
Practical Pluggable Types for Java

Matthew M. Papi Mahmood Ali Telmo Luis Correa Jr. Jeff H. Perkins Michael D. Ernst
MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA, USA

{mpapi,mali,telmo,jhp,mernst}@csail.mit.edu

Abstract
This paper introduces the Checker Framework, which supports
adding pluggable type systems to the Java language in a backward-
compatible way. A type system designer defines type qualifiers
and their semantics, and a compiler plug-in enforces the semantics.
Programmers can write the type qualifiers in their programs and use
the plug-in to detect or prevent errors. The Checker Framework is
useful both to programmers who wish to write error-free code, and
to type system designers who wish to evaluate and deploy their type
systems.

The Checker Framework includes new Java syntax for express-
ing type qualifiers; declarative and procedural mechanisms for writ-
ing type-checking rules; and support for flow-sensitive local type
qualifier inference and for polymorphism over types and qualifiers.
The Checker Framework is well-integrated with the Java language
and toolset.

We have evaluated the Checker Framework by writing 5 check-
ers and running them on over 600K lines of existing code. The
checkers found real errors, then confirmed the absence of further
errors in the fixed code. The case studies also shed light on the
type systems themselves.

Categories and subject descriptors: D3.3 [Programming Lan-
guages]: Language Constructs and Features—data types and struc-
tures; F3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs; D1.5 [Programming Tech-
niques]: Object-oriented Programming
General terms: Languages, Theory
Keywords: annotation, bug finding, case study, compiler, flow-
sensitivity, IGJ, immutable, intern, Java, javac, Javari, NonNull,
pluggable type, polymorphism, readonly, type qualifier, type sys-
tem, verification

1. Introduction
A static type system helps programmers to detect and prevent

errors. However, a language’s built-in type system does not help
to detect and prevent enough errors, because it cannot express cer-
tain important invariants. A user-defined, or pluggable, type sys-
tem enriches the built-in type system by expressing extra infor-
mation about types via type qualifiers. Example qualifiers include
nonnull, readonly, interned, and tainted. Pluggable types

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

permit more expressive compile-time checking and guarantee the
absence of additional errors.

A pluggable type framework serves two key constituencies. It
enables a programmer to write type qualifiers in a program and to
run a type checker that verifies that the program respects the type
system. It enables a type system designer to define type qualifiers,
to specify their semantics, and to create the checker used by the
programmer.

Programmers wish to improve the quality of their code without
disrupting their workflow. To be useful to programmers, a plug-
gable type framework should be integrated with the programming
language, run-time system, and toolchain. The qualifiers should be
a part of the programming language that is supported by every tool
and is preserved in compiled executables to the same extent that
ordinary types are. An unmodified compiler should be capable of
checking the pluggable type system.

Type system designers wish to evaluate and deploy their type
systems: a type system is valuable only if it helps programmers, so
using a type system in practice is an essential way to gain insight.
To be useful to type system designers, a pluggable type framework
should make it easy to define simple type systems and possible to
define powerful type systems. The framework should declaratively
support common type system idioms such as the type hierarchy,
implicit type qualifiers, flow-sensitivity, and parametric polymor-
phism over both types and qualifiers. However, the framework
should also support procedural specification of features specific
to the type system. Furthermore, the declarative and procedural
mechanisms should be tightly coupled in a single language. When
expressiveness and conciseness are in conflict, expressiveness is
more important. A well-known type system is easy enough to un-
derstand and implement, whatever the framework, but novel type
systems will inevitably require new functionality, and the frame-
work should not be tuned to the type systems of yesterday.

Despite considerable interest in user-defined type qualifiers, pre-
vious frameworks have been too inexpressive, unscalable, or in-
compatible with existing languages or tools. This has hindered the
evaluation, understanding, and uptake of pluggable types.

We have implemented a pluggable type framework, called the
Checker Framework (because it is used for writing type-checkers),
that satisfies these goals in the context of a mainstream object-
oriented language, Java. Experience with the framework indicates
that it is successful in satisfying both programmers and type sys-
tem designers. For both constituencies, the tools were natural to
use. For programmers, checkers built using the framework have
been run on over 600 KLOC, revealing many errors and verifying
the absence of further such problems. For type system designers,
the case studies revealed new insights, even about known type sys-
tems.

The Checker Framework provides a backward-compatible syn-
tax for expressing type qualifiers, in the form of an extension to



the Java annotation system that is planned for inclusion in the Java
7 language. A programmer can write type qualifiers throughout a
program as machine-checked documentation. The Checker Frame-
work allows a type system designer to define new type qualifiers
and their semantics in a declarative and/or procedural manner. The
framework then creates a type checker in the form of a compiler
plug-in. Our framework is compatible with Java, so it handles
pluggable type systems that refine, not incompatibly change, Java’s
built-in type system.

To demonstrate the practicality of the Checker Framework, we
have written type-checkers for five different type systems. The
Basic checker enforces only type hierarchy rules. The Nullness
checker verifies the absence of null pointer dereference errors. The
Interning checker verifies the consistent use of interning and equal-
ity testing. The Javari checker enforces reference immutability.
The IGJ checker enforces reference and object immutability.

We have performed case studies with each checker. These case
studies evaluate the Java source code syntax for qualifiers, the ease
of creating a type-checker, and the quality and usability of the re-
sulting checker. Furthermore, the case studies evaluate the type
systems themselves. The Interning type system is novel. The oth-
ers were previously known, but the realism of our evaluation has
led to new observations and improvements.

All of the tools described in this paper are publicly available and
documented at http://pag.csail.mit.edu/jsr308/. These
tools can aid practitioners and can permit researchers to experiment
with new type systems in the context of a realistic language.

This paper first describes the Checker Framework from the per-
spective of a programmer (Section 2) and of a type system designer
(Section 3). Then, Sections 4–9 summarize our case studies. Sec-
tion 10 discusses related work. Finally, the paper concludes by
presenting lessons learned (Section 11) and recapping our research
contributions (Section 12).

2. The programmer’s view of a checker
This section describes the Checker Framework from a program-

mer’s point of view. Section 3 describes it from a type system de-
signer’s point of view. This research paper is not a manual; for
detailed usage information, see the Checker Framework Manual,
available at http://pag.csail.mit.edu/jsr308/.

The Checker Framework seamlessly integrates type-checking with
the compilation cycle. Programmers write type qualifiers using a
backwards-compatible extension to Java’s annotation syntax. A
checker runs as a compiler plug-in for the javac Java compiler.

2.1 Using a checker to detect software errors
Our framework uses Java’s standard compiler flag, -processor,

for invoking an annotation processor [6]:
javac -processor NullnessChecker MyFile.java

Programmers do not need to use an external tool (or worse, a cus-
tom compiler) to obtain the benefits of type-checking; running the
compiler and fixing the errors that it reports is part of ordinary de-
veloper practice.

The checker reports warnings and errors through the same stan-
dard reporting mechanism that the compiler itself uses [25, 6]. As
a result, checker errors/warnings are formatted like compiler er-
ror/warnings, and the compiler is aware of them when determining
whether to continue compilation (e.g., code generation).

Use of @SuppressWarnings annotations and command-line ar-
guments permits suppressing warnings by statement, method, class,
or package. Naturally, the checker’s guarantees that code is error-
free apply only to analyzed code. Additionally, the framework does
not reason about the target of reflective calls.

2.2 Type qualifier syntax
Java’s annotation system [4] permits programmers to attach meta-

data called annotations to declarations. This is inadequate for ex-
pressing type qualifiers on generics, casts, and a host of other lo-
cations. We have defined an extension that permits annotations to
appear on nearly any use of a type [10]. In brief, the changes to the
Java language grammar are:

1. A type annotation may be written before any type, as in
@NonNull String.

2. An array type is annotated on the brackets [] that indicate
the array, separately from an annotation on the element type.

3. A method receiver (this) type is annotated just after the pa-
rameter list.

Examples of the new syntax are:

List<@NonNull String> strings;
myGraph = (@Immutable Graph) tmpGraph;
class UnmodifiableList<T>
implements @Readonly List<@Readonly T> { ... }

The syntax extension specifies where a programmer may write an-
notations, but not their semantics (that is the role of the checker).

