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Abstract

Type safety and expressiveness of many existing Java
libraries and their client applications would improve, if
the libraries were upgraded to define generic classes. Ef-
ficient and accurate tools exist to assist client applica-
tions to use generic libraries, but so far the libraries them-
selves must be parameterized manually, which is a tedious,
time-consuming, and error-prone task. We present a type-
constraint-based algorithm for converting non-generic li-
braries to add type parameters. The algorithm handles the
full Java language and preserves backward compatibility,
thus making it safe for existing clients. Among other fea-
tures, it is capable of inferring wildcard types and intro-
ducing type parameters for mutually-dependent classes. We
have implemented the algorithm as a fully automatic refac-
toring in Eclipse.

We evaluated our work in two ways. First, our tool pa-
rameterized code that was lacking type parameters. We
contacted the developers of several of these applications,
and in all cases they confirmed that the resulting parame-
terizations were correct and useful. Second, to better quan-
tify its effectiveness, our tool parameterized classes from
already-generic libraries, and we compared the results to
those that were created by the libraries’ authors. Our tool
performed the refactoring accurately—in 87% of cases the
results were as good as those created manually by a human
expert, in 9% of cases the tool results were better, and in
4% of cases the tool results were worse.

1 Introduction
Generics (a form of parametric polymorphism) are a fea-

ture of the Java 1.5 programming language. Generics en-
able the creation of type-safe reusable classes, which signif-
icantly reduces the need for potentially unsafe down-casts
in source code. Much pre-1.5 Java code would benefit from
being upgraded to use generics. Even new code can benefit,
because a common programming methodology is to write
non-generic code first and convert it later. The task of in-
troducing generics to existing code can be viewed as two
related technical problems [7]:

1. The parameterization problem consists of adding type
parameters to an existing class definition so that it
can be used in different contexts without the loss of

type information. For example, one might convert the
class definition class ArrayList {. . .} into class
ArrayList<T> {. . .}, with certain uses of Object in
the body replaced by T.

2. Once a class has been parameterized, the instanti-
ation problem is the task of determining the type
arguments that should be given to instances of the
generic class in client code. For example, this
might convert a declaration ArrayList names; into
ArrayList<String> names;.

The former problem subsumes the latter because the intro-
duction of type parameters often requires the instantiation
of generic classes. For example, if class HashSet uses a
HashMap as an internal representation of the set, then pa-
rameterizing the HashSet class requires instantiating the
references to HashMap in the body of HashSet.

If no parameterization is necessary, the instantiation
problem can be solved using completely automatic and scal-
able techniques [7, 10], and the INFER GENERIC TYPE AR-
GUMENTS refactoring in Eclipse 3.1 is based on our previ-
ous work [10]. However, to our knowledge, no previous
practical and satisfactory solution to the parameterization
problem exists. Thus far, class libraries such as the Java
Collections Framework have been parameterized manually,
and developers involved with this task described it as very
time-consuming, tedious, and error-prone [11, 2].

We present a solution to the parameterization problem
such that: (i) the behavior of any client of the parameter-
ized classes is preserved, (ii) the translation produces a re-
sult similar to that which would be produced manually by
a skilled programmer, and (iii) the approach is practical in
that it admits an efficient implementation that is easy to use.
Our approach fully supports Java 1.5 generics, including
bounded and unbounded wildcards, and it has been imple-
mented as a refactoring in Eclipse. Previous approaches for
solving the parameterization problem [8, 6, 20] did not in-
clude a practical implementation, and produced incorrect or
suboptimal results, as will be discussed in Section 5.

