
1 of 20 © Kıvanç Muşlu, University of Washington, 2012

Speculative Analysis
of IDE Recommendations

Kıvanç Muşlu, Yuriy Brun, Reid Holmes,
Michael D. Ernst, and David Notkin

University of Washington
University of Massachusetts Amherst

University of Waterloo

2 of 20

IDE Recommendations

• aim to increase developer speed & confidence
• are widely used by developers

[Murphy et al. 2006]

3 of 20

Making recommendations more useful

Present
• IDE generates the recommendations
• Developer selects a recommendation based on

experience
Today
• IDE generates recommendations & computes their

consequences
• Developer selects a better recommendation faster

4 of 20

1 Logical Problem but 2 Errors

Logical Problem

Compilation error 2

Compilation error 1

5 of 20

Proposals at declaration
can be prioritized better

6 of 20

Proposals at assignment do not help

7 of 20

Ultimate Goal

Best fix Best fix from
any location

8 of 20

Consequences of IDE Recommendations

Problem: IDEs do not show the consequences of
each recommendation

Solution: Computing and showing the
consequences can increase developer
productivity

9 of 20

Outline

• Motivation
• Quick Fix Scout (Speculative Analysis)
• Demo
• Evaluation
• Related Work
• Contributions

10 of 20

Running Speculative Analysis

11 of 20

Running Speculative Analysis

1 1

1 0

12 of 20

Augmented Dialog with
Speculative Compilation Error Counts

13 of 20

Making Quick Fix Global

0

14 of 20

Global Best Proposal

15 of 20

Evaluation

• Controlled experiment of Quick Fix Scout
– 20 grad students

• Case study with 13 participants on how
developers use Quick Fix
– Details presented in the paper

16 of 20

Controlled Experiment

RQ1: Does QFS speed up fixing compilation RQ1:
RQ1: errors?
RQ2: Does QFS change developer behavior?

• 24 project snapshots with compilation errors

– Chosen randomly from the case study participants’
development history

– Mutation compilation errors were added to half of the tasks
– Within-participant mixed design, 2 factors: tool & ordering

17 of 20

Controlled Experiment Results
Proposal Selection
• Best Proposal selected 87% with QFS, 73% without it
• Global Best Proposal selected 75% when offered

Bug Removal Time
• Better by 12% (3 minutes)

Quick Fix Dialog Invocations
• Users spent 0.8 seconds (22%) more examining QFS dialogs

➦ Without QFS users needed more manual exploration
➦ QFS provides users more relevant information

18 of 20

Participant Quotations

“I could tell [Quick Fix Scout] wasn’t just saving
me time, but increasing my understanding of
the program.”

“Where can I use [Quick Fix Scout] in my own
Eclipse?…Debugging with [Quick Fix Scout] felt
much faster and less stressful.”

19 of 20

Related Work

• Improving existing recommendations
– Historical information & heuristics

[Robbes et al. 2008] [Bruch et al. 2009]

QFS computes consequences precisely

• Defining new recommendations
[Castro-Herrera et al. 2009] [Xiang et al. 2008]

– Using extra type information to chain API calls
[Perelman et al. 2012]

QFS analyzes existing recommendations
QFS can exploit these new recommendations

20 of 20

Contributions

• Speculation for IDE recommendations
• Implementation: Quick Fix Scout

http://quick-fix-scout.googlecode.com
• Preliminary evidence of usefulness

21 of 20

References
M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to improve code
completion systems. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 213–222, Amsterdam, The Netherlands,
2009. doi: 10.1145/1595696.1595728.
Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Speculative analysis: Exploring future
states of software. In Proceedings of the 2010 Foundations of Software Engineering
Working Conference on the Future of Software Engineering Research (FoSER10), Santa
Fe, NM, USA, November 2010.
Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Crystal: Proactive conflict detector for
distributed version control. http://crystalvc.googlecode.com, 2010.
Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection of collaboration
conflicts. In Proceedings of the 8th Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE11), pages 168–178, Szeged, Hungary, September 2011. doi:
10.1145/ 2025113.2025139.