We also defined a backward-compatible class file format for stor-
ing type annotations. For example, a qualifier on a field’s declared
type is stored in an attribute of the field. The qualifiers affect
neither the bytecode instructions produced by the Java compiler
nor the Java Virtual Machine. Any conformant compiler, even if
it is not using a checker plug-in, will preserve the annotations to
the compiled class file for use by subsequent tools — for instance,
type-checking against a compiled library or bytecode verification.
We have built the publicly-available Annotation File Utilities for
inserting annotations in, and extracting annotations from, source
code and class files.

To aid in migration, our implementation permits annotations to
be enclosed in comments, as in List</*@NonNull*/ String>.
Source code that uses this syntax can be processed by compilers for
earlier versions of Java.

Our syntax proposal has been assigned the Sun codename “JSR
308” [10] and is planned for inclusion in the Java 7 language. These
simple changes to Java enable the construction of a type-checking
framework, described in Section 3, that requires no compiler changes
beyond these planned for inclusion in Java 7.

Changing the Java language is extraordinarily difficult for tech-
nical reasons largely revolving around backward compatibility, but
is worth the effort if practical impact is the goal. Workarounds are
clumsy and inexpressive. For example, stylized comments are not
recognized by tools such as IDEs and refactoring tools; by contrast,
our implementation works with the NetBeans IDE and the Jack-
pot transformation engine. A separate tool is rarely as robust as
the language compiler, but directly modifying a compiler results in
an incompatible system that is slow to incorporate vendor updates.
Programmers are unlikely to embrace these approaches.

3. Checker Framework
The Checker Framework enables a type system designer to de-

fine the rules for a type system. The Checker Framework then cre-
ates a type-checking compiler plug-in (for short, a checker) that ap-
plies the rules to a program being compiled. This section describes
features of the Checker Framework that support this process.

3.1 Architecture of a type system
The implementation of a type system contains four components:

http://pag.csail.mit.edu/jsr308/
http://pag.csail.mit.edu/jsr308/


(1) Type qualifiers and hierarchy. Each qualifier restricts the
values that a type can represent. The hierarchy indicates subtyping
relationships among qualified types.

(2) Type introduction rules. For some types and expressions, a
qualifier should be treated as present even if a programmer did not
explicitly write it. For example, every literal (other than null) has
a @NonNull type.

(3) Type rules. Violation of the type system’s semantics yields a
type error. For example, every assignment and pseudo-assignment
must satisfy a subtyping rule. As another example, in the Nullness
type system, only @NonNull types may be dereferenced.

(4) Interface to the compiler. The compiler interface indicates
which annotations are part of the type system, the checker-specific
compiler command-line options, etc.

Sections 3.2–3.5 describe how the Checker Framework supports
defining these four components of a type system. The Checker
Framework supports parametric polymorphism over both (quali-
fied) types and type qualifiers (Section 3.6), and it performs flow-
sensitive inference of type qualifiers (Section 3.7).

The Checker Framework offers both declarative and procedu-
ral mechanisms for implementing a type system. The declarative
mechanisms are Java annotations that are written primarily on type
qualifier definitions to extend the framework’s default functionality.
The procedural mechanisms are a set of Java APIs that implement
the default functionality; in most cases, a type system designer only
needs to override a few methods. Because both mechanisms are
Java, they are familiar to users and are fully supported by program-
ming tools such as IDEs; a type system designer need not learn a
new language and toolset. Users found the checker implementa-
tions clear to read and write.

Our experience and that of others [1] suggests that procedural
code is essential when defining a realistic type-checker, at least in
the current state of the art. Our design also permits a checker to use
specialized types and rules, even ones that are not expressible in
the source code for reasons of simplicity and usability. Examples
include dependent types, linear types, and reflective types.

The Checker Framework also provides a representation of an-
notated types, AnnotatedTypeMirror, that extends the standard
TypeMirror interface with a representation of the annotations. As
code uses all or part of a compound type, at every step the relevant
annotations are convenient to access.

3.2 Type qualifiers and hierarchy
Type qualifiers are defined as Java annotations [6], extended as

described in Section 2.2.
The type hierarchy induced by the qualifiers can be defined either

declaratively (via meta-annotations) or procedurally. Declaratively,
the type system designer writes a @SubtypeOf meta-annotation on
the declaration of type qualifier annotations.
@SubtypeOf accepts multiple annotation classes as an argument,

permitting the type hierarchy to be an arbitrary DAG. For example,
Figure 6 shows that in the IGJ type system (Section 9), @Mutable
and @Immutable induce two mutually exclusive subtypes of the
@ReadOnly qualifier.

The @DefaultQualifiermeta-annotation indicates which qual-
ifier implicitly appears on unannotated types. This may ease the
annotation burden or provide backward compatibility with unanno-
tated programs.

A type system whose default is not the root of the qualifier hierar-
chy (such as Javari and IGJ) requires special treatment of extends
clauses. The framework treats the declaration class C<T extends

Super> as class C<T extends RootQual Super> if the class
has no methods with a receiver bearing a subtype qualifier, and

as class C<T extends DefaultQual Super> otherwise. This
rule generalizes to hierarchies more complex than 2 qualifiers. The
rule ensures backward compatibility while maximizing the number
of possible type parameters that a client may use.

While the declarative syntax suffices for many cases, more com-
plex type hierarchies can be expressed by overriding the frame-
work’s isSubtype method, which is used to determine whether
one qualifier is the subtype of another. The IGJ and Javari checkers
specify the qualifier hierarchy declaratively, but the type hierarchy
procedurally. In both type systems, some type parameters are co-
variant (with respect to qualifiers) rather than invariant as in Java.
For example, in IGJ a readonly list of mutable dates is a subtype of
a readonly list of readonly dates.

3.3 Implicit annotations: qualifier introduction
Certain constructs should be treated as having a type qualifier

even when the programmer has not written one. For example, in
the Nullness type system, string literals implicitly have the type
@NonNull String. In the Interning type system, string literals
implicitly have the type @Interned String.

Type system designers can specify this declaratively using the
@ImplicitFor meta-annotation. It accepts as arguments up to
three lists: of types (such as primitives or array types), of sym-
bols (such as exception parameters), and/or of expressions (such as
string literals) that should be annotated.

Type system designers can augment the declarative syntax by
additionally overriding the annotateImplicit method to apply
implicit annotations to a type in a more flexible way. For in-
stance, the Interning checker overrides annotateImplicit to ap-
ply @Interned to the return type of String.intern.

Implicit annotations are distinct from, and take precedence over,
the @DefaultQualifier annotation of Section 3.2.

Implicit annotations could be handled as a special case of type
rules (Section 3.4), but we found it more natural to separate them,
as is also often done in formal expositions of type systems.

3.4 Defining type rules
A type system’s rules define which operations are forbidden.

The Checker Framework builds in checks of the type hierarchy.
Here are examples. It checks that, in every assignment and pseudo-
assignment, the lhs is a supertype of (or the same type as) the rhs;
this assignment is forbidden (assuming the obvious variable decla-
rations):

myNonNullObject = myObject; // invalid assignment

It checks the validity of overriding and subclassing. It prohibits
inconsistent annotations at a single location.

As with all aspects of the Checker Framework, the default be-
havior may be overridden, in this case by overriding methods in the
framework’s visitor class that traverse the program’s AST.

As a special case, assignment can be decoupled from subtyping
by overriding the isAssignable method, whose default imple-
mentation checks subtyping. The IGJ and Javari checkers override
isAssignable to additionally check that fields are re-assigned
only via mutable references.

3.5 Customizing the compiler interface
The Checker Framework provides a base checker class that is a

Java annotation processor, and so serves as the entry point for the
compiler plug-in.

Type system designers declaratively associate type qualifiers with
a checker via the @TypeQualifiers annotation. Other annota-
tions configure the plug-in’s command-line options and the anno-



tations that suppress its warnings. For details, see the Checker
Framework manual.