We evaluated our work in two ways. First, we parameter-
ized non-generic classes, and examined the results to ensure
that they were satisfactory and usable to clients. Second, we
complemented that qualitative analysis with a quantitative
one in which we compared its results to those produced by
human programmers. Our tool computes a solution that is
nearly identical to the hand-crafted one, and is sometimes



1 // A MultiSet may contain a given element more than once.
2 // Each element is associated with a count (a cardinality).
3 public class MultiSet {

4 // counts maps each element to its number of occurrences.
5 private Map counts = new HashMap ( ) ;
6 public void add (Object t1 ) {
7 counts .put (t1 , new Integer (getCount (t1 ) + 1 ) ) ;
8 }
9 public Object getMostCommon ( ) {

10 return new SortSet (this ) . getMostCommon ( ) ;
11 }
12 public void addAll (Collection c1 ) {
13 for (Iterator iter = c1 .iterator ( ) ;
14 iter .hasNext ( ) ; ) {
15 add (iter .next ( ) ) ;
16 }
17 }
18 public boolean contains (Object o1 ) {
19 return counts .containsKey (o1 ) ;
20 }
21 public boolean containsAll (Collection c2 ) {
22 return getAllElements ( ) . containsAll (c2 ) ;
23 }
24 public int getCount (Object o2 ) {
25 return ( ! contains (o2 ) ) ? 0 :
26 ((Integer)counts .get (o2 ) ) . intValue ( ) ;
27 }
28 public Set getAllElements ( ) {
29 return counts .keySet ( ) ;
30 }
31 }
32

33 // A SortSet sorts the elements of a MultiSet by their cardinality.
34 class SortSet extends TreeSet {
35 public SortSet (final MultiSet m ) {
36 super (new Comparator ( ) {
37 public int compare (Object o3 , Object o4 ) {
38 return m .getCount (o3 ) − m .getCount (o4 ) ;
39 }} ) ;
40 addAll (m .getAllElements ( ) ) ;
41 }
42 public boolean addAll (Collection c3 ) {
43 return super .addAll (c3 ) ;
44 }
45 public Object getMostCommon ( ) {
46 return isEmpty ( ) ? null : first ( ) ;
47 }
48 }

1 // A MultiSet may contain a given element more than once.
2 // Each element is associated with a count (a cardinality).
3 public class MultiSet<T1> {

4 // counts maps each element to its number of occurrences.
5 private Map<T1,Integer> counts = new HashMap<T1,Integer> ( ) ;
6 public void add (T1 t1 ) {
7 counts .put (t1 , new Integer (getCount (t1 ) + 1 ) ) ;
8 }
9 public T1 getMostCommon ( ) {

10 return new SortSet<T1> (this ) . getMostCommon ( ) ;
11 }
12 public void addAll (Collection<? extends T1> c1 ) {
13 for (Iterator<? extends T1> iter = c1 .iterator ( ) ;
14 iter .hasNext ( ) ; ) {
15 add (iter .next ( ) ) ;
16 }
17 }
18 public boolean contains (Object o1 ) {
19 return counts .containsKey (o1 ) ;
20 }
21 public boolean containsAll (Collection<?> c2 ) {
22 return getAllElements ( ) . containsAll (c2 ) ;
23 }
24 public int getCount (Object o2 ) {
25 return ( ! contains (o2 ) ) ? 0 :
26 ((Integer)counts .get (o2 ) ) . intValue ( ) ;
27 }
28 public Set<T1> getAllElements ( ) {
29 return counts .keySet ( ) ;
30 }
31 }
32

33 // A SortSet sorts the elements of a MultiSet by their cardinality.
34 class SortSet<T2> extends TreeSet<T2> {
35 public SortSet (final MultiSet<? extends T2> m ) {
36 super (new Comparator<T2> ( ) {
37 public int compare (T2 o3 , T2 o4 ) {
38 return m .getCount (o3 ) − m .getCount (o4 ) ;
39 }} ) ;
40 addAll (m .getAllElements ( ) ) ;
41 }
42 public boolean addAll (Collection<? extends T2> c3 ) {
43 return super .addAll (c3 ) ;
44 }
45 public T2 getMostCommon ( ) {
46 return isEmpty ( ) ? null : first ( ) ;
47 }
48 }

