specify which (or both) we mean.

Compatibility:Given a method or constructorM and a list of ar-
gumentsA1, A2, . . . An, we say that the arguments are compatible
with M if M is declared to taken parameters, and for eachi from

1 to n, the type ofAi is a subtype of the declared type of theith
parameter ofM .

Specificity: Given two methods of the same name or two con-
structors of the same class,M1 andM2, we say thatM1 is more
specific thanM2 if the following three conditions hold:

1. M1 andM2 take the same number of parameters, say with
typesP1, P2, . . . Pn for M1, and Q1, Q2, . . . Qn for M2,
and for eachi from 1 to n, Pi is a subtype ofQi.

2. The class (respectively, interface) in whichM1 is declared is
a subclass (subinterface) of the one whereM2 is declared, or
M1 andM2 are declared in the same class (interface).

3. EitherM1 is not read-only orM2 is read-only (or both).

4.2 Type-checking rules

4.2.1 Programs
A program type checks if every top-level class and interface dec-

laration in the program type checks.

4.2.2 Class/interface declarations
A class or interface declaration type checks if all of the following

hold:

1. One of the following two conditions holds:

(a) The class or interface is immutable and each method
inherited from any superclass or superinterface is static,
or read-only, and each of the inherited fields inherited
is static, mutable, or both final and of a read-only type.

(b) The class or interface is not immutable, and neither is
its direct superclass nor any of its direct superinterfaces.

2. No two fields of the same name are declared within the body
of the class/interface.

3. No two methods of the same name and signature are declared
within the body of the class/interface. The signature includes
the number and declared types of the parameters, as well as
whether the method is read-only.

4. No two constructors of the same signature are declared within
the body of the class/interface.

5. Every field, method, constructor, member type, instance ini-
tializer, and static initializer declared within the class or in-
terface type checks.

4.2.3 Variable declarations
For a field or local variable declaration of type T:

• If it does not have an initializer, it type checks.
• If it has an initializer of the form “= E” for an expressionE,

it type checks iff the assignment of the expressionE to a left
hand side with typeT would type check.

• If it has an initializer of the form “= { I1, . . . Ik } ”, where
Ik are initializers, it type checks iffT = S[] or T = readonly
S[] for some typeS, and the declarationS v = Ik or readonly
S v = Ik respectively would type check for everyk between
1 andn.

4.2.4 Method declarations
A method, constructor, instance initializer, or static initializer

type checks if every expression, local variable declaration, and lo-
cal type declaration in the body type checks.

4.2.5 Expressions
Each expression has a type and a boolean property calledassign-

ability. An expression is type checked recursively, with all subex-
pressions type checked first. If the subexpressions type check, then
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their types and assignability are used to type check the given ex-
pression and deduce its type and assignability. Otherwise, the given
expression does not type check.

For brevity, this paper gives only the type-checking rules for ex-
pressions that are substantially different from those of Java; a tech-
nical report [4] contains the complete type checking rules.

Assignment: The rules for type checking assignments are the
same as in Java, except that the assignment expression does not type
check if the lvalue is not assignable. The type of any assignment
expression that type checks is the same as the type of the lvalue,
and the expression is not assignable.

Typecast(T) A: In addition to the Java rules, a type cast must
not cast from a read-only type to a non-read-only type. The type of
the cast expression isT and the expression is not assignable.

Mutability typecast(mutable) A: Always type checks. If the
type ofA is non-read-only, this expression is of the same type. If
the type ofA is readonly S[] for someS, then the type of this
expression is(readonly S)[] . If the type ofA is readonly
S wheredepth(S) = 0, the type of this expression isS. The ex-
pression is never assignable. This expression also triggers run-time
checks (see section 3.6).

Receiver referencethis : In a static context,this does not type
check. In a non-static context,this has typeC if C is a class and
this appears inside a non-read-only method, a non-read-only con-
structor, or an initializer ofC. Inside a read-only method or a read-
only constructor ofC, this has typereadonly C . this is not
assignable.

Containing object referencename.this : Type checks if it oc-
curs in a non-static context in a method, constructor, or initializer
of a classI , andnamenames a classC for which I is an inner class.
The type of the expression isC unless it appears inside a read-only
method or a read-only constructor ofI , in which case the type is
readonly C . This expression is not assignable.

Instance creationnew T(...) : For creation of an inner class, if
the enclosing reference is read-only, then only read-only construc-
tors are eligible. If there is no enclosing reference, or the enclosing
reference is not read-only, all constructors are eligible. The ex-
pression type checks if there is a most specific accessible eligible
constructor compatible with the arguments to the class instance cre-
ation expression. The type of the expression isreadonly T if the
enclosing reference is a read-only reference, andT otherwise. This
expression is never assignable.

