
Pluggable Type Inference for Free

Martin Kellogg , Daniel Daskiewicz , Loi Ngo Duc Nguyen,
Muyeed Ahmed , Michael D. Ernst

New Jersey Institute of Technology
 University of Washington

1

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

2

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

● To scale to real programs, verifiers must be modular
○ Downside: humans must write specifications

■ Hard for legacy code

3

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

● To scale to real programs, verifiers must be modular
○ Downside: humans must write specifications

■ Hard for legacy code
● Pluggable typecheckers extend a host type system

4

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

● To scale to real programs, verifiers must be modular
○ Downside: humans must write specifications

■ Hard for legacy code
● Pluggable typecheckers extend a host type system
● Our contribution: a new approach for type inference specialized

to pluggable typecheckers

5

Background: Pluggable Types

 @Positive int x

6

Background: Pluggable Types

 @Positive int x

7

Background: Pluggable Types

 @Negative int x

8

Background: Pluggable Types

 @NonConstant int x

9

Background: Pluggable Types

● widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

10

Background: Pluggable Types

● widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

● attractive to developers
○ familiar, high precision, sound, fast checking, modular, …

11

Background: Pluggable Types

● widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

● attractive to developers
○ familiar, high precision, sound, fast checking, modular, …

● downside: manual annotation of legacy codebases

12

Traditional Solution: Type Inference

● Traditional type inference: constraint solving

13

Traditional Solution: Type Inference

● Traditional type inference: constraint solving
○ problem: need a new constraint system for each type system

14

Traditional Solution: Type Inference

● Traditional type inference: constraint solving
○ problem: need a new constraint system for each type system

■ we desire a system that is type-system-agnostic

15

Traditional Solution: Type Inference

● Traditional type inference: constraint solving
○ problem: need a new constraint system for each type system

■ we desire a system that is type-system-agnostic

16

Are there other things in typecheckers
that are type-system-agnostic?

● Pluggable typecheckers implement local type inference within
method bodies

Observation: Local Type Inference

17

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables

Observation: Local Type Inference

18

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

19

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

20

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

21

dataflow detects that
result is @Nullable
here …

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

22

… but @NonNull here
(assuming get() cannot
return null)

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

23

Q: Does dataflow already know whether the
return type is @NonNull or @Nullable?

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

24

Q: Does dataflow already know whether the
return type is @NonNull or @Nullable? YES!

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

25

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checkerStart

26

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Start

27

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Compare
summaries

Start

28

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Compare
summaries

Changes

Start

29

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Compare
summaries

Done No changes

Changes

Start

30

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Compare
summaries

Done No changes

Changes

Start

31

More complicated than it sounds…

Read the paper for details!

32

Both theoretical and practical problems

● termination?

33

Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for

details)

34

Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for

details)
● many small, important details:

35

Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for

details)
● many small, important details:

○ separate compilation, storing intermediate results,
programmer-written types, warning suppressions, interaction
with defaulting, pre- and post-conditions, non-type properties
like purity, side effects, etc.

36

Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for

details)
● many small, important details:

○ separate compilation, storing intermediate results,
programmer-written types, warning suppressions, interaction
with defaulting, pre- and post-conditions, non-type properties
like purity, side effects, etc. All these details (and

more) in the paper!
37

Implementation

● Implemented as part of the Checker Framework (our tool is called
“Whole Program Inference” or “WPI”) for Java
○ automatically works with all checkers built on the framework

● Scripts automate it for Maven and Gradle projects
● You can try it out:

https://checkerframework.org/manual/#whole-program-inference

38

https://checkerframework.org/manual/#whole-program-inference

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

39

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

40

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations

41

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations
● Two metrics:

○ annotation %: percentage of human-written annotations that
we recover exactly

42

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations
● Two metrics:

○ annotation %: percentage of human-written annotations that
we recover exactly

○ warning reduction %: percentage of warnings on unannotated
code that our annotations remove 43

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations
● Two metrics:

○ annotation %: percentage of human-written annotations that
we recover exactly

○ warning reduction %: percentage of warnings on unannotated
code that our annotations remove

These metrics are proxies for human effort
to verify an unannotated codebase

44

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

45

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

● After applying our tool:
○ 39% of human-written annotations were exactly inferred

46

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

● After applying our tool:
○ 39% of human-written annotations were exactly inferred
○ 45% of warnings are eliminated

47

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

● After applying our tool:
○ 39% of human-written annotations were exactly inferred
○ 45% of warnings are eliminated
○ summaries contain a total of 17,940 annotations

48

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

● After applying our tool:
○ 39% of human-written annotations were exactly inferred
○ 45% of warnings are eliminated
○ summaries contain a total of 17,940 annotations