Figure 1. Classes MultiSet and SortSet before and after parameterization by our tool. In the right column, modified declarations are
underlined and a removed cast is struck through. The example uses collection classes from package java.util in the standard Java 1.5
libraries: Map, HashMap, Set, Collection, TreeSet.

even better (i.e., it permits more casts to be removed).
The remainder of this paper is organized as follows. Sec-

tion 2 gives a motivating example to illustrate the problem
and our solution. Section 3 presents our class parameteri-
zation algorithm. Section 4 describes the experiments we
performed to evaluate our work. Section 5 overviews re-
lated work, and Section 6 concludes.

2 Example
Figure 1 shows an example program consisting of two

classes, MultiSet and SortSet, before and after auto-
matic parameterization by our tool. The following obser-
vations can be made about the refactored source code:
1. On line 6, the type of the parameter of MultiSet.add() has

been changed to T1, a new type parameter of class MultiSet
that represents the type of its elements.

2. On line 9, the return type of MultiSet.getMostCommon() is
now T1. This, in turn, required parameterizing class SortSet

with a type parameter T2 (line 34) and changing the return type
of SortSet.getMostCommon() (line 45) to T2. This shows
that parameterizing one class may require parameterizing oth-
ers.

3. On line 12, the parameter of MultiSet.addAll() now
has type Collection<? extends T1>, a bounded wildcard
type that allows any Collection that is parameterized with
a subtype of the receiver’s type argument T1 to be passed
as an argument. The use of a wildcard is very important
here. Suppose that the type Collection<T1> were used
instead. Then a (safe) call to addAll() on a receiver of
type MultiSet<Number> with an actual parameter of type
List<Integer> would not compile; the client would be for-
bidden from using those (desirable) types.

4. On line 18, the type of the parameter of MultiSet.con-
tains() remains Object. This is desirable and corresponds
to the (manual) parameterization of the JDK libraries. Sup-
pose the parameter of contains() had type T1 instead, and
consider a client that adds only Integers to a MultiSet



and that passes an Object to contains() at least once on
that MultiSet. Such a client would have to declare the
MultiSet suboptimally as MultiSet<Object>, rather than
MultiSet<Integer> as permitted by our solution.

5. On line 21, the type of the parameter of MultiSet.con-
tainsAll() has become an unbounded wildcard Collec-
tion<?> (which is shorthand for Collection<? extends
Object>). Analogously with the contains() example
above, use of Collection<T1> would force a less precise pa-
rameterization of some instances of MultiSet in client code.

6. On line 28, the return type of MultiSet.getAll-
Elements() is parameterized as Set<T1>. It is important not
to parameterize it with a wildcard, as that would severely con-
strain client uses of the method’s return value (e.g., it would
be illegal to add elements other than null to the returned set.)

7. On line 42, the type of the parameter of method SortSet-
.addAll() is parameterized as Collection<? extends
T2>. Any other parameterization would be incorrect because
the method overrides the method TreeSet.addAll(), and
the signatures of these methods must remain identical to pre-
serve the overriding relationship [11].

Even for this simple example, the desired parameteriza-
tion requires 19 non-trivial changes to the program’s type
annotations, and involves subtle reasoning. In short, class
parameterization is a complex process, and automated tool
assistance is highly desirable.

Finally, we remark that, although the example uses the
standard (generic) Java libraries (e.g., Map<K,V>, Set<E>,
etc.), our technique is also applicable to classes that do not
depend on generic classes.

3 Algorithm
Our parameterization algorithm has 3 steps:

1. Create type constraints for all program constructs, and
add additional constraints using a set of closure rules.

2. Solve the constraints to determine a type for each dec-
laration.

3. Rewrite the program’s source code: add new formal
type parameters, rewrite program declarations, and re-
move redundant casts.

After Section 3.1 presents the notation used for representing
type constraints, Sections 3.2–3.3 present the steps of the
algorithm.