Array dereferenceA[E]: Type checks ifE is of integral type
andA is of typeT[] or readonly T[] for some typeT; the type
of the expression is respectivelyT or readonly T . The expression
is assignable in the first case, and not assignable in the second.

Field access: LetT be the declared type of the field being ac-
cessed. IfT is a read-only type, or the field is accessed through
a non-read-only reference, or the field is a mutable or static field,
then the type of the expression isT. Otherwise, the type of the ex-
pression isreadonly T . The expression is assignable if the field
is mutable or static, or if the reference through which the field is
accessed is not a read-only reference. As an exceptional case, in-
side a read-only constructor, barename field access expressions for
fields of the class that is being constructed are assignable.

Method invocationE.m(. . .): If the invoking reference is read-
only, only static or read-only methods are eligible. If there is no
invoking reference, only static methods are eligible. Otherwise, all
methods are eligible. The expression type checks if there is a most
specific accessible eligible method compatible with the arguments
to the method invocation. The type of the expression is the declared
return type of the method. A method invocation expression is never
assignable.

Exceptionthrow E: Javari prohibits read-only exceptions from
being thrown. A technical report [4] describes other approaches
that we rejected because they introduced loopholes into the type
system or they require a complicated analysis that would provide
very little benefit.

Special rule: Any reference to an instance of an immutable class
C, when used inside the body of a non-immutable superclass or
superinterface, is of typereadonly C .

4.3 Inner classes and exceptions
Previous work on language-level immutability has not addressed

inner classes or exceptions. This section explains how we handle
them. It also provides an intuitive explanation of some of Javari’s
type checking rules.

4.3.1 Inner classes
The type-checking rules guarantee that read-only methods do not

change any non-static non-mutable fields ofthis . The inner class
feature of Java adds complexity to this guarantee. Javari must en-
sure that no code inside an inner class can violate an immutabil-
ity constraint. There are three places in an inner class where im-
mutability violations could occur: in a constructor, in a field or
instance initializer, or in a method. The Javari type-checking rules
(section 4) prevent any such violation. This section explains the
rules by way of an example.

class Outer {
int i = 1;
// foo is readonly, so foo should not change i
public void foo() readonly {

class Local() {
Local() readonly {

i = 2; // ERROR: changes i
j = 3; // OK

}
int j = ( i = 4 ); // ERROR: changes i
void bar() readonly {

i = 5; // ERROR: changes i
}

}
// Would be erroneous if either Local()
// or bar() were not declared as readonly.
new Local().bar();

}
}

Constructors: Read-only constructors (see section 3.2) prevent
this change. There are two possibilities for a change ofi in a
constructor ofLocal . This change could happen inside a read-
only constructor, or inside a non-read-only one. If the constructor
of Local is read-only, the assignmenti = 2 will not type check:
read-only constructor bodies type check like read-only method bod-
ies, except that a field of the class being constructed accessed by
simple name is assignable and non-read-only. On the other hand,
if the constructor ofLocal() is not read-only, it cannot be in-
voked, since Javari allows only read-only constructors to be in-
voked through a read-only enclosing instance, and the enclosing
instance is implicitlythis , a read-only reference insidefoo() .

Initializers: If at least one read-only constructor exists in a given
class or if an anonymous class is being constructed with read-only
enclosing instance, the compiler treats instance initializers and in-
stance field initializers as if they were in the body of a read-only
constructor. The second case is necessary because anonymous con-
structors have an implicit constructor, which is considered a read-
only constructor if the enclosing instance is read-only. This rule
prevents modifications to the state of a read-only enclosing instance
from initializers of inner classes.
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Methods: The rule thatnew Local() must have typereadonly
Local if the enclosing instance is read-only prevents modification
of the enclosing instance. Ifbar() is declared as read-only, the
assignment toi inside it will fail to type check. Ifbar() is not
declared as read-only, then the call tobar() in the example above
does not type check, becausenew Local() has typereadonly
Local .

4.3.2 Exceptions
Our desire for interoperability with Java and the JVM compli-

cates Javari’s handling of exceptions. An exception thrown with a
throw statement whose argument is a read-only reference should
only be catchable by acatch statement whose parameter is de-
clared asreadonly , because otherwise thecatch statement would
be able to change the exception’s state.

Javari prohibits read-only exceptions from being thrown. There-
fore, the type-checker rejects some safe uses of read-only refer-
ences to exceptions. This restriction has so far caused no difficulty
in practice (see section 5).