3.6 Parametric polymorphism
The Checker Framework handles two types of polymorphism:

for (qualified) types, and for qualifiers.

3.6.1 Type polymorphism
As noted in Section 2.2, a programmer can annotate generic type

arguments in a natural way, which is critical for real Java programs.
The subtyping rules of Section 3.4 fully support qualified generic

types.
The Checker Framework performs generic type inference [14,

§15.12.2.7] for invocation of generic methods. It infers the most
restrictive qualified type arguments based on actual arguments. If
the type variable is not used in a method parameter, as in calls
to Collections.emptyList, then inference uses the assignment
context. If that too fails to resolve the type argument, the default is
Object. Generic type inference eliminated dozens of false positive
warnings in our case studies.

The Checker Framework also performs capture conversion [14,
§15.25], for example when determining the type of a conditional
expression (?:) from the types of its true and false expressions. The
framework warns when, due to Java’s invariant generic subtyping,
the expression has no qualified generic type.

3.6.2 Qualifier polymorphism
The Checker Framework supports type qualifier polymorphism

for methods, limited to a single qualifier variable. (We have found
one variable adequate in practice.) Thus, programmers need not in-
troduce generics just for the sake of the qualified type system. More
importantly, qualified type polymorphism (Java generics) cannot
always express the most precise signature of a method.

The @PolymorphicQualifier meta-annotation marks an an-
notation as introducing qualifier polymorphism:

@PolymorphicQualifier
public @interface PolyNull { }

Then, a programmer can use the marked annotation as a type qual-
ifier variable. For example, Class.cast returns null iff its argu-
ment is null:

@PolyNull T cast(@PolyNull Object obj)

For each method invocation, the Checker Framework determines
the qualifier on the type of the invocation result by unifying the
qualifiers of the arguments to the invocation. By default, unification
chooses the least restrictive qualifier, but checkers can override this
behavior as necessary.

3.7 Flow-sensitive type qualifier inference
The Checker Framework performs flow-sensitive intraprocedu-

ral qualifier inference. The inference may compute a more specific
type (that is, a subtype) for a reference than that given in its dec-
laration. For example, the Nullness checker (Section 6) issues no
warning for the following code:

@Nullable Integer jsr;
...
// valueOf signature: @NonNull Integer valueOf(String);
jsr = Integer.valueOf("308");
... jsr.toString() ... // no null dereference warning

because the type of jsr is refined to @NonNull Integer, from
the point of its assignment to a non-null value until its next possible
re-assignment. The inference often eliminates the need to annotate

Checker Size Err- False
& Program Files Lines ALocs Ann.s ors pos.

Basic checker
Checker Framework 23 6561 3376 184 0 0

Nullness checker
Annotation file utils 49 4640 3700 107 4 5
Lookup 8 3961 1757 35 8 4
Nullness checker 58 10798 5036 167 2 45

Interning checker
Daikon 575 224048 107776 129 9 5

Javari checker
JOlden 48 6236 2280 451 0 0
Javari checker 7 1520 528 60 1 0
JDK (partial) 103 5478 6622 1208 0 0

IGJ checker
JOlden 48 6236 2280 315 0 0
TinySQL 85 18159 6574 1125 0 0
Htmlparser 120 30507 11725 1386 12 4
IGJ checker 32 8691 4572 384 4 3
SVNKit 205 59221 45186 1815 13 5
Lucene 95 26828 10913 450 13 2

Figure 1: Case study statistics. Sizes are given in files, lines, num-
ber of possible annotation locations, and number of annotations
written by the programmer. Errors are runtime-reproducible prob-
lems revealed by the checker. False positives are caused by a weak-
ness in either the type system or the checker implementation.

method bodies, since variables that are declared without annota-
tions are treated as (for example) non-null where appropriate.

The inference can be described as a GEN-KILL analysis. For
brevity, we describe a portion of the Nullness analysis, though the
framework implements it in a generic way. For the GEN portion, a
reference is known to be non-null (e.g.) after a null check in an as-
sert statement or a conditional, or after a non-null value is assigned
to it. For the KILL portion, a reference is no longer non-null (e.g.)
when it may be reassigned, or when flow rejoins a branch where
the reference may be null. Reassignments include assignments to
possibly-aliased variables and calls to external methods where the
reference is in scope.

The analysis is implemented as a visitor for Java ASTs. To com-
pensate for redundancy in the AST, the implementation provides
abstractions pertaining to dataflow (e.g., the split and mergemeth-
ods handle GEN-KILL sets at branches). In addition, a type system
designer can specialize the analyses by extending visitor methods
or the higher-level abstractions. The Nullness checker, for instance,
extends the scanCondition method to account for checks against
null, no matter the type of AST node that contains the condition.

4. Experiments
This section summarizes case studies that evaluate our designs

and implementations. Most of the case studies (~400KLOC) were
completed in summer 2007, and technical reports give additional
details [21, 20] such as many examples of specific errors found.1

Space limits prevent discussing subsequent case studies. As one
example, the author of FreePastry (http://freepastry.rice.
edu/, 1084 files, 209 KLOC) used the Interning checker to find
problems in his code.

Figure 1 lists the subject programs. The annotation file utili-

1Some of our measurements differ slightly from the previous version, because the
subject programs are being maintained, because of checking additional classes, and
because of improvements to the checkers and framework.

http://freepastry.rice.edu/
http://freepastry.rice.edu/


ties (distributed with the Checker Framework2) extract annotations
from, and insert them into, source and class files. Lookup is a para-
graph grep utility distributed with Daikon3, a dynamic invariant
detector. JOlden is a benchmark suite4. The partial JDK is several
packages from Sun’s implementation5. TinySQL is a library im-
plementing the SQL query language6. Htmlparser is a library for
parsing HTML documents7. SVNKit is a client for the Subversion
revision control system8. Lucene is a text search engine library9.

The sizes in Figure 1 include libraries only if the library imple-
mentation (body) was itself annotated and type-checked. For ex-
ample, each checker was analyzed along with a significant portion
of the Checker Framework itself.

4.1 Methodology
This section presents our experimental methodology.
First, a type-system designer wrote a type-checker using the

Checker Framework. The designer also annotated JDK methods,
by reading JDK documentation and occasionally source code.

Then, a programmer interested in preventing errors annotated
a program and fixed warnings reported by the checker, until the
checker issued no more warnings. In other words, the case study
design is inspired by partial verification that aims to show the ab-
sence of certain problems, rather than by bug-finding that aims to
discover a few “low-hanging fruit” errors, albeit with less program-
mer effort. (See Section 6 for an empirical comparison of the ver-
ification and bug-finding approaches.) Therefore, the number of
errors reported in Figure 1 is less important than the fact that no
others remain (modulo the guarantees of the checkers).

The programmer manually analyzed every checker warning and
classified it as an error only if it could cause a problem at run time.
Mere “bad code smells” count as false positives, even though refac-
toring would improve the code.

Warnings that cannot be eliminated via annotation, but that can-
not cause incorrect user-visible behavior, count as false positives.
The programmer suppressed each false positive with a @Suppress-
Warnings annotation or, for the Nullness checker, an assertion
assert x!=null;, which had the positive side effect of check-
ing the property at run time.

All but 6 false positives were type system weaknesses, also known
as “application invariants”. These manifest themselves in code that
can never go wrong at run time, but for which the type system can-
not prove this fact. For instance, the checker issues a false positive
warning in the following code:

Map<String,@NonNull Integer> map;
String key;
...
if (map.containsKey(key)) {
@NonNull Integer val = map.get(key); // false pos

}

Map.get is specified to possibly return null (it does so if the key
is not found in the map); however, in the above code the Map.get
return value is non-null, because key is in the map. The other 6
false positives were weaknesses in a checker implementation.