3.1 Type Constraints

This paper generalizes and extends a framework of type
constraints [15] that has been used for refactoring [19, 5, 1]
and, in particular, as the basis for a refactoring that solves
the instantiation problem [10] (i.e., inferring the type argu-
ments that should be given to generic classes in client code).
Due to space limitations, the pre-existing parts of the type
constraints formalism are described informally, and the pre-
sentation focuses on the new constraints notation and algo-
rithmic contributions that are needed for solving the param-
eterization problem.

Type constraints are a formalism for expressing subtype
relationships between program entities that are required
for preserving the type-correctness of program constructs.
Consider an assignment x=y. The constraint [y] ≤ [x] states
that the type of y (represented by the constraint variable
[y]) must be a subtype of the type of x. If the original
program is type-correct, this constraint holds. The refac-
toring must preserve the subtype relationship [y] ≤ [x] so
that the refactored program is type-correct. As another ex-
ample, consider a method Sub.foo(Object p) that over-
rides a method Super.foo(Object q). To preserve dy-
namic dispatch behavior, the refactored program must pre-
serve the overriding relationship. This is guaranteed if the
refactored program satisfies a constraint [p] = [q] stating
that the types of p and q are identical.

Our algorithm generates type constraints from a pro-
gram’s abstract syntax tree (AST) in a syntax-directed man-
ner. A solution to the resulting constraint system corre-
sponds to a refactored version of the program for which
type-correctness and program behavior is preserved. Fre-
quently, many legal solutions exist, all of which preserve
the program’s semantics, but some of which are more use-
ful to clients. Our algorithm uses heuristics (Section 3.3.1)
to choose among legal solutions, but it never violates the
semantics of the program by changing behavior.

Refactoring for parameterization is significantly more
complex than previous work: it involves the introduction of
formal type parameters with inheritance relations between
them, while simultaneously rewriting existing declarations
to refer to these new type parameters. This required non-
trivial extensions and modifications to the type constraints
formalism and the solver, including most notably:

1. the introduction of context constraint variables repre-
senting the type with which newly introduced type pa-
rameters are instantiated,

2. the introduction of wildcard constraint variables to ac-
commodate wildcard types, and

3. the use of heuristics to guide the solver towards solu-
tions preferred by human programmers (e.g., not intro-
ducing too many type parameters, and preferring solu-
tions with wildcard types in certain cases), without vio-
lating program semantics.

Figure 2 presents the type constraint notation. Type con-
straints are of the form α ≤ α

′ or α = α
′, where α and α

′

are constraint variables. Most forms of constraint variables
are standard, but we discuss the new forms context variables
and wildcard variables.

Context Variables. This paper introduces a new form
of constraint variable that represents the type with which
a (newly introduced) formal type parameter is instantiated.
Such a context variable is of the form Iα

′(α) and represents
the interpretation of constraint variable α in a context given
by constraint variable α′.

We give the intuition behind context variables by example.



Type constraint variables:
α ::= αnw non-wildcard variable

?extendsαnw wildcard type upper-bounded by αnw

?superαnw wildcard type lower-bounded by αnw

αnw ::= αctxt contexts
T type parameter
Iαctxt

(α) α, interpreted in context αctxt

αctxt ::= [e] type of expression e

[Mret] return type of method M

[Mi] type of ith formal parameter of method M

C monomorphic type constant
Type constraints:
α = α′ type α must be the same as type α′

α ≤ α′ type α must be the same as, or a subtype of, type α′

Figure 2. Notation used for defining type constraints.

τ ::= τnw non-wildcard type
? extends τnw upper-bounded wildcard type
? super τnw lower-bounded wildcard type

τnw ::= C monomorphic type constant
T extends τnw type parameter

Figure 3. Grammar of types used in the analysis.