A technical report [4] describes other approaches that we re-
jected because they introduced loopholes into the type system or
they require a complicated analysis that would provide very lit-
tle benefit. The key idea underlying these approaches is to wrap
some exceptions at run-time in special wrapper objects, so that non-
readonly catch statements do not catch read-only exceptions.
Since Javari runs on an unmodified Java Virtual Machine and inter-
operates with legacy bytecode files, each wrapper class should be a
subtype ofThrowable (which Java treats specially). However, in
Javari,readonly Throwable is a supertype ofThrowable (see
figure 2). Reconciling these problems is possible, but it is compli-
cated, introduces possibilities for error in the type system and the
implementation, and provides little practical benefit.

5. Experience
This section presents our experience with using Javari. Our pri-

mary goal was to gain qualitative experience, and our key result is
that the type system and language are practical, usable, and effec-
tive. Section 5.1 expands on our observations. Then, the remain-
der of this section provides supporting details about our experience.
Section 5.2 describes the Javari programs. Section 5.3 discusses the
annotation process. Section 5.4 categorizes every type-checking er-
ror that occurred while annotating two of the five codebases, with
examples of errors in each category. Section 5.5 discusses our ex-
perience with generics.

5.1 Qualitative results
A type system should be easy to use and understand. The lan-

guage design should not overly constrain programmers, and it should
fit with the way they work. Because practicality was one of our
goals, we evaluated our type system, language, and implementa-
tion by both writing code in Javari and also annotating existing
Java code withreadonly . Writing code in Javari provides ex-
perience with the language the way many programmers would use
it. In addition, it permits greater flexibility in working around type-
checking errors than working with existing code does, and it can
be more beneficial than annotation of existing code, since it pro-
vides earlier indication of errors. On the other hand, annotation of
existing code is more quantifiable, since it is possible to track the
time spent annotating and the problems discovered in original code.
Also, it permits evaluation of how Javari fits with the existing prac-
tice of code written by programmers who did not have immutability
in mind while coding.

The benefits of reference immutability included improving doc-
umentation (and making it consistent with the implementation), en-
hancing our understanding of the programs, eliminating errors, ex-
cising convoluted code, and efficiency improvements (by eliminat-
ing copying).

We found writing code from scratch to be faster, easier, and
more natural than annotating existing code. The effort of adding
readonly annotations seemed to be subsumed by that of writing
the types, and we felt the ability to specify reference immutability
caused us to think more formally about interfaces and make fewer
design and implementation mistakes. Annotating existing code was
not difficult, particularly since the code could be annotated module
by module, relying primarily on local reasoning.

The bulk of our annotation effort was consumed in reverse en-
gineering (determining both what the code did and what it ought
to do) and in debugging. We strove to minimize disruptive code
changes, but found that some problems could not be worked around
entirely within the type system. The Javari problems (section 5.4.2)
were few in number (rarer than Java casts) and most could be worked
around by use of downcasts, though six unsafe uses required rewrit-
ing.

Our experience led us to add language features for parameter-
ization and for downcasts. The parameterization feature was not
strictly necessary, but it did prevent significant code duplication.
Overall, adding parameterization was an easy task, especially when
it parameterized over the immutability of the receiver object or
when it was added identically to all subclasses of a class, as hap-
pened for several class hierarchies. See section 5.5 for more details.

The downcast mechanism was necessary because of legacy li-
braries, the pre-existing design of the software, and facts beyond
the type system. We conclude that a fully statically enforced im-
mutability type system is likely to be of limited applicability in
practice. Using an explicit keyword (mutable ) for immutability
downcasts was critical in preventing us from accidentally leaving a
Java cast in place but forgetting to addreadonly to its type. Such
a cast, if permitted to affect immutability, would cause Javari to
silently insert run-time checks, and the error would be discovered
only at run time. Without such a feature, or an analysis to indicate
which casts are immutability downcasts, we estimate that at least
a third, and perhaps many more, of the annotation errors we made
would not have been caught until run time.

Our experience with Javari also convinced us that reference im-
mutability is often sufficient. We were rarely able to use immutable
types (object immutability); it is possible that redesigning the pro-
grams from the ground up may have increased the applicability of
object immutability, but doing so would have had a severe perfor-
mance cost. By contrast, reference immutability enabled us to rea-
son about interfaces and program phases. We found human reason-
ing effective; we had not implemented the type-based analyses of
section 3.8, but we suspect they would have helped even more.