Our studies analyze existing programs. By contrast, writing new
programs matched to the checker’s capabilities is likely to be much
easier and to require fewer annotations. We note possible bias in
2http://pag.csail.mit.edu/jsr308/
3http://pag.csail.mit.edu/daikon/
4http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
5http://java.sun.com/
6http://sourceforge.net/projects/tinysql/
7http://htmlparser.sourceforge.net/
8http://svnkit.com/
9http://lucene.apache.org/java/docs/index.html

Checker Total Type intro. Flow Type rules Compiler i/f
Basic 36 0 0 0 36
Nullness 472 165 250 49 8
Interning 186 53 0 125 8
Javari 418 278 n/a 99 41
IGJ 409 328 n/a 0 81

Figure 2: Checker size, in non-comment non-blank lines of code.
Size for integration with flow-sensitive qualifier inference is sepa-
rated from the rest of the type introduction code. Qualifier defini-
tions are omitted: they are small and have empty bodies.

that a few of the subject programs are the checkers themselves,
though the programmers wrote annotations only after the checker
was operational.

4.2 Ease of use
The Checker Framework is easy for a type system designer to

use, and the resulting checker is easy for a programmer to use.
It was easy for a type system designer to write a compiler plug-

in using the Checker Framework. Figure 2 gives the sizes of the
five checkers presented in this paper. Most of the methods are very
short, but a few need to take advantage of the power and expressive-
ness of the Checker Framework. As anecdotal evidence, the Javari
and IGJ checkers were written by a second-year and a third-year
undergraduate, respectively. Neither was familiar with the frame-
work, and neither had taken any classes in compilers or program-
ming languages. As another anecdote, adding support for @Raw
types [11] to the Nullness checker took about 1 hour. It took about
2 hours to generalize the Nullness-specific flow-sensitive type qual-
ifier inference [21] into the framework feature of Section 3.7.

It was also easy for a programmer to use a checker. The Intern-
ing case study, and parts of the Nullness case studies, were done
by programmers with no knowledge of either the framework or
of the checker implementations. Subsequent feedback from exter-
nal users of the checkers has confirmed their practicality. Further-
more, using a checker was quick. Almost all of the programmer’s
time was spent on the productive tasks of understanding and fixing
errors. Annotating the program took negligible time by compari-
son.10 Identifying false positives was generally easy, for three rea-
sons: many false positives tended to stem from a small number of
root causes, many of the causes were simple, and checker warnings
indicate the relevant part of the code. Good integration with tools,
such as javac, aided all of the tasks.

5. The Basic checker for simple type systems
The Basic checker performs only checks related to the type hier-

archy (see Section 3.4). This is adequate for simple type systems
and for prototyping.

The type system designer writes no code besides annotation def-
initions (which have empty bodies). The programmer names the
checked annotations on the command line.

The Basic checker supports all of the functionality provided de-
claratively by the Checker Framework, including arbitrary type hi-
erarchy DAGs, type introduction rules, type and qualifier polymor-
phism, and flow-sensitive inference.

As a case study, a type system designer used the Basic checker
to define @Fully and @Partly annotations that were useful in ver-
ifying the Checker Framework itself. The framework constructs an
annotated type (AnnotatedTypeMirror, Section 3.1) in several

10However, we have since developed inference tools for the Javari and Nullness type
systems. These tools, discussed in the Checker Framework manual, would further
reduce the annotation burden, particularly for libraries and legacy code.

http://pag.csail.mit.edu/jsr308/
http://pag.csail.mit.edu/daikon/
http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
http://java.sun.com/
http://sourceforge.net/projects/tinysql/
http://htmlparser.sourceforge.net/
http://svnkit.com/
http://lucene.apache.org/java/docs/index.html


Figure 3: Type hierarchy for the Nullness type system. Java’s
Object is expressed as @Nullable Object. Programmers can
omit most type qualifiers, thanks to careful choice of defaults.

phases, starting from an unannotated type provided by the underly-
ing compiler. The @Fully type qualifier indicates that construction
is complete. A @Fully annotated type is a subtype of a @Partly

annotated type.
Then, a programmer annotated each use of AnnotatedType-

Mirror to verify that the framework never returns a partially-
constructed annotated type to a checker.

The case study required 55 uses of qualifier polymorphism (Sec-
tion 3.6.2). For instance, the component type of an array type has
the same annotatedness as the array type.

6. Nullness checker for null pointer errors
The Nullness checker implements a qualified type system in which,

for every Java type T, @NonNull T is a subtype of @Nullable T

(see Figure 3). As an example of the difference, a reference of type
@Nullable Boolean always has one of the values TRUE, FALSE,
or null. By contrast, a reference of type @NonNull Boolean al-
ways has one of the values TRUE or FALSE— never null. Derefer-
encing an expression of type @NonNull Boolean can never cause
a null pointer exception.

The Nullness checker supports the @Raw type qualifier for partially-
initialized objects [11]. (The @Raw type qualifier is unrelated to the
raw types of Java generics.)

The Nullness checker’s visitor class (“type rules” column of Fig-
ure 2) implements three type rules, for: dereferences of possibly-
null expressions, implicit iteration over possibly-null collections in
an enhanced for loop, and accessing a possibly-null array. The
type introduction rules add the @NonNull annotation to literals (ex-
cept null gets @Nullable), new expressions, and classes used for
static member access (e.g., System in System.out).

The Nullness checker optionally warns about a variety of other
null-related coding mistakes, such as checking a value known to be
(non-)null against null. These do not lead to run-time exceptions
and so are not tabulated in Figure 1, but these redundant tests and
dead code are often correlated with other errors [16].

Like other Nullness type systems, ours is good at stating whether
a variable can be null, but not at stating the circumstances under
which the variable can be null. In the Lookup program, entry-
_start_re is null if and only if entry_stop_re is null. After
checking just one of them against null, both may be dereferenced
safely. In the Nullness checker program, 39 of the 45 false posi-
tives (Figure 1) were due to complex nullness invariants, especially
in AST node operations. Expressing such application invariants
would require a substantially more sophisticated system, such as
dependent types. The flexibility of the Checker Framework permits
more sophisticated checks to be coded even if they are not express-
ible in the type system being checked. For example, the best type
for toArray is both reflective and polymorphic, and checkers can
treat it as such.

We evaluated our checker against the null pointer checks of sev-
eral other static analysis tools, using the Lookup subject program.

Nullable NonNull NNEL
Program Tot Sig Body Tot Sig Body Tot Sig Body
Annotation file utils 760 483 277 169 90 79 107 90 17
Lookup 382 301 81 80 33 47 35 33 2
Nullness checker — 282 126 156 146 126 20

Figure 4: The number of annotations required to eliminate null
dereference warnings, depending on the default for nullity anno-
tations. The total number of annotations (“Tot”) is the sum of those
in method/field signatures (“Sig”) plus those in method/initializer
bodies (“Body”).

Here are the results:
errors false annotations

Tool found missed warnings written
Checker Framework 8 0 4 35
FindBugs 0 8 1 0
JLint 0 8 8 0
PMD 0 8 0 0

The other tools missed all the errors, and did not indicate any lo-
cations where annotations could be added to improve their results.
In their defense, they did not require annotation of the code, and
their other checks (besides finding null pointer dereferences) may
be more useful.

6.1 Default annotation for Nullness checker
The Nullness checker treats unannotated local variables as Nul-

lable, and all other unannotated types (including generic type argu-
ments on local variables) as non-null. We call this default NNEL,
for NonNull Except Locals. The NNEL default reduces the pro-
grammer’s annotation burden, especially in conjunction with the
flow-sensitive type inference of Section 3.7. The default can be
overridden on a class, method, or field level.

We believe the NNEL design for defaults to be novel, and our ex-
perience indicates that it is superior to other choices. NNEL com-
bines the strengths of two previously-proposed default systems:
nullable-by-default and non-null-by-default.

Nullable-by-default has the advantage of backward-compatibility,
because an ordinary Java variable may always be null.

Non-null-by-default reduces clutter because non-null types are
more prevalent, and it is good to bias programmers away from using
nullable variables. Splint, Nice, JML, and Eiffel have adopted non-
null-by-default semantics.

