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IDE Recommendations 

• aim to increase developer speed & confidence 
• are widely used by developers  

[Murphy et al. 2006] 
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Making recommendations more useful  

Present 
• IDE generates the recommendations 
• Developer selects a recommendation based on 

experience 
Today 
• IDE generates recommendations & computes their 

consequences 
• Developer selects a better recommendation faster 



4 of 20 

1 Logical Problem but 2 Errors 

Logical Problem 

Compilation error 2 

Compilation error 1 
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Proposals at declaration  
can be prioritized better 
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Proposals at assignment do not help 
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Ultimate Goal 

Best fix Best fix from 
any location 
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Consequences of IDE Recommendations 

Problem:  IDEs do not show the consequences of 
each recommendation 
 
Solution:  Computing and showing the 
consequences can increase developer 
productivity 
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Outline 

• Motivation 
• Quick Fix Scout (Speculative Analysis) 
• Demo 
• Evaluation 
• Related Work 
• Contributions 
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Running Speculative Analysis 
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Running Speculative Analysis 

1 1 

1 0 
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Augmented Dialog with 
Speculative Compilation Error Counts 
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Making Quick Fix Global 

0 
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Global Best Proposal 
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Evaluation 

• Controlled experiment of Quick Fix Scout 
– 20 grad students 

• Case study with 13 participants on how 
developers use Quick Fix 
– Details presented in the paper 
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Controlled Experiment 

RQ1: Does QFS speed up fixing compilation RQ1: 
RQ1: errors? 
RQ2: Does QFS change developer behavior? 
 
• 24 project snapshots with compilation errors 

– Chosen randomly from the case study participants’ 
development history 

– Mutation compilation errors were added to half of the tasks 
– Within-participant mixed design, 2 factors: tool & ordering 
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Controlled Experiment Results 
Proposal Selection 
• Best Proposal selected 87% with QFS, 73% without it 
• Global Best Proposal selected 75% when offered 
 
Bug Removal Time 
• Better by 12% (3 minutes) 
 
Quick Fix Dialog Invocations 
• Users spent 0.8 seconds (22%) more examining QFS dialogs  
 
➦ Without QFS users needed more manual exploration 
➦ QFS provides users more relevant information 
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Participant Quotations 

“I could tell [Quick Fix Scout] wasn’t just saving 
me time, but increasing my understanding of 
the program.” 
 

“Where can I use [Quick Fix Scout] in my own 
Eclipse?…Debugging with [Quick Fix Scout] felt 
much faster and less stressful.” 
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Related Work 

• Improving existing recommendations 
– Historical information & heuristics  

[Robbes et al. 2008] [Bruch et al. 2009]  

QFS computes consequences precisely 

• Defining new recommendations 
[Castro-Herrera et al. 2009] [Xiang et al. 2008] 

– Using extra type information to chain API calls 
[Perelman et al. 2012] 

QFS analyzes existing recommendations 
QFS can exploit these new recommendations 
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Contributions 

• Speculation for IDE recommendations 
• Implementation: Quick Fix Scout 

http://quick-fix-scout.googlecode.com 
• Preliminary evidence of usefulness 
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Towards fine-grained speculation 

• QFS always maintains a copy project that is in 
sync with the original one 

• The speculative analysis starts as soon as a 
change in compilation errors is detected 

• QFS caches the compilation errors 
• QFS caches proposals 
• QFS is aware of the active file and cursor 

location, the compilation errors are prioritized 
accordingly. 
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6 Popular Proposals 
Proposal Name Selection 

Rate 
Top 3 Offer 

Frequency (Selected) 
Top 3 Offer 

Frequency (All) 

Import <type name> 24% 12% 12% 

Add throws declaration 23% 9% 6% 

Create method <method name> 15% 6% 5% 

Change to <new name> 9% 8% 11% 

Add unimplemented methods 7% 3% 2% 

Surround with try/catch 4% 9% 6% 

All 82% 47% 42% 

Create class <type name> ~0% 8% 9% 

Create interface <type name> ~0% 4% 5% 
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6 Popular Proposals (Per User) 
Proposal Name U01 U02 U03 U04 U05 U06 All 

Import <type 
name> 

24% 2% 76% 34% 37% 53% 24% 

Add throws 
declaration 

21% 47% 0% 11% 0% 18% 23% 

Create method 
<method name> 

21% 11% 0% 2% 11% 0% 15% 

Change to <new 
name> 

10% 1% 6% 26% 7% 24% 9% 

Add 
unimplemented 
methods 

7% 8% 0% 0% 9% 6% 7% 

Surround with 
try/catch 

0% 14% 0% 6% 0% 0% 4% 
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Cluttering of Workspace 

• There are many filters & workaround to reduce 
cluttering 
– Quick Fix Scout creates a working set called ‘QFS’ and 

puts all copy projects under this working set 
– It updates some of the filters (navigation, package 

manager) automatically when installed to hide copy 
project. 

– Users can manually update some settings to reduce 
cluttering 

• With Eclipse 4, Eclipse might be able to run 
multiple workspaces (Quick Fix Scout can create a 
private workspace) 
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Limitations 

• Quick Fix through Hover Dialog does not work 
– Hover dialog uses a different API to create proposals 

and Eclipse does not permit us to override that code 
• For interactive proposals (Create class/enum, 

etc.) we cannot compute the remaining errors 
• For two proposals (Change type name and 

change compilation unit name), we cannot 
compute the remaining errors due to a bug in 
their implementation 
– Undo changes are implemented incorrectly 
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Quick Fix Scout Algorithm 

while (true)  { 
    for (Error error: project.getErrors()) { 
        for (Proposal prop: error.getProposals()) { 
            copy.applyProposal(prop); 
            result.put(prop, copy.getErrors()); 
            copy.applyProposal(prop.getUndo()); 
        } 
    } 
} 

Speculate 
Analyze 


	Speculative Analysis �of IDE Recommendations
	IDE Recommendations
	Making recommendations more useful 
	1 Logical Problem but 2 Errors
	Proposals at declaration �can be prioritized better
	Proposals at assignment do not help
	Ultimate Goal
	Consequences of IDE Recommendations
	Outline
	Running Speculative Analysis
	Running Speculative Analysis
	Augmented Dialog with�Speculative Compilation Error Counts
	Making Quick Fix Global
	Global Best Proposal
	Evaluation
	Controlled Experiment
	Controlled Experiment Results
	Participant Quotations
	Related Work
	Contributions
	References
	Slide Number 22
	Towards fine-grained speculation
	6 Popular Proposals
	6 Popular Proposals (Per User)
	Cluttering of Workspace
	Limitations
	Quick Fix Scout Algorithm