Our experience revealed some weaknesses of our type system.
In complex systems, transitive immutability may be too strong a
constraint. For example, all Swing containers have child and parent
references, so transitive immutability of any reference implies that
almost every container is unchangeable. Thus, few references to
Swing containers can be annotated as read-only. Similarly, legacy
libraries may need access to a portion of the transitive state of a
read-only reference (for an example, see section 5.4.2). Finally,
our type system does not support reflection. These problems can
be solved by run-time checks, but they reduce Javari’s ability to
help programmers by detecting errors at compile-time.
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New code Annotated Java code
java java Gizmo-

Program .util Javari .util ball Daikon
Code size
classes 42 191 29 118 781
methods 373 1049 331 671 7454
lines 2412 16089 7666 15480 121607
NCNB lines 1740 9826 2793 9276 81269

Opportunities
readonly 1312 4615 1269 2357 31687

Annotations
readonly 854 2235 724 520 10369
mutable 24 28 9 17 110
generics 105 66 94 13 717
downcast 3 3 14 6 85

readonly uses
local 81 468 93 69 1668
field 16 54 9 0 83
parameter 152 211 180 69 2148
cast 19 377 29 27 1148
return type 154 88 85 24 459
method 197 462 114 212 2913
class 1 37 1 3 94
generics arg 234 538 213 116 1856

Code errors N/A N/A N/A
Documentation 2 1
Implementation 1 19
Bad Style 3 4

Javari problems
Inflexibility 3 23
Reflection 1 2

Annotation errors
Signature 11 124
Implementation 31 486
Library 3 18

Time (hh:mm) N/A N/A N/A
Signature 2:40 5:30
Implementation 4:30 7:35
Type check and 6:10 55:05

fix errors

Figure 3: Programs written in Javari or converted from Java to
Javari. The number of classes includes both classes and interfaces.
The number of methods includes constructors. “NCNB lines” is the
number of non-comment, non-blank lines. “Opportunities” counts
the number of places wherereadonly could appear (not includ-
ing primitive types or common immutable classes such asString
and subclasses ofNumber, and counting each multi-dimensional
array as only one opportunity). Section 5.4 explains the error cat-
egories. Section 5.3 explains the time categories. Errors and time
were recorded for only two of the programs.

5.2 Javari programs
We wrote many of the container classes in thejava.util pack-

age from scratch in Javari, both to gain experience with Javari and
because Javari requires parameterized container classes.

We also annotated four existing Java codebases.
Javari’s compiler was our first major annotation experience. The

annotation was intermixed with changes to the language and bug
fixes in the compiler.

Sun container classes.We complemented the parameterized
container classes we had written from scratch by annotating ad-
ditional classes from the Sun JDK 1.4.1 reference implementation.
We found an instance of bad coding style (see section 5.4).

Gizmoball, an extensible pinball game, is the final project in
a software engineering class at MIT (6.170 Laboratory in Software
Engineering). It was designed and written in two months by a group
of four people that included the first author of this paper, who wrote
about a third of the code.

Daikon is a tool for dynamic detection of likely invariants in
programs [11]. The annotation was performed, without any help,
by a programmer who had no previous experience with Daikon (not
even as a user). The annotation time included time to understand
this large, complex system well enough to annotate it.

5.3 Annotation process
Our methodology for annotating Java programs withreadonly

proceeded in three stages. During the first stage of the annotation
(“Signature” in the bottom section of figure 3), we read the docu-
mentation and the signatures of all public and protected methods in
the program, and marked the parameters, return types, and methods
themselves withreadonly . For example, if the documentation for
a method specified that the method does not modify a parameter,
we marked it withreadonly . The second stage of the annotation
(“Implementation” in figure 3) was to annotate the signatures of
private methods and the implementations of all methods. The third
stage (“Type check and fix errors”) involved running the compiler
on the resulting program, and considering and correcting any type
checking failures.

Our annotation experience represents a pessimistic upper bound
on the time cost, for six reasons.

1. The programmer was not familiar with the code, so the time
includes program understanding and error diagnosing.

2. Completed code was annotated, but our experience indicates
that the effort is significantly smaller when writing new code,
because programmers already make design decisions about
immutability, and catching errors would have recouped part
or all of the cost.

3. The Javari system was still under development and contained
some limitations and bugs.

4. Recording every type-checking error message (732 in all)
was time-consuming and distracting.

5. The code contained no generic types, which would have eased
the process.

6. We had no mechanical assistance such as type inference.

Despite these problems, the annotation process was quick and
represented a small fraction of the original development time (un-
der 5% for Gizmoball and considerably less for Daikon; 1200 and
1800 lines per hour, respectively).

5.4 Error classifications
The Javari compiler issues an error for three general reasons.

First, the code may be erroneous, or the documentation may in-
correctly describe it. Second, the Javari type system may be too
restrictive, issuing an error about code that does not type check but
that would be safe if it were run. Third, the user may have made
an error during annotation, which the compiler has discovered. Fig-
ure 3 classifies each type checking error encountered while annotat-
ing the Gizmoball and Daikon systems, which together are 137,000
lines of code (91,000 non-comment non-blank lines). The final an-
notated code passed the Javari type checker without errors. This
section describes the categorization of figure 3 and gives examples
of errors in each category. A technical report [4] describes all 59 of
the code errors and Javari problems.