To evaluate the defaults, the programmer annotated subject pro-
grams multiple times, using different defaults. (Since the type sys-
tem and checker are unchanged, the checker warnings indicated
exactly the same errors regardless of the annotation default.) We
are not aware of any previous study that quantifies the difference
between using nullable-by-default and non-null-by-default, though
Chalin and James [5] determined via manual inspection that about
3/4 of variables in JML code and the Eclipse compiler are derefer-
enced without being checked.

Figure 4 shows our results. The NNEL code was not just
terser, but — more importantly — clearer to the programmers in our
study. Reduced clutter directly contributes to readability. Our
choice of the NNEL default was also motivated by the observa-
tion that when using nullable-by-default, programmers most often
overlooked @NonNull annotations on generic types; the NNEL de-
fault corrects this problem. A potential downside of non-uniform
defaults is that an unannotated type such as “Integer” means dif-
ferent things in different parts of the code. Programmers did not
find this to be a problem in practice, perhaps because programmers
think of public declarations differently than private implementa-



tions. Further use in practice will yield more insight into the ben-
efits of the NNEL default. We believe that the general approach
embodied by the NNEL default is also applicable to other type sys-
tems.

7. Interning checker for equality-testing errors
Interning, also known as canonicalizing or hash-consing, finds or

creates a unique concrete representation for a given abstract value.
For example, many Strings could represent the 11-character se-
quence "Hello world". Interning selects one of these as the
canonical representation that a client should use in preference to
all others.

Interning yields both space and time benefits. However, mis-
use of interning can lead to bugs: use of == on distinct objects
representing the same abstract value may return false, as in new

Integer(22) == new Integer(22) which yields false.
The Interning type hierarchy is similar to that for NonNull (Fig-

ure 3). We believe that ours is the first formulation of a completely
backward-compatible system for interning.

If the Interning checker issues no warnings for a given program,
then all reference (in)equality tests (== and !=) in that program
operate on interned types.

The visitor class (type rules) for the Interning checker has 3 parts.
(1) It overrides one method to warn if either argument to a reference
(in)equality operator (== or !=) is not interned. For example:

String s;
@Interned String is;
if (s == is) { ... } // warning: unsafe equality

(2) Most of the checker is code to eliminate two common sources
of false positives, suppressing warnings when (a) the first state-
ment of an equals method is an if statement that returns true

after comparing this and the parameter, or (b) the first statement
of a compareTo method returns 0 after comparing its two parame-
ters. (3) The checker optionally issues a warning when equals()

is used to compare two interned objects. These warnings do not
indicate a correctness problem, so Figure 1 does not report them.
However, they did enable the programmer to use == in several in-
stances, making the code both clearer and faster.

The type introduction rules mark as @Interned: string and class
literals, values of primitive, enum, or Class type, and the result
of the String.intern method (the only annotation that would
otherwise be necessary in the JDK).

We evaluated the Interning checker by applying it to Daikon.
Daikon is a good subject program because memory usage is the
limiting factor in its scalability and because the programmers have
spent considerable time and effort validating its use of interning,
including 200 run-time checks and a lexical code analysis tool.
Nonetheless, annotating only part of Daikon revealed 9 errors and
2 optimization opportunities.

The false positives in Figure 1 are due to casts in intern meth-
ods, tests in equality methods, and an application invariant: check-
ing whether a variable is still set to its interned initial value can
safely use ==.

8. Javari checker for mutation errors
A mutation error occurs when a side effect modifies the state of

an object that should not be changed. Mutation errors are difficult
to detect: the object is often (correctly) mutated in other parts of
the code, and a mutation error is not immediately detected at run
time. The Javari type system enables compile-time detection and
prevention of mutation errors.

Figure 5: Type hierarchy for Javari’s ReadOnly and Mutable type
qualifiers.

Javari [3, 23] is an extension of the Java language that prevents
mutation errors via specification and compile-time verification of
immutability constraints. Figure 5 shows the type hierarchy. A
reference of @ReadOnly type may not be used to mutate any part
of its referent. The full type system is described elsewhere [23].

The visitor class for the Javari checker overrides each method
that handles an operation with the potential to perform a side ef-
fect — notably field assignment — in order to warn if mutation oc-
curs to a reference with ReadOnly type. The type introduction rules
handle features that make the type of a reference dependent on the
context, including field mutability inherited from the current refer-
ence (Javari’s “this-mutable”) and parametricity over mutability in-
cluding wildcards (“PolyRead”, previously known as “RoMaybe”).
The reasons these types are useful and necessary are explained else-
where [23].

The programmer found annotating his own code to be easy and
fast. The most difficult part of the case study was annotating largely
undocumented third-party code. Quite a few methods modified
their formal parameters, but this important and often surprising fact
was never documented in the code the programmer examined.

The most difficult method to annotate was Collection.to-

Array method, which is reflective and modifies its argument ex-
actly if the argument has greater size than the receiver.

The annotations did not clutter the code, because they appeared
mostly on method signatures; leaving local variables unannotated
(mutable) was usually sufficient. The few local variable annota-
tions appeared at existing Java casts, where the type qualifier had to
be made explicit; flow-sensitive analysis (Section 3.7) would have
eliminated these.

The programmer was able to annotate more local variables in the
Javari checker than in the JOlden benchmark, due to better encap-
sulation and more use of getter methods. Most of the annotations
were @ReadOnly (288 annotations on classes, 514 annotations on
libraries and interfaces). The programmer used @PolyRead ex-
tensively: on almost every getter method and most constructors,
but nowhere else. The programmer used @Mutable only 3 times;
all 3 uses were in the same class of the Javari visitor, to annotate
protected fields that are passed as arguments and mutated during
initialization.

9. IGJ checker for mutation errors
Immutability Generic Java (IGJ) [27] is a Java language exten-

sion that expresses immutability constraints. Like the Javari lan-
guage described in Section 8, it is motivated by the fact that a
compiler-checked immutability guarantee detects and prevents er-
rors, provides useful documentation, facilitates reasoning, and en-
ables optimizations. However, IGJ is more powerful than Javari
in that it expresses and enforces both reference immutability (only
mutable references can mutate an object) and object immutability
(an immutable object can never be mutated).

The IGJ checker has no special type rules, so it does not ex-
tend the visitor class. It defines the type hierarchy in the compiler



Figure 6: Partial type hierarchy for IGJ.

interface. The framework’s subtype tests warn against invoking a
mutating method on a read-only reference and about assignment
of incompatible immutability types (e.g., assigning an immutable
object to a mutable reference). The type introduction rules han-
dle context-sensitive references, including parametricity over mu-
tability including wildcards (@I); resolve mutabilities not explicitly
written on the code (i.e., inherited from a parent reference, deter-
mined with the mutability wildcard @I, or specified by default an-
notation); add @Immutable to literals (except null) and primitive
types; and infer the immutability types for method return values.

Pre-existing unchecked casts (due to Java generics limitations) in
the subject programs led to 11 false positives. The other 3 false pos-
itives stemmed from AST visitors. In the IGJ checker and frame-
work, visitors are used to collect data on types (via read-only refer-
ences) and to add implicit annotations on the types (via mutable ref-
erences). To eliminate these false positives, the programmer could
write separate abstract visitor classes: one for read-only nodes and
one for mutable notes.

Adding annotations made the code easier to understand, because
the annotations provide clear, concise documentation, especially
for method return types. For example, they distinguished among
unmodifiable and modifiable collections.

The annotated IGJ programs use both immutable classes and im-
mutable objects. Every object of an immutable class is immutable,
but greater flexibility is achieved by the ability to specify particular
objects of a class as immutable. The annotated SVNKit program
uses immutable objects for Date objects that represent the creation
and expiration times for file locks, the URL to the repository (using
IGJ, a programmer could simplify the current design, which uses
an immutable SVNURL class with setter methods that return new in-
stances), and many Lists and Arrays of metadata. The program-
mer noted other places that code refactoring would permit the use
of immutable objects where immutable classes are currently used,
increasing flexibility.

Some classes are really collections of methods, rather than rep-
resenting a value as the object-oriented design paradigm dictates.
Immutability types are a poor fit to such classes, but leaving them
unannotated (the default is mutable, for backward compatibility
with Java) worked well.