22 of 20

C. Castro-Herrera, C. Duan, J. Cleland-Huang, and B. Mobasher. A recommender
system for requirements elicitation in large-scale software projects. In Proceedings of
the 2009 ACM symposium on Applied Computing, SAC ’09, pages 1419–1426, 2009.
doi: 10.1145/1529282.1529601.
K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Improving IDE
Recommendations by Considering Global Implications of Existing Recommendations.
In Proceedings of the 34th International Conference on Software Engineering, New
Ideas and Emerging Results Track, ICSE ’12, Zurich, Switzerland, June 2012.
G. C. Murphy, M. Kersten, and L. Findlater. How are java software developers using the
eclipse ide? IEEE Software, 23 (4):76–83, July 2006. doi: 10.1109/MS.2006.105.
P. F. Xiang, A. T. T. Ying, P. Cheng, Y. B. Dang, K. Ehrlich, M. E. Helander, P. M. Matchen,
A. Empere, P. L. Tarr, C. Williams, and S. X. Yang. Ensemble: a recommendation tool for
promoting communication in software teams. In Proceedings of the 2008 international
workshop on Recommendation systems for software engineering, RSSE ’08, pages 2:1–
2:1, 2008. doi: 10.1145/1454247.1454259.

23 of 20

Towards fine-grained speculation

• QFS always maintains a copy project that is in
sync with the original one

• The speculative analysis starts as soon as a
change in compilation errors is detected

• QFS caches the compilation errors
• QFS caches proposals
• QFS is aware of the active file and cursor

location, the compilation errors are prioritized
accordingly.

24 of 20

6 Popular Proposals
Proposal Name Selection

Rate
Top 3 Offer

Frequency (Selected)
Top 3 Offer

Frequency (All)

Import <type name> 24% 12% 12%

Add throws declaration 23% 9% 6%

Create method <method name> 15% 6% 5%

Change to <new name> 9% 8% 11%

Add unimplemented methods 7% 3% 2%

Surround with try/catch 4% 9% 6%

All 82% 47% 42%

Create class <type name> ~0% 8% 9%

Create interface <type name> ~0% 4% 5%

25 of 20

6 Popular Proposals (Per User)
Proposal Name U01 U02 U03 U04 U05 U06 All

Import <type
name>

24% 2% 76% 34% 37% 53% 24%

Add throws
declaration

21% 47% 0% 11% 0% 18% 23%

Create method
<method name>

21% 11% 0% 2% 11% 0% 15%

Change to <new
name>

10% 1% 6% 26% 7% 24% 9%

Add
unimplemented
methods

7% 8% 0% 0% 9% 6% 7%

Surround with
try/catch

0% 14% 0% 6% 0% 0% 4%

26 of 20

Cluttering of Workspace

• There are many filters & workaround to reduce
cluttering
– Quick Fix Scout creates a working set called ‘QFS’ and

puts all copy projects under this working set
– It updates some of the filters (navigation, package

manager) automatically when installed to hide copy
project.

– Users can manually update some settings to reduce
cluttering

• With Eclipse 4, Eclipse might be able to run
multiple workspaces (Quick Fix Scout can create a
private workspace)

27 of 20

Limitations

• Quick Fix through Hover Dialog does not work
– Hover dialog uses a different API to create proposals

and Eclipse does not permit us to override that code
• For interactive proposals (Create class/enum,

etc.) we cannot compute the remaining errors
• For two proposals (Change type name and

change compilation unit name), we cannot
compute the remaining errors due to a bug in
their implementation
– Undo changes are implemented incorrectly

28 of 20

Quick Fix Scout Algorithm

while (true) {
 for (Error error: project.getErrors()) {
 for (Proposal prop: error.getProposals()) {
 copy.applyProposal(prop);
 result.put(prop, copy.getErrors());
 copy.applyProposal(prop.getUndo());
 }
 }
}

Speculate
Analyze

	Speculative Analysis �of IDE Recommendations
	IDE Recommendations
	Making recommendations more useful
	1 Logical Problem but 2 Errors
	Proposals at declaration �can be prioritized better
	Proposals at assignment do not help
	Ultimate Goal
	Consequences of IDE Recommendations
	Outline
	Running Speculative Analysis
	Running Speculative Analysis
	Augmented Dialog with�Speculative Compilation Error Counts
	Making Quick Fix Global
	Global Best Proposal
	Evaluation
	Controlled Experiment
	Controlled Experiment Results
	Participant Quotations
	Related Work
	Contributions
	References
	Slide Number 22
	Towards fine-grained speculation
	6 Popular Proposals
	6 Popular Proposals (Per User)
	Cluttering of Workspace
	Limitations
	Quick Fix Scout Algorithm