5.4.1 Code errors
Code errors are problems with the original Java program that

were discovered during the annotation and type checking process.
These errors had remained in the code despite extensive testing;
for example, Daikon has a worldwide user base and an 8-hour-long
regression test that runs nightly.
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We subdivided code errors into three subcategories.
Documentation: This subcategory represents errors in the doc-

umentation of a class or a public or protected method, causing an
incorrect annotation. For example, the documentation of Daikon’s
process sample method did not document that the second param-
eter,ValueTuple vt , is mutated by side effect. We updated the
documentation to indicate this fact.

Implementation: This subcategory represents bugs in the orig-
inal code, found during the type checking of the annotated code.
The Gizmoball error was a representation exposure caused by a
method improperly returning a reference to private data. We fixed it
by addingreadonly to the return type of the misbehaving method.
An example of a Daikon error was a method that sorted its input
array before computing some statistics about the array. We fixed
this error by rewriting the method to do an array copy first. It was
obvious that some of the errors could lead to user-visible failures;
however, we did not verify this for every error.

Bad Style: This subcategory represents type checking failures
caused by bad coding style. The code that causes these errors
does not, to our knowledge, cause run-time failures, but it could
have easily been written in a better style that would not only allow
the code to type check, but would also make the program easier to
maintain and debug.

For example, Gizmoball recalculates the size of gizmos that are
displayed to the screen during eachpaint() call. A better alterna-
tive, which would also type check under Javari’s rules, would be to
recalculate only when the window size changes.

Daikon’s methodcanCreateAndWrite(readonly File file)
tests whetherfile can be created by callingfile.createNew-
File() andfile.delete() . These calls fail to type-check, since
they modify theFile (and the file system). It is cleaner, and ade-
quate for the purpose, to test whether the directory containing the
file is writable.

Another example of bad coding style that is caught by the type
system is injava.util.TreeMap . This class has a private method
buildFromSorted that takes anIterator parameter; thisItera-
tor iterates either over keys or over entries in the map, depending
on the value of a different parameter. It would be preferable to have
two separate code paths for the two different iterators. (The code
authors feared that if they duplicated this particularly subtle imple-
mentation, then in the future a maintainer might change one copy
but not the other [19].) In Javari there is no correct typing of the
Iterator parameter. The early release Java 1.5 libraries use a raw
rather than a parameterized type for thatIterator .

5.4.2 Javari problems
In order to guarantee safety, type systems tend to conservatively

reject programs thatmight behave unsafely — i.e., that cannot be
proved to behave safely.

Inflexibility of the language: This subcategory represents safe
code rejected by the type system’s conservative analysis. We worked
around them by omittingreadonly annotations, by adding down-
casts, or by rewriting code.

Half of all the type system inflexibility problems (13 instances in
Daikon) were due to code of the form

readonly A a = new A();
foo(new A[] { a }); // ERROR

The array created bynew A[] is typed asA[] , so cannot contain
a readonly A. The problem was fixed by rewriting the code as

readonly A a = new A();
readonly A[] as = { a };
foo(as);

Another way to prevent the problem would be to change the lan-
guage to introduce a new syntax for array constructors:

foo(new readonly A[] { a });

As another example, consider the following Gizmoball code snip-
pet:

public class BuildDriver {
private JFrame jf;
...
private void askForLoad() readonly {

final JDialog jd = new JDialog(jf, true);
// use dialog box jd only to get a filename

}
}

TheJDialog constructor (not shown) is declared to take a mutable
JFrame , becauseJDialog.getOwner() returns theJFrame , and
a caller ofgetOwner often needs to modify the result. Thus, the
new JDialog expression in the above code does not type check.
Method askForLoad never callsjd.getOwner() , nor doesjd
escape that method, but those facts are beyond the type checker’s
static analysis, and so the compiler rejects this safe code. We fixed
the problem by adding downcasts, similarly to adding a cast to work
around Java’s type system.

Reflection: This subcategory represents uses of reflection in the
original program. Analysis of reflection is beyond our type sys-
tem, and other Java type systems of which we are aware. (Indeed,
reflection already permits Java code to violate accessibility modi-
fiers and modify the contents of aString .) The dynamic checks
of section 3.6 can ensure safety in the presence of reflection.

5.4.3 Annotation errors
This category represents mistakes committed by us during the

annotation process. Usually, these were due to unfamiliarity with
the code or to poor documentation. TheSignature Misannotation
subcategory represents errors due to an incorrect annotation of a
signature of a public or protected method during the first stage
of the annotation. TheImplementation Misannotationsubcategory
represents the errors caused by an incorrect annotation of the type
of a private field, the signature of a private method, the type of a
local variable, or a type used in a cast expression. TheLibrary Mis-
annotationsubcategory represents the errors caused by an incorrect
annotation of a library method, for example an AWT method. (As
noted in section 3.7, Javari provides annotated Java libraries. The
library annotation time is not included in figure 3, but we discov-
ered some errors in the library annotations while annotating client
code.)