We gained some insights into how the type rules apply in prac-
tice. Less than 10% of classes had constructors calling setter meth-
ods. Programmers showed discipline regarding immutability ref-
erences: no single variable was used both to mutate mutable ref-
erences and to refer to read-only references. Most fields re-used
the containing class’s immutability parameter. The programmer
used few mutable fields; one of the rare exceptions was a collec-
tion (in SVNErrorCode) that contains all SVNErrorCodes ever
created. The programmer used @Assignable fields only 13 times,
to mark as ReadOnly the receiver of: a tree rebalancing operation;
a method that resizes a buffer without mutating the contents; and
getter methods that lazily initialize their fields.

10. Related work
Space permits us to discuss only the most closely related work

on pluggable type-checking/inference frameworks for Java and on
the specific type systems used in our case studies.

Frameworks.
The idea of pluggable types is not new, but ours is the first prac-

tical framework for, and evaluation of, pluggable type systems in
a mainstream object-oriented language. Several previous attempts
indicate that this is an important and challenging goal.

The most direct comparison comes from the fact that JQual [15],
JavaCOP [1], and the Checker Framework have all been used to
implement the Javari [23] type system for enforcing reference im-
mutability. The version implemented in our framework supports
the entire Javari language (5 keywords). The JQual and JavaCOP
versions have only partial support for 1 keyword (readonly), and
neither one properly implements method overriding, a key feature
of an object-oriented language. The JavaCOP version has never
been run on a real program; the JQual one has but is neither scalable
nor sound [2]. Another point of comparison is JavaCOP’s Nullness
type system. Recent work [19] has enabled it to scale to programs
as large as 948 LOC, albeit with higher false positive rates than
our Nullness checker. The JavaCOP nullness checker, at 418 non-
comment, non-blank lines, has fewer lines than ours (472 lines11),
but lacks functionality present in ours such as support for gener-
ics and arrays, checking implicit dereferences in foreach loops and
array accesses, customizable default annotation, the @Nullable

annotation, optional warnings about redundant checks and casts,
optional warning suppression, other command-line options, etc.

Both JQual and JavaCOP support a declarative syntax for type
system rules. This is higher-level but less expressive than the Check-
er Framework, which uses declarative syntax only for the type qual-
ifier hierarchy and the qualifier introduction rules. This reflects a
difference in design philosophy: they created their rule syntax first,
whereas we first focused on practicality, expressiveness, and se-
mantics. We introduced declarative syntax only after multiple case
studies made a compelling case.

A declarative syntax even for type rules would have a number of
benefits. Research papers define type systems in a syntax-directed
manner; a similar implementation may be more readable and less
error-prone. However, many research papers define their own con-
ceptual framework and rule formalism, so a general implementa-
tion framework might not be applicable to new and expressive type
systems. For example, JQual handles only a very restricted variety
of type qualifier. To implement a type system in JavaCOP requires
writing both JavaCOP-specific declarative pattern-matching rules,
and also procedural Java helper code [1]; the declarative and pro-
cedural parts are not integrated as they are in the Checker Frame-
work. Another advantage of a declarative syntax is the potential to
verify the implementation of the rules. However, any end-to-end
guarantee about the tool that programmers use requires verifying
Java helper code and the framework itself. So far, we have not
found type rules to be particularly verbose or difficult to express
in our framework, nor have the type rules been a significant source
of bugs. It would be interesting to compare the difficulty of writ-
ing checkers, such as the one for Javari, in multiple frameworks,
but first all the frameworks must be capable of creating the check-
ers. Future work should address the challenge of creating a syntax
framework that permits purely declarative specification (and pos-
sibly verification) of expressive type systems for which the frame-

11Of the 472 lines, 127 consist only of “}”, “@Override”, or a package or import
statement.



work was not specifically designed. It would also be interesting to
use a proposed declarative syntax as a front end to a robust frame-
work such as the Checker Framework, permitting realistic evalua-
tion of the syntax.

JavaCOP was released12 after the Checker Framework was, and
after we published our case studies [21]. Markstrum et al. [19] re-
port that the JavaCOP framework has recently acquired some of
the features of the Checker Framework, such as flow-sensitive type
inference13 and integration with javac.14 As of May 2008 these fea-
tures do not seem to be a documented part of the JavaCOP release.

In some respects, the JavaCOP framework provides less func-
tionality than the Checker Framework. For example, it does not
construct qualified types (checker writers are on their own with
generics). Programmers using JavaCOP checkers suffer from the
inadequacies of Java 5 annotations, limiting expressiveness and
causing unnecessary false positives. The JavaCOP authors have
been unable to run JavaCOP’s type checkers on substantial pro-
grams. JavaCOP had a declarative syntax earlier than the Check-
er Framework, though the designs are rather different. A strength
of JavaCOP is its pattern-matching syntax that concisely expresses
style checkers (e.g., “any visitor class with a field of type Node

must override visitChildren”), and case studies [19] suggest
that may be the context in which JavaCOP really shines.

Inference.
JQual [15] supports the addition of user-defined type qualifiers

to Java. JQual differs from our work in two key ways.
First, JQual performs type inference rather than type-checking.

The Checker Framework does not infer annotations on signatures.
Even in the presence of type inference, it is still useful to anno-
tate interfaces: as documentation, for modular checking, or due to
limitations of type inference. Our NNEL (NonNull Except Locals)
approach can be viewed as being similar to, and about as effective
as, local type inference — users can leave bodies largely unanno-
tated. Our framework interfaces with scalable inference tools for
the Nullness and Javari type systems.

Second, JQual is less expressive, with a focus on type systems
containing a single type qualifier that induces either a supertype or a
subtype of the unqualified type. JQual does not handle Java gener-
ics — it has an incompatible notion of parametric polymorphism
and it changes Java’s overriding rules. JQual is not scalable [15, 2],
so an experimental comparison is impossible.

Null pointer dereference checking.
Null pointer errors are a bugaboo of programmers, and signifi-

cant effort has been devoted to tools that can eradicate them. Enge-
len [9] ran a significant number of null-checking tools and reports
on their strengths and weaknesses; Chalin and James [5] give an-
other recent survey. We mention four notable practical tools. ES-
C/Java [13] is a static checker for null pointer dereferences, array
bounds overruns, and other errors. It translates the program to the
language of the Simplify theorem prover. This is more powerful
than a type system, but suffers from scalability limitations. The
JastAdd extensible Java compiler [7] includes a module for check-
ing and inferencing of non-null types [8] (and JastAdd could theo-
retically be used as a framework to build other type systems). The
JACK Java Annotation ChecKer [17] is similar to JastAdd and the
Checker Framework in that all use flow-sensitivity and a raw type

12http://www.cs.ucla.edu/~smarkstr/javacop/
13Publicly available and documented in our framework in February 2008.
14JavaCOP uses the private javac internal AST rather than the documented Tree API
as the Checker Framework does. Another difference is that JavaCOP adds a new pass
rather than integrating with the standard annotation processing.

system and have been applied to nontrivial programs. Unlike Jast-
Add but like the Checker Framework, JACK is a checker rather than
an inference system. The null pointer bug module of FindBugs [16]
takes a very different approach. FindBugs uses an extremely coarse
analysis that yields mostly false positives, then uses heuristics to
discard reports about values that might result from infeasible paths.

Interning.
Vaziri et al. [24] give a declarative syntax for specifying the in-

terning pattern in Java. They use the term “relation type” for an
interned class. They found equality-checking and hash code bugs
similar to ours. Marinov and O’Callahan’s [18] dynamic analysis
identifies interning and related optimization opportunities. Based
on the results, the authors then manually applied interning to two
SpecJVM benchmarks, achieving space savings of 38% and 47%.
A more representative example is the Eiffel compiler; interning
strings resulted in a 10% speedup and 14% memory savings [26].
We are not aware of a previous implementation as a type qualifier.
As a result, our system is more flexible, and less disruptive to use,
than previous interning approaches [18, 12, 24] in that it neither
requires all objects of a given type to be interned nor gives interned
objects a different Java type than uninterned ones.

