
Using Predicate Fields in a Highly
Flexible Industrial Control System

Shay Artzi*, Michael D. Ernst

CSAIL, MIT

* Work done while at Rafael, Ltd.

2

Evaluating Predicate Fields
 Predicate oriented programming is a promising research idea

that has never been evaluated in practice
 Dynamic classification of an object into subclasses:

 Predicate classes [Chambers et al. 93]
 Kea language classifiers [Mugridge et al. 91, Hamer et al. 92]
 Modes [Taivalsaari 93]

 Predicate Dispatch [Ernst el at. 98, Millstein 04]
 We successfully deployed them in an industrial application
 Conclusion:

 Increase software flexibility to handle changing and unknown
requirements

 Simplify certain development task

3

Ye
s

Predicate Fields
Example

First name: Shay
Last name: Artzi
…
Parking required : No
License Plate : …

Dates :………..

Dates :………..

obj:Reservation

-firstName -- “Shay”

-lastName -- “Artzi’

-parkingRequired -- false

- dates

obj:Reservation

-firstName -- “Shay”

-lastName -- “Artzi”

-parkingRequired -- true

-licensePlate

-dates

 A predicate field is present or not,
depending on the values of other fields

4

Implementation with
Predicate Fields

// Definition
pred arriveWithCar (needsParking==true);
class Reservation {
 ...
 bool needsParking;
 String licensePlateNum when@arriveWithCar;
}

// Use
Reservation r = new Reservation();
r.licensePlateNum = “44GT23”; //RUN-TIME ERROR
r.needsParking = true;
r.licensePlateNum = “44GT23”; //OK

5

Advantages of Predicate
Fields

 Allow an object to change its structure
during its life cycle
 Recover from user errors in user interface
 Emulate dynamic classification of an object

into subclasses

 Expedite user interface development
 Fine-grained customization of objects

6

Outline

 Introduction
 Case Study: Experiment control system
 Predicate Fields Motivation
 Developer Experience
 Summary

7

Case Study:
Experimental Control System

 System goal: define, control, execute,
and examine results of experiments

 Experiment:
 Ordered instructions on a set of devices
 Control complex events and vast number

of devices

8

Requirements and Design

 Non functional requirement: adaptability to
physical hardware changes (new devices,
device locations)

 MML language to create experiments
 Two-level system architecture

 Knowledge level: legal configuration of operational
objects.

 Operational level: concrete model of the system.

9

Implementation 1

 Development:
 Fifteen man years
 Written in Delphi IDE and the Object Pascal

language
 Component based (COM/DCOM)
 ~100,000 lines of code

 In daily use
 Won several internal prizes
 Its deficiencies inspired the use of predicates

in Implementation 2

10

Implementation 2

 In development since 2002 in Visual Studio .
NET and C#

 Currently in integration phase (adding
controlled hardware)

 Five developers
 Implementation 1 functionality was subsumed

 in less than two years
 Controls more complicated hardware
 Uses predicate fields.

11

Implementation 2 tiers

Predicate
Library

MML
Interpreter
Predicate
Definitions

Corresponds

MML
Interpreter
and Editor

Using

U
si

ng

Developer:
Knowledge Level in

Database

Developer:
Operational Level

 in C#

Experiments

U
si

n
g

User:
Implementation

 in MML

C# library

12

Outline

 Introduction
 Case Study: Experiment control system
 Predicate Fields Motivation
 Developer Experience
 Summary

13

Predicate Fields Motivation
in Implementation 2

 Implementation 1 deficiencies were
resolved using predicates:
 Tight coupling of persistent objects with

their user interface
 Many custom made user interface forms
 Can’t change object types
 Inflexibility to some hardware changes

14

Motivation 1
 Tight coupling

 Cause: MML statements which are persistent objects with UI
representation had tight coupling with other components

 Problem: Changes to the structure of the MML statement
required cross cutting modifications

 Example: adding a max_repeat field
 Solution: Dynamic objects. Structure and connections defined

using predicates. Predicate fields carry the rest of the
information

 Outcome: Changes to the MML statement data type can be
easily done in one place (database)

User Interface
 components

Object
Viewers

Objects
Database

 Connection Layer
Database

15

Motivation 2
 Many Custom Made UI

Forms
 Cause: One UI form per MML statement type, and device

type
 Problem: UI development and changes were costly
 Example: Adding a new measurement device type with a

different number of channels
 Solution: Adopting .NET editing concept

 One adjustable properties form
 Object exposing properties to be edited
 PropertyGrid uses reflection to query a selected object structure
 Dynamic objects can be easily wrapped to expose properties

 Outcome: Homogeneous look and feel and reduced user
interface development effort.

16

Editing concept example

Setting Properties Defining an MML instruction

17

Motivation 3
Can’t Change Object Types

 Cause: The user is unable to change an
object type in the MML UI

 Problem: losing mutual information of the new
and the old object type

 Example: Changing an automatic statement
to a manual one

 Solution: Using predicate fields to dynamically
classify into subclasses.

 Outcome: Allowing objects to “switch type”
while maintaining mutual information

18

Motivation 4
Inflexibility to Hardware Changes

 Cause: New device types with components
that exists in the set of known devices
required cloning information

 Problem: Introducing clones into the system.
Maintenance complexity increase

 Solution: Using predicate fields to support fine
grained combination of existing fields

 Outcome: More flexibility to new device types

19

Outline

 Introduction
 Case Study: Experiment control system
 Predicate Fields Motivation
 Developer Experience
 Summary

20

Definitions Modifications

 Developers making modification to the
MML interpreter definitions:
 Modify the dynamic types (rarely)
 Modify predicates, fields and fields’ types

(usually).

 Initially found to be difficult due to the
library use and integral limitations

21

Limitations

 Declarative approach
 Far-reaching, system behavior depends on the

metadata
 Developers need to master the knowledge level
 Type safety cannot be guaranteed

 Implemented as a library
 Incur performance overhead
 Software is harder to understand, less readable
 Poor UI (MML interpreter definitions were saved in

database)

22

Developer Experience
(after further use)

 Familiarity and ease
 Easily perform seemingly complex task
 Surprising uses (E.g. wizards for the

knowledge level editor)
 Change in perspective toward designing the UI
 Dynamic type errors cause distrust
 Active interest from other development teams

23

Summary

 Used predicate fields in a large
industrial application

 Developers find predicate fields useful
 Software flexibility is increased
 UI development costs were greatly

decreased
 Lack of static type checking is a

problem