5.5 Generics
Our annotation introduced a fairly large amount of genericity

(“generics” in figure 3). Of the uses of genericity in Daikon, 24
(3%) are parameterized types and the other 97% are parameterized
methods. 48% of the parameterization appears in two external li-
braries that are included in the Daikon distribution, and they caused
additional genericity at uses of the libraries. Overall, for method
parameterization, the type parameters were used in the following
ways:

in return type 56%
in formal types 59%
in method type 79%
as type parameter 50%

We found it natural and flexible to declare the immutability of a
reference at a variable declaration, rather than using an immutable
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type (which Javari also supports). Furthermore, adding a type pa-
rameter would have required a change to all client code that men-
tioned the type name. As a minor point, method parameterization
resulted in less code duplication. Perhaps some of the generic-
ity could have been converted from method to type generics; this
would further reduce the number of annotations required.

6. Related work
Many other researchers have noticed the need for a mechanism

for specifying and checking immutability. This section discusses
other proposals and how ours differs from them.

Similarly to Javari, JAC [18] has areadonly keyword in-
dicating transitive immutability, an implicit typereadonly T
for every class and interfaceT defined in the program, and a
mutable keyword. However, the other aspects of the two lan-
guages’ syntax and semantics are quite different. For exam-
ple, JAC provides a number of additional features, such as a
larger access right hierarchy (readnothing < readimmutable
< readonly < writeable ) and additional keywords (such as
nontransferrable ) that address other concerns than immutabil-
ity. The JAC authors propose implementing JAC by source rewrit-
ing, creating a new typereadonly T that has as methods all
methods ofT that are declared with the keywordreadonly fol-
lowing the parameter list (and then compiling the result with an
ordinary Java compiler). However, the return type of any such
method isreadonly . For example, if class Person has a method
public Address getAddress() readonly , then readonly
Person has methodpublic readonly Address getAddress()
readonly . In other words, the return type of a method call de-
pends on the type of the receiver expression and may be a super-
type of the declared type, which violates Java’s typing rules. Ad-
ditionally, JAC is either unsound for, or does not address, arrays
of readonly objects, casts, exceptions, inner classes, and subtyp-
ing. JAC readonly methods may not change any static field of
any class. The JAC paper suggests thatreadonly types can be
supplied as type variables for generic classes without change to the
GJ proposal, but provides no details. By contrast to JAC, in Javari
the return type of a method does not depend on whether it is called
through a read-only reference or a non-read-only one. Javari obeys
the Java type rules, uses a type checker rather than a preprocessor,
and integrates immutability with type parameterization. Addition-
ally, we have implemented Javari and evaluated its usability.

The above comments also explain why use of read-only inter-
faces in Java is not satisfactory for enforcing reference immutabil-
ity. A programmer could define, for every classC, an interfaceROC
that declares the readonly methods and that achieves transitivity by
changing methods that returned (say)B to returnROB. Use ofROC
could then replace uses of Javari’sreadonly C . This is similar
to JAC’s approach and shares similar problems. For instance, to
permit casting,C would need to implementROC, but some method
return and argument types are incompatible. Furthermore, this ap-
proach does not allow readonly versions of arrays or evenObject ,
sinceROObject would need to be implemented byObject . It
also forces information about a class to be maintained in two sep-
arate files, and it does not address run-time checking of potentially
unsafe operations or how to handle various other Java constructs.

Skoglund and Wrigstad [33] take a different attitude toward im-
mutability than other work: “In our point of [view], a read-only
method should only protect its enclosing object’s transitive state
when invoked on a read reference but not necessarily when invoked
on a write reference.” Aread (read-only) method may behave
as awrite (non-read-only) method when invoked via awrite
reference; acaseModeOf construct permits run-time checking of

reference writeability, and arbitrary code may appear on the two
branches. This suggests that while it can be proved that read ref-
erences are never modified, it is not possible to prove whether a
method may modify its argument. In addition to read and write
references, the system providescontext andany references that
behave differently depending on whether a method is invoked on
a read or write context. Compared to this work and JAC, Javari’s
type parameterization (adopted from Java 1.5) gives a less ad hoc
and more disciplined way to specify families of declarations.

The functional methods of Universes [25] are pure methods that
are not allowed to modify anything (as opposed to merely not being
allowed to modify the receiver object).