Javari.
Our implementation is the first checker for the complete Javari

language [23, 22], and incorporates several improvements that are
described in a technical report. There have been three previous at-
tempts to implement Javari. Birka [3] implemented, via directly
modifying the Jikes compiler, a syntactic variant of the Javari2004
language, an early design that conflates assignability with mutabil-
ity and lacks support for generics, among other differences from
Javari. Birka’s case studies involved 160,000 lines of annotated
code. The JavaCOP [1] and JQual [15] frameworks have been used
to implement subsets of Javari that do not handle method overrid-
ing, omitting fields from the abstract state, templating, generics (in
the case of JQual), and other features that are essential for practical
use. JavaCOP’s fragmentary implementation was never executed
on a real program. JQual has been evaluated, and the JQual in-
ference results were accurate for 35 out of the 50 variables that the
authors examined by hand. This comparison illustrates the Checker
Framework’s greater expressiveness and usability.

IGJ.
Our implementation is the second checker for the IGJ language.

The previous IGJ dialect [27] did not permit the (im)mutability
of array elements to be specified. The previous dialect permitted
some sound subtyping that is illegal in Java (and thus is forbid-
den by our new checker), such as @ReadOnly List<Integer> ⊆
@ReadOnly List<Object>.

11. Lessons learned
To date, it has been very difficult to evaluate a type system in

practice, which requires writing a robust, scalable custom compiler
that extends an industrial-strength programming language. As a
result, too many type systems have been proposed without being
realistically evaluated. Our work was motivated by the desire to
enable researchers to more easily and effectively evaluate their pro-
posals. Although three of the type systems we implemented have
seen significant experimentation (160 KLOC in an earlier dialect of
Javari [3], 106 KLOC in IGJ [27], many implementations of Null-
ness), nonetheless our more realistic implementation yielded new
insights into both the type systems and into tools for building type
checkers. We now note some of these lessons learned.

http://www.cs.ucla.edu/~smarkstr/javacop/


Javari. A previous formalization of Javari required formal pa-
rameter types to be invariant, not for reasons of type soundness but
because it simplified the exposition and a correctness proof. We
found this restriction (also present by default in the JastAdd frame-
work) unworkable in practice and lifted it in our implementation.
We discovered an ambiguous inference rule in a previous formal-
ism; while not incorrect, it was subject to misinterpretation. We
discovered and corrected a problem with inference of polymorphic
type parameters. And, we made the treatment of fields more pre-
cise.

IGJ. Our subject programs used class, object, and reference im-
mutability in different parts or for different classes, demonstrating
the advantages of a rich immutability type system. The case studies
revealed some new limitations of the IGJ type system: it does not
adequately support the visitor design pattern or callback methods.

In just two cases, the programmer would have liked multiple
immutability parameters for an object. The return value of Map
.keySet allows removal but disallows insertion. The return value
of Arrays.asList is a mutable list with a fixed size; it allows
replacing elements but not insertion nor removal.

IGJ was inspired by Java’s generics system. To our surprise,
the programmer preferred the annotation syntax to the original IGJ
dialect. The original IGJ dialect mixes immutability and generic
arguments in the same type parameters list, as in List<Mutable,

Date<ReadOnly>>. The programmer found prefix modifiers more
natural, as in @Mutable List<@ReadOnly Date>.

Nullness. Nullness checkers are among the best-studied static
analyses. Nonetheless, our work reveals some new insights. Ob-
serving programmers and programs led us to the NonNull Except
Locals (NNEL) default, which significantly reduces the user anno-
tation burden and serves as a surrogate for local type inference. The
idea is generalizable to other type qualifiers besides @NonNull.

Another observation is that a Nullness checker is not necessar-
ily a good example for generalizing to other type systems. Many
application invariants involve nullness, because programmers im-
bue null with considerable run-time-checkable semantic mean-
ing, such as uninitialized variables, option types, and other spe-
cial cases. Compared to other type systems, programmers must
suppress relatively more false positives with null checks, and flow
sensitivity is an absolute must. Flow sensitivity offers more modest
benefits in other type systems, apparently thanks to programmers’
more disciplined use of those types. For example, flow-sensitive
inference eliminated only 3 annotations in the Interning case study.

Expressive annotations. The ability to annotate generic types
makes a qualitative difference in the usability of a checker. The
same is true for arrays: while some people expect arrays to be rare
in Java code, they are pervasive in practice. Lack of support for ar-
ray annotations was the biggest problem with an earlier IGJ imple-
mentation [27], and in our case studies, annotating arrays revealed
new errors compared to that implementation.

Some developers are skeptical of the need for receiver annota-
tions, but they are distinct from both method and return value an-
notations. Our case studies demonstrate that they are are needed in
every type system we considered. Even the Nullness checker uses
them, for @Raw annotations, although each receiver is known to be
non-null.

Polymorphism. Our case studies confirm that qualifier poly-
morphism and type polymorphism are complementary: neither one
subsumes the other, and both are required for a practical type sys-
tem. Qualifier polymorphism expresses context sensitivity in ways
Java generics cannot, and avoids the need to rewrite code even if
generics would suffice. Qualifier polymorphism is part of Javari
and IGJ, but after we found it necessary in the Nullness checker,

and useful in the Interning and Basic checkers, we promoted it to
the framework. Given support for Java generics, we found poly-
morphism over a single qualifier variable to be sufficient. We have
not yet enountered a need for multiple qualifier variables, much less
for subtype constraints among them [15].

Supporting Java generics dominated every other problem in the
framework design and implementation and in the design of the type
systems. While it may be expedient to ignore generics and focus on
the core of the type system, or to formalize a variant of Java gener-
ics, those strategies run the risk of irrelevancy in practice. Further
experimentation may lead us to promote more features of specific
type systems, such as Javari’s extension of Java wildcards, into the
framework.

Framework design. Integrating but decoupling the checker and
the compiler yielded a workable, practical, and deployable system.

Our framework differs from some other designs in that type sys-
tem designers code some or all of their type rules in Java. The
rules tend to be short and readable without sacrificing expressive-
ness. Our design is vindicated by the ability to create type check-
ers, such as that of Javari, that the authors of other frameworks tried
but failed to write. Several of our checkers required sophisticated
processing that no framework known to us directly supports. It
is impractical to build support for every future type system into a
framework. Even for relatively simple type systems, special cases,
complex library methods, and heuristics make the power of proce-
dural abstraction welcome.

Use of an expressive framework has other advantages besides
type checking. For example, we wrote a specialized “checker” for
testing purposes. It compares an expression’s annotated type to an
expected type that is written in an adjacent stylized comment in the
same Java source file.

One important design decision was the interface to AST trees and
symbol types. An earlier version of our framework essentially used
a pair consisting of the unannotated type (as provided by the com-
piler) and the set of annotation locations within the type. Changing
the representation eliminated much complexity and many bugs, es-
pecially for generic types.

Inference. Inference of type annotations has the potential to
greatly reduce the programmer burden. However, inference is not
always necessary, particularly when a programmer adds annota-
tions to replace existing comments, or when the programmer fo-
cuses attention on only part of a program. Inference is much more
important for libraries when the default qualifier is not the root of
the type hierarchy (e.g., in Javari and IGJ).

Existing inference tools tend to scale poorly. After iterating for
many months offering bug reports on every static non-null infer-
ence tool available, we wrote our own sound, dynamic nullable in-
ference tool in a weekend. Just as the Checker Framework fills a
need for type checking, there is a need for robust, scalable, expres-
sive type frameworks that specifically support static inference.

Complexity of simple type systems. Simple qualified type sys-
tems, whose type rules enforce a subtype or supertype relationship
between a qualified and unqualified type, suffice for some uses.
Even these type systems can benefit from more sophisticated type
rules, and more sophisticated and useful type systems require addi-
tional flexibility and expressiveness. Furthermore, an implementa-
tion of only part of a type system is impractical.