• Consider the JDK class List<E>. References to its type pa-
rameter E only make sense within the definition of List. In
the context of an instance of List<String>, the interpreta-
tion of E is String, while in the context of an instance of
List<Number>, the interpretation of E is Number. We write
I[x](E) for the interpretation of E in the context of variable x.

• Consider the call counts.put(t1,...) on line 7 of Fig-
ure 1. Java requires the type of the first actual parameter t1 to
be a subtype of the formal parameter key of Map.put. This
is expressed by the constraint [t1] ≤ I[counts](key), which
means that the type of t1 is a subtype of the type of key, as
interpreted by interpretation function I[counts]. This inter-
pretation function maps the formal type parameters in the de-
clared type of Map to the types with which they are instantiated
in the declaration of counts.

Using a context variable here is important. Generating a
constraint without a context, i.e., [t1] ≤ [key], would be in-
correct. Variable key has type K, and there is no direct subtype
relationship between the type T1 of [t1] and the type parame-
ter K of the distinct class Map. It would be likewise incorrect
to require that [t1] ≤ K.

Our algorithm eventually resolves [t1] to T1, implying that
I[counts] maps K to T1, and thus I[counts](key) resolves
to T1.

• In some cases, a context αctxt is irrelevant. For example,
Iαctxt

(String) always resolves to String, regardless of the
context αctxt in which it is interpreted.

Wildcard Variables. There are two situations where our
algorithm introduces wildcards in the refactored program.

Wildcard variables are of the form ? extends α

or ? super α (where α is another constraint vari-
able), and are used in cases where Java’s typing rules

assignment e1=e2

{[e2] ≤ [e1]} (r1)

statement return e0 in method M

{[e0] ≤ [Mret]} (r2)

call e ≡ e0.m(e1, . . .,ek) to instance method M

canAddParams ≡ Decl(M) ∈ TargetClasses

CGen([e], =, [Mret], [e0], canAddParams) ∪ (r3)
S

1≤i≤k
CGen([ei],≤, [Mi], [e0], canAddParams) (r4)

α1 ≤ α2 Iα′ (α1) or Iα′ (α2) exists
Iα′ (α1) ≤ Iα′ (α2)

(r5)

α1 ≤ α2 Iα1
(α) or Iα2

(α) exists
Iα1

(α) = Iα2
(α)

(r6)

Figure 4. Representative examples of rules for generating type con-
straints from Java constructs (rules (r1)–(r4)) and of closure rules
(rules (r5)–(r6)). Figure 5 shows auxiliary definitions used by the
rules. TargetClasses is a set of classes that should be parameter-
ized by adding type parameters. Decl(M) denotes the class that
declares method M .

require the use of wildcard types. For example,
in Figure 1, SortSet.addAll() (line 42) overrides
java.util.TreeSet.addAll(). If SortSet becomes
a generic class with formal type parameter T2, then preserv-
ing this overriding relationship requires the formal param-
eter c3 of SortSet.addAll() to have the same type as
that of TreeSet.addAll(), which is declared in the Java
standard libraries as TreeSet.addAll(Collection<?
extends E>). Three parts of our algorithm work together
to accomplish this: (i) The type of c3 is represented, us-
ing a context variable, as Collection<I[c3](E)>, (ii) Type
constraint generation (Section 3.2) produces I[c3](E) =
? extends ISortSet(E), which uses a wildcard vari-
able, and (iii) Constraint solving (Section 3.3) resolves
ISortSet(E) to T2.

Our algorithm also introduces wildcard types in cases
where that results in a more flexible solution, as discussed
in Section 3.3.1. However, this does not involve the use of
wildcard variables.

3.2 Type Constraint Generation

Figure 4 shows a few representative rules for generating
type constraints. The rules omitted from Figure 4 involve
no significantly different analysis.

Rules (r1) and (r2) are from previous work. Rule (r1)
states that the type of the right-hand side of an assignment
must be equal to or a subtype of the left-hand side. Rule (r2)
states that if a method contains a statement “return e0”,
then the type of the returned expression e0 must be equal to
or a subtype of the method’s declared return type. The com-
plete set of rules [19, 10] is omitted for brevity and covers
the entire Java language.