Pechtchanski and Sarkar [29] provide a framework for immutabil-
ity specification along three dimensions: lifetime, reachability, and
context. The lifetime is always the full scope of a reference, which
is either the complete dynamic lifetime of an object or, for param-
eter annotations, the duration of a method call. The reachability is
either shallow or deep. The context is whether immutability applies
in just one method or in all methods. The authors provide 5 instan-
tiations of the framework, and they show that immutability con-
straints enable optimizations that can speed up some benchmarks
by 5–10%. Javari permits both of the lifetimes and supplies deep
reachability, which complements the shallow reachability provided
by Java’sfinal keyword.

Capabilities for sharing [7] are intended to generalize various
other proposals for immutability and uniqueness. When a new ob-
ject is allocated, the initial pointer has 7 access rights: read, write,
identity (permitting address comparisons), exclusive read, exclu-
sive write, exclusive identity, and ownership (giving the capability
to assert rights). Each (pointer) variable has some subset of the
rights. These capabilities give an approximation and simplification
of many other annotation-based approaches.

Porat et al. [30] provide a type inference that determines (deep)
immutability of fields and classes. (Foster et al. [14] provide a type
inference for C’s (non-transitive)const .) A field is defined to be
immutable if its value never changes after initialization and the ob-
ject it refers to, if any, is immutable. An object is defined to be
immutable if all of its fields are immutable. A class is immutable
if all its instances are. The analysis is context-insensitive in that
if a type is mutable, then all the objects that contain elements of
that type are mutable. Libraries are neither annotated nor analyzed:
every virtual method invocation (evenequals ) is assumed to be
able to modify any field. The paper discusses only class (static)
variables, not member variables. The technique does not apply
to method parameters or local variables, and it focuses on object
rather than reference immutability, as in Javari. An experiment in-
dicted that 60% of static fields in the Java 2 JDK runtime library are
immutable. This is the only other implemented tool for immutabil-
ity in Java besides ours, but the tool is not publicly available for
comparison.

Effect systems [21, 36, 26] specify what state (in terms of regions
or of individual variables) can be read and modified by a procedure;
they can be viewed as labeling (procedure) types with additional
information, which the type rules then manipulate. Type systems
for immutability can be viewed as a form of effect system. Our
system is finer-grained than typical effect systems, operates over
references rather than values, and considers all state reachable from
a reference.

Our focus in this paper is on imperative object-oriented languages.
In such languages, fields are mutable by default. In our type sys-
tem, when a type is read-only, the default is for each field to be im-
mutable unless the user explicitly marks it as mutable. Functional
languages such as ML [23] use a different policy: they default all
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fields to being immutable. OCaml [20] combines object-orientation
with a mutable annotation on fields (for example, references are
implemented as a one-field mutable record). However, without a
notion of read-only types, users are forced to hide mutability via
use of interfaces and subtyping, which is less flexible and expres-
sive than our proposal.

A programming language automatically provides a sort of im-
mutability constraint for parameters that are passed, or results that
are returned, by value. Since the value is copied at the procedure
call or return, the original copy cannot be modified by the imple-
mentation or client, respectively. Pass- and return-by-vale is typi-
cally used for values that are small. Some programming languages,
such as Pascal and Ada, permit variables to be explicitly annotated
as in, out, or in/out parameters; this is an early and primitive form
of compiler-enforced immutability annotation.

6.1 C++ const
C++’s const keyword is intended to aid in interfaces, not sym-

bolic constants [35]. Our motivation is similar, but our notion of
immutability, and our type system, differ from those of C++, thus
avoiding the pitfalls that led Java’s designers to omitconst .

Because of numerous loopholes, theconst notation in C++ pro-
vides no guarantee of immutability even for accesses through the
const reference. An unchecked cast can removeconst from a
variable, as can (mis)use of type system weaknesses such as unions
and varargs (unchecked variable-length procedure arguments).

C++ permits the contents of a read-only pointer to be modi-
fied: read-only methods protect only the local state of the enclos-
ing object. To guarantee transitive non-mutability, an object must
be held directly in a variable rather than in a pointer. However,
this precludes sharing, which is a serious disadvantage. Addition-
ally, whereas C++ permits specification ofconst at each level of
pointer dereference, it does not permit doing so at each level of a
multi-dimensional array. Finally, C++ does not permit parameteri-
zation of code based on the immutability of a variable.

By contrast to C++, Javari is safe: its type system contains no
loopholes, and its downcast is dynamically checked. Furthermore,
it differs in providing guarantees of transitive immutability, and in
not distinguishing references from objects themselves; these differ-
ences make Javari’s type system more uniform and usable. Unlike
C++, Javari permits mutability of any level of an array to be spec-
ified, and permits parameterization based on mutability of a vari-
able. Javari also supports Java features that do not appear in C++,
such as nested classes.

