
Planning for Change  
in a Formal Verification of the  

Raft Consensus Protocol

James
Wilcox

Steve
Anton

Zach
Tatlock

Mike
Ernst

Tom
Anderson

Doug
Woos

Contributions

First formal proof of Raft’s safety
first verified implementation!

Large-scale Verdi case study
stress test; reverification inevitable

Proof engineering lessons
affinity lemmas, etc.

Distributed Systems

Reliably deliver procrastination

Also serious infrastructure

One day last summer...

One day last summer...

One day last summer...

How distributed systems fail

Related Work

IronFleet [SOSP15]

EventML [LADA12, AVoCS15]

liveness, log compaction, serialization

language for verified distributed systems

Verdi [PLDI15]
network semantics, transformers, higher-order

Verdi background
Network semantics

operational semantics define network behavior

Verified system transformers
prove property transfer to adversarial network

VST
App

App App

App

App App

Big Picture

Past: Verdi Framework
compositional fault tolerance

Present: Verified Raft
critical piece of infrastructure

Future:
dynamically upgrading systems
program logic

Outline

Verification Challenge

Raft Algorithm

Proof Overview

state machine replication

implemented in Verdi

and lessons learned

)

Replication for fault tolerance

critical components
must not fail

Replication for fault tolerance

)
available if n/2
nodes are up

replicas must be
consistent with

each other

Replication for fault tolerance

)

)
Replication correctness

Replication correctness

⇡
linearizability

cluster presents consistent
order of operations to clients

⇡
Internal Correctness

linearizability follows from
internal correctness:

state machine safety

Goal: Verify Raft

)
Reduce linearizability to

State Machine Safety
[PLDI15]

Prove State
Machine Safety

Goal: Verify Raft

)

Lin. SMS

LOC

45k

5k

Outline

Verification Challenge

Raft Algorithm

Proof Overview

state machine replication

implemented in Verdi

and lessons learned

)

Formalizing the network
state of the world

packets in flight history of I/O

data @ nodes

Formalizing the network

Formalizing the network

Defining network semantics

Hnet(dst, ⌃[dst], src, m)=(�0, o, P 0) ⌃0=⌃[dst 7! �0]

({(src, dst, m)}] P, ⌃, T) (P] P 0, ⌃0, T ++ hoi)
Deliver

Defining network semantics

Hnet(dst, ⌃[dst], src, m)=(�0, o, P 0) ⌃0=⌃[dst 7! �0]

({(src, dst, m)}] P, ⌃, T) (P] P 0, ⌃0, T ++ hoi)
Deliver

p 2 P

(P, ⌃, T) (P] {p}, ⌃, T)
Duplicate

({p}] P, ⌃, T) (P, ⌃, T)
Drop

Htmt(n, ⌃[n]) = (�0, o, P 0) ⌃0 = ⌃[n 7! �0]

(P, ⌃, T) (P] P 0, ⌃0, T ++ htmt, oi)
Timeout

Defining network semantics

Hnet(dst, ⌃[dst], src, m)=(�0, o, P 0) ⌃0=⌃[dst 7! �0]

({(src, dst, m)}] P, ⌃, T) (P] P 0, ⌃0, T ++ hoi)
Deliver

p 2 P

(P, ⌃, T) (P] {p}, ⌃, T)
Duplicate

({p}] P, ⌃, T) (P, ⌃, T)
Drop

Htmt(n, ⌃[n]) = (�0, o, P 0) ⌃0 = ⌃[n 7! �0]

(P, ⌃, T) (P] P 0, ⌃0, T ++ htmt, oi)
Timeout

systems defined by handlers

election

replication

...

Term 3Term 2Term 1

Implementing Raft

Implementing Raft: Leader Election

Candidate

Followers

ReqVote Vote

...

Term 3Term 2Term 1

Implementing Raft

...

Term 3Term 2Term 1

Term 3Term 2Term 1

...

Leader

Followers

Append AppendAck

Implementing Raft: Log Replication

Leader commits
entry when receiving

n/2 acks

Outline

Verification Challenge

Raft Algorithm

Proof Overview

state machine replication

implemented in Verdi

and lessons learned

)

Verifying Raft: Show linearizability

⇡

Verifying Raft: Approach

)

State Machine Safety

Nodes agree about committed entries

proof by induction on an execution

since only committed entries executed

)

State Machine Safety: Proof

I) Inot inductive!

State Machine Safety: Proof

I) I
I Itrue initially preserved

Lemma Lemma Lemma …90 invariants
in total

The burden of proof

P) P
P with ghost state

P true initially P preserved

Lemma Lemma …Lemma

Re-verification is the primary challenge:
- invariants are not inductive
- not-yet-verified code is wrong
- need additional invariants

The burden of proof

P) P
P with ghost state

P true initially P preserved

Lemma Lemma …LemmaRe-verification is the primary challenge

Proof engineering techniques help:
 - affinity lemmas
 - intermediate reachability
 - structural tactics
 - information hiding

Ghost State: Example
Capture all entries received by a node

Leader

Follower

Append

Log (real) allEntries (ghost)

A,B,C

[A],B,C

A,D {A,D}A,B,C {A,B,C,D}

{A,B,C}

Affinity Lemmas: Example

Affinity Lemma

every invariant of
entries in logs is
invariant of entries
in allEntries

)
e.term > 0

e log2

) e.term > 0e allEntries 2

Affinity Lemmas: Example

Affinity Lemma

every invariant of
entries in logs is
invariant of entries
in allEntries

)
P e

e log2

) P ee allEntries 2

Affinity Lemmas

Ex 1: Relate ghost state to real state
transfer properties once and for all

Ex 2: Relate current messages to past
response => past request

Structured Handlers: Example
handler = update_state ; respond

handler

net

net’

update_state
net

net’

neti
respond

Structured Handlers: Example
handler = update_state ; respond

handler

net

net’

I

I

update_state
net

net’

neti
respond

Structured Handlers: Example
handler = update_state ; respond

handler

net

net’

update_state
net

net’

neti
respond

I

I

I

I

I

The burden of proof

P) P
P with ghost state

P true initially P preserved

Lemma Lemma …LemmaRe-verification is the primary challenge

Proof engineering techniques help:
 - affinity lemmas
 - intermediate reachability
 - structural tactics
 - information hiding

Contributions

First formal proof of Raft’s safety
first verified implementation!

Large-scale Verdi case study
stress test; reverification inevitable

Proof engineering lessons
affinity lemmas, etc.

Planning for Change  
in a Formal Verification of the  

Raft Consensus Protocol

James
Wilcox

Steve
Anton

Zach
Tatlock

Michael
Ernst

Tom
Anderson

Doug
Woos