12. Contributions
The Checker Framework is an expressive, easy-to-use, and ef-

fective system for defining pluggable type systems for Java. It pro-
vides declarative and procedural mechanisms for expressing type
systems, an expressive programming language syntax for program-



mers, and integration with standard APIs and tools. Our case stud-
ies shed light not only on the positive qualities of the Checker
Framework, but also on the type systems themselves.

The contributions of this research include the following.
• A backward-compatible syntax for writing qualified types that

extends the Java language annotation system. The extension is nat-
urally integrated with the Java language, and annotations are repre-
sented in the class file format. The syntax is planned for inclusion
in the Java 7 language under its Sun codename “JSR 308”.
• The Checker Framework for expressing the type rules that are

enforced by a checker — a type-checking compiler plug-in. The
framework makes simple type systems easy to implement, and it is
expressive enough that powerful type systems are possible to im-
plement. The framework provides a representation of annotated
types. It offers declarative syntax for many common tasks in defin-
ing a type system, including declaring the type hierarchy, specify-
ing type introduction rules, type and qualifier polymorphism, and
flow-sensitive local type qualifier inference. For comprehensibility,
portability, and robustness, the framework is integrated with stan-
dard Java tools and APIs.
• Five checkers written using the Checker Framework. The Ba-

sic checker enforces only type hierarchy rules. The Nullness checker
verifies the absence of null pointer dereference errors. The Intern-
ing checker verifies the consistent use of interning and equality test-
ing. The Javari checker enforces reference immutability. The IGJ
checker enforces reference and object immutability. The check-
ers are of value in their own right, to help programmers to detect
and prevent errors. Construction of these checkers also indicates
the ease of using the framework and the usability of the resulting
checker.
• A new approach to finding equality errors that is based purely

on a type system and is fully backward-compatible.
• An empirical evaluation of the previous proposals for defaults

in a Nullness type system. This led us to a new default proposal,
named NNEL (NonNull Except Locals), that significantly reduces
the annotation burden. Together with flow-sensitive type inference,
it nearly eliminates annotations within method bodies.
• Significant case studies of running the checkers on real pro-

grams. The checkers scale to programs of >200 KLOC, and they
revealed bugs in every codebase to which we applied them. Anno-
tation of the programs indicates that our syntax proposals maintain
the feel of Java. Use of the checkers indicates that the framework
yields scalable tools that integrate well with developers’ practice
and environments. The tools are effective at finding bugs or prov-
ing their absence. They have relatively low annotation burden and
manageable false positive rates.
• New insights about previously-known type systems (see Sec-

tion 11).
• Public releases, with source code and substantial documen-

tation, of the JSR 308 extended annotations Java compiler, the
Checker Framework, and the checkers, at http://pag.csail.
mit.edu/jsr308/. (The first public release was in January 2007.)
Additional details can be found in the Checker Framework docu-
mentation, and in the first author’s thesis [20]. We hope that pro-
grammers will use the tools to improve their programs and that type
theorists will use them to realistically evaluate their type system
proposals.

13. References
[1] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein.

A framework for implementing pluggable type systems. In OOPSLA,
pages 57–74, Oct. 2006.

[2] Shay Artzi, Jaime Quinonez, Adam Kieżun, and Michael D. Ernst. A
formal definition and evaluation of parameter immutability., Dec.

2007. Under review.
[3] Adrian Birka and Michael D. Ernst. A practical type system and

language for reference immutability. In OOPSLA, pages 35–49, Oct.
2004.

[4] Joshua Bloch. JSR 175: A metadata facility for the Java
programming language.
http://jcp.org/en/jsr/detail?id=175, Sep. 30, 2004.

[5] Patrice Chalin and Perry R. James. Non-null references by default in
Java: Alleviating the nullity annotation burden. In ECOOP, pages
227–247, Aug. 2007.

[6] Joe Darcy. JSR 269: Pluggable annotation processing API.
http://jcp.org/en/jsr/detail?id=269, May 17, 2006. Public
review version.

[7] Torbjörn Ekman and Görel Hedin. The JastAdd extensible Java
compiler. In OOPSLA, pages 1–18, Oct. 2007.

[8] Torbjörn Ekman and Görel Hedin. Pluggable checking and
inferencing of non-null types for Java. J. Object Tech., 6(9):455–475,
Oct. 2007.

[9] Arnout F. M. Engelen. Nullness analysis of Java source code.
Master’s thesis, University of Nijmegen Dept. of Computer Science,
Aug. 10 2006.

[10] Michael D. Ernst. Annotations on Java types: JSR 308 working
document. http://pag.csail.mit.edu/jsr308/, Nov. 12, 2007.

[11] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking
non-null types in an object-oriented language. In OOPSLA, pages
302–312, Nov. 2003.

[12] Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular
hash-consing. In ML, pages 12–19, Sep. 2006.

[13] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. Extended static checking
for Java. In PLDI, pages 234–245, June 2002.

[14] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification. Addison Wesley, Boston, MA, third edition,
2005.

[15] David Greenfieldboyce and Jeffrey S. Foster. Type qualifier inference
for Java. In OOPSLA, pages 321–336, Oct. 2007.

[16] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and
tuning a static analysis to find null pointer bugs. In PASTE, pages
13–19, Sep. 2005.

[17] Chris Male and David J. Pearce. Non-null type inference with type
aliasing for Java.
http://www.mcs.vuw.ac.nz/~djp/files/MP07.pdf, Aug. 20,
2007.

[18] Darko Marinov and Robert O’Callahan. Object equality profiling. In
OOPSLA, pages 313–325, Nov. 2003.

[19] Shane Markstrum, Daniel Marino, Matthew Esquivel, and Todd
Millstein. Practical enforcement and testing of pluggable type
systems. Technical Report CSD-TR-080013, UCLA, Apr. 2008.

[20] Matthew Papi. Practical pluggable types for Java. Master’s thesis,
MIT Dept. of EECS, May 2008.

[21] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H.
Perkins, and Michael D. Ernst. Pluggable type-checking for custom
type qualifiers in Java. Technical Report MIT-CSAIL-TR-2007-047,
MIT CSAIL, Sep. 17, 2007.

[22] Matthew S. Tschantz. Javari: Adding reference immutability to Java.
Technical Report MIT-CSAIL-TR-2006-059, MIT CSAIL, Sep. 5,
2006.

[23] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference
immutability to Java. In OOPSLA, pages 211–230, Oct. 2005.

[24] Mandana Vaziri, Frank Tip, Stephen Fink, and Julian Dolby.
Declarative object identity using relation types. In ECOOP, Aug.
2007.

[25] Peter von der Ahe. JSR 199: Java compiler API.
http://jcp.org/en/jsr/detail?id=199, Dec. 11, 2006.

[26] Olivier Zendra and Dominique Colnet. Towards safer aliasing with
the Eiffel language. In IWAOOS, pages 153–154, June 1999.

[27] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun,
and Michael D. Ernst. Object and reference immutability using Java
generics. In ESEC/FSE, Sep. 2007.

http://pag.csail.mit.edu/jsr308/
http://pag.csail.mit.edu/jsr308/
http://jcp.org/en/jsr/detail?id=175
http://jcp.org/en/jsr/detail?id=269
http://pag.csail.mit.edu/jsr308/
http://www.mcs.vuw.ac.nz/~djp/files/MP07.pdf
http://jcp.org/en/jsr/detail?id=199

	Introduction
	The programmer's view of a checker
	Using a checker to detect software errors
	Type qualifier syntax

	Checker Framework
	Architecture of a type system
	Type qualifiers and hierarchy
	Implicit annotations: qualifier introduction
	Defining type rules
	Customizing the compiler interface
	Parametric polymorphism
	Type polymorphism
	Qualifier polymorphism

	Flow-sensitive type qualifier inference

	Experiments
	Methodology
	Ease of use

	The Basic checker for simple type systems
	Nullness checker for null pointer errors
	Default annotation for Nullness checker

	Interning checker for equality-testing errors
	Javari checker for mutation errors
	IGJ checker for mutation errors
	Related work
	Lessons learned
	Contributions
	References