Most C++ experts advocate the use ofconst (for example, Mey-
ers advises usingconst wherever possible [22]). However, as with
many other type systems (including those of C++ and Java), some
programmers feel that the need to specify types outweighs the ben-
efits of type checking. At least three studies have found that static
type checking reduces development time or errors [24, 16, 31]. We
are not aware of any empirical (or other) evaluations regarding the
costs and benefits of immutability annotations. Java programmers
seem eager for compiler-checked immutability constraints: as of
May 2004, support forconst is the fourth most popular Java re-
quest for enhancement.5

A common criticism ofconst is that transforming a large ex-
isting codebase to achieveconst correctness is difficult, because
const pervades the code: typically, all (or none) of a codebase
5Seehttp://developer.java.sun.com/developer/bugPa -
rade/top25rfes.html . The first and third most popular requests
(generics and covariant return types) are addressed by the Java 1.5
language, and the second most popular request is “Provide docu-
mentation in Chinese.”

must be annotated. This propagation effect is unavoidable when
types or externally visible representations are changed. Inference
of const annotations (such as that implemented by Foster et al. [14])
eliminates such manual effort. Even without a type inference, we
found the work of annotation to be greatly eased by fully annotat-
ing each part of the code in turn while thinking about its contract or
specification, rather than inserting partial annotations and attempt-
ing to address type checker errors one at a time. The proper solu-
tion, of course, is to writeconst annotations in the code from the
beginning, which takes little or no extra work.

Another criticism of C++’sconst is that it can occasionally lead
to code duplication, such as the two versions ofstrchr in the C++
standard library. Immutability parameters (section 3.5) make the
need for such duplication rare in Javari. Finally, the use of type
casts (section 3.6) permits a programmer to soundly work around
problems with annotating a large codebase or with code duplica-
tion.

7. Conclusion
We have presented a type system that is capable of expression,

compile-time verification, and run-time checking of reference im-
mutability constraints. Reference immutability guarantees that the
reference cannot be used to perform any modification of a (tran-
sitively) referred-to object. The type system should be generally
applicable to object-oriented languages, but for concreteness we
have presented it in the context of Javari, an extension to the full
Java language. We have implemented the language and presented
experience with non-trivial Javari programs. The evidence suggests
that, although a language designer’s budget (in terms of new lan-
guage features) is limited, reference immutability is worthy of se-
rious consideration and further investigation.

Our goal is not to produce a complicated and subtle new type
system, but a solution to an important problem that others have
grappled with unsuccessfully. Many of the components of our ap-
proach have previously appeared in the literature. We have synthe-
sized these pieces in a novel way, resulting in a simple and effective
approach. This paper’s contributions include the following.

We chose a practical and effective combination of language fea-
tures. For instance, we describe a type system for reference rather
than object immutability. Reference immutability is useful in more
circumstances, such as specifying interfaces, or objects that are
only sometimes immutable.

We proposed a set of type-based analyses that can run after type
checking in order to make stronger guarantees or to enable verifi-
cation or transformation. For example, we show how to guarantee
object immutability. The type-based analyses require only limited
aliasing information; usually a simple escape or alias analysis suf-
fices, but an arbitrary alias analysis may be used.

We combined compile-time and run-time checking to create an
effective, practical, and safe system. The system detects all vio-
lations of the immutability constraints at compile time, in the ab-
sence of immutability downcasts. If a programmer chooses to use
downcasts (which are sometimes essential for interoperability with
legacy code or to express application invariants), then efficient run-
time checking at modification points catches all unsafe uses while
permitting safe ones.

We provided a safe type system for transitive immutability in the
context of a full, real, object-oriented language, Java, rather than
a model or subset. It is simple to see how our ideas would apply
to an idealized toy language, but it was nontrivial to support a real
language with all its wrinkles. Our success indicates that the system
is comprehensible and usable in practice.

The syntax and semantics of Javari are backward compatible
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with Java and the Java Virtual Machine. Java and Javari code can
call one another in a safe manner. This compatibility and inter-
operability with Java eases the transition between the languages;
developers can continue to use existing libraries and can adopt a
pay-as-you-go strategy to annotating their code with immutability
constraints. Javari is also faithful to the spirit of Java: it feels like
Java and introduces run-time checks only as a result of constructs
that already result in Java run-time checks.

We have provided the first implementation and evaluation of tran-
sitive (deep) immutability in the context of a safe language. Experi-
ence with 160,000 lines of Javari code demonstrates that the syntax,
rules, and checking are workable in practice. Even a user unfamil-
iar with a 120,000-line program was able to annotate it quickly and
discover errors. Our study provides insight into what immutability-
related errors users make in the absence of Javari’s features.

Javari revealed over two dozen real errors in well-tested code.
The benefits, especially in reducing wasted time and clarifying spec-
ifications, are potentially much greater when Javari is used through-
out the development cycle rather than after the fact. Even the guar-
antee of reference immutability alone is enough to improve docu-
mentation, find errors, and expose other problems.
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