49

Significant reduction in human effort

● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable

Reasons WPI missed human-written annotations

50

● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable

● Generics (10%)
○ future work

Reasons WPI missed human-written annotations

51

● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable

● Generics (10%)
○ future work

● We inferred something stronger (9%)
○ e.g., @Positive int instead of @NonNegative int
○ Exact matching underestimates WPI’s effectiveness

■ If we count these, annotation % is 48%

Reasons WPI missed human-written annotations

52

● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable

● Generics (10%)
○ future work

● We inferred something stronger (9%)
○ e.g., @Positive int instead of @NonNegative int
○ Exact matching underestimates WPI’s effectiveness

■ If we count these, annotation % is 48%
● Long tail of other causes, none greater than 5%

Reasons WPI missed human-written annotations

53

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker

54

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

55

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

● Formalization and proof of termination

56

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

● Formalization and proof of termination
● Implementation for the Checker Framework

○ lots of practical problems solved

57

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

● Formalization and proof of termination
● Implementation for the Checker Framework

○ lots of practical problems solved
● Experiments show that it reduces proxies for human effort:

○ annotation count 39% lower
○ warning count 45% lower

58

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

● Formalization and proof of termination
● Implementation for the Checker Framework

○ lots of practical problems solved
● Experiments show that it reduces proxies for human effort:

○ annotation count 39% lower
○ warning count 45% lower

https://checkerframework.org/manual/#whole-program-inference 59

https://checkerframework.org/manual/#whole-program-inference

60

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Start

Summaries are results of local inference
on externally-visible expressions!

61

Motivation

● pluggable typecheckers are cool (show some evidence that
they’re used in real life)

● but there is a problem: writing annotations
○ show an example of an annotation that’s tough to write, but

that WPI can find?
○ show a slide with tables from the last X Checker Framework

papers, showing how many annotations were necessary just
in the experiments

○ Mike doesn’t think either of the above is compelling. The first
makes the system seem unusable/unreadable, and the second
is too abstract. Here are some other ideas, which might not
be very good either.

○ Show a birds-eye (heavily zoomed out) image of a program’s
source code, with the lines that contain an annotation
colored. This will emphasize that although annotations are
not needed everywhere, they are needed many places, and
programmers don’t want to go to the work of finding those
places.

● another important desiderata that these slides must
communicate: our solution must work for all typecheckers.

● And, it must work for legacy code. That’s where it’s hard to write
type annotations.

●
● Where will we note that type inference is an inherently

whole-program problem?

62

Key insight/approach

● briefly explain that extant frameworks already have local
inference in the form of dataflow analyses within method bodies

● transition to an example. The example starts with a method, and
we show how local inference works. Then, show one of the type
rules from the paper (RETURN?) and show hold we use the
results of local dataflow to create an annotation that is global

● then, basically say “run this to fixpoint” (or show algorithm 1,
which is super simple)

●
● We might not want to get really technical too quickly; that might

lose the audience. Maybe say that there are two fixpoint loops:
one within method bodies (and it’s already implemented!) and
one that is whole-program.

● Or, start out with a transition from the end of the previous slide
that discusses how it’s inherently a whole-program analysis, and
wonder about how to modularize it. Then transition from there
into the two “parts” of the analysis: local and global.

63

Theoretical properties

● soundness in the verification sense because we’ll run the checker
after

● termination
● completeness (i.e., all annotations we infer are verifiable) and

soundness in the traditional inference sense (i.e., type all typable
programs) are non-goals

64

Putting it into practice

● There were a surprising number of difficult, technical problems
we had to overcome to get this to work in practice. Give a taste (1
or 2) and say the rest are in the paper. Here are some candidates,
ordered by how well I think they’re suited to presentation here:
○ generated code & termination
○ preconditions and postconditions
○ warning suppressions
○ non-type properties (purity, specifically)
○ any of the others?

65

Experiments

● Give a high-level summary of table 2:
○ what the experiment was, and how we collected the subject

programs
○ what the resulting numbers mean
○ results

● Briefly discuss the causes for WPI missing annotations
○ generics is maybe worth discussing as future work?

66

Discussion

● Our results are decent (½ way there!), but not yet suitable for
replacing a human annotator
○ possible combinations with other inference techniques?

● Too many annotations, making results hard for humans to
interpret

● Humans often write “more conservative” annotations than WPI
produces (e.g., the “defensive programming” category in table 3).
This is an interesting fact on its own. What are the implications?

67

Contributions

● Pluggable typecheckers are awesome, but writing type
annotations in legacy code is a chore

● Inference is a possible solution to this problem, which will help us
convince developers to use more powerful typecheckers

● Our approach leverages the local inference that already exists
inside extant typecheckers to do inference for a whole program

● We built it and it’s publicly available
● It works okay! (repeat some numbers?)

Thanks to my collaborators :) 68