αP is the type, in the original program P , of the program construct corresponding to α.

CGen creates and returns a set of type constraints. The result constrains α and the interpretation of α′ in context α′′. The particular constraint (=, ≤, or
≥) between α and Iα′′(α′) is determined by op. CGen is defined by case analysis on the type of its third parameter in the original program P .

CGen(α, op, α′, α′′, canAddParams ) =
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

{α op C} when α′
P ≡ C and canAddParams ≡ false (c1)

{α op Iα′′ (α′)} when α′
P ≡ C and canAddParams ≡ true (c2)

{α op C} ∪
S

1≤i≤m
CGen(Iα(Wi),=, [τi], α′′, canAddParams ) when α′

P ≡ C〈τ1, . . . , τm〉 and C is declared as C〈W1, . . . ,Wm〉 (c3)

{α op Iα′′ (T )} when α′
P ≡ T (c4)

CGen(α,≤, [τ ′], α′′, canAddParams ) when α′
P ≡ ? extends τ ′ (c5)

CGen(α,≥, [τ ′], α′′, canAddParams ) when α′
P ≡ ? super τ ′ (c6)

Figure 5. Auxiliary functions used by the constraint generation rules in Figure 4.

Rules (r3) and (r4) are among the new rules introduced
in this research. Rules (r3) and (r4) govern method calls.
Rule (r3) states that the type of the method call expres-
sion is the same as the return type of the method (in the
context of the receiver). This corresponds to how the type
checker treats a method call (i.e., the type of the call and
the type of the method are the same). Rule (r4) relates
the actual and formal type parameters of the call. The
TargetClasses set (a user input to the algorithm) indicates
which classes should be refactored by adding type param-
eters (e.g., in Figure 1, classes MultiSet, SortSet, and
the anonymous class declared on line 35 are assumed to be
in TargetClasses). The auxiliary function CGen, defined
in Figure 5, performs the actual generation of a set of con-
straints.

Java’s type rules impose certain restrictions on para-
metric types. Closure rules such as (r5) and (r6) in Fig-
ure 4 enforce those restrictions. Rule (r5) requires that,
given two formal type parameters1 T1 and T2 such that
T1 ≤ T2 and any context α in which either actual type
parameter Iα(T1) or Iα(T2) exists, the subtyping relation-
ship Iα(T1) ≤ Iα(T2) must also hold. To illustrate this
rule, consider a class C<T1, T2 extends T1> and any
instantiation C<C1, C2>. Then, C2 ≤ C1 must hold, im-
plying that e.g., C<Number, Integer> is legal but that
C<Integer, Number> is not. Rule (r6) enforces invari-
ant subtyping2 of parametric types: C〈τ〉 is a subtype of
C〈τ ′〉 iff τ = τ ′.

Examples. The following examples show how the rules of
Figure 4 apply to three program constructs in the example of
Figure 1. The examples assume that the set TargetClasses is
{MultiSet,SortSet}.
line 26: call counts.get(o2) to method Map<K,V>.get(Object)

(r3)
→ CGen([counts.get(o2)],=,[Map.getret],[counts],false)
(c4)
→ { [counts.get(o2)] = I[counts](V) }

This constraint expresses that the type of the expression

1or constraint variables that could become formal type parameters
2In the presence of wildcard types, Java uses the more relaxed

‘containment’ subtyping [11]: ? extends Number is contained in
? extends Object and therefore Set〈? extends Number〉 is a subtype
of Set〈? extends Object〉). In this paper and in our implementation,
we conservatively assume invariant subtyping even with wildcard types.

[counts.get(o2)] is the same as the return type of method
Map.get in the context of the receiver counts.
line 7: call counts.put(t1,...) to method Map<K,V>.put(K,V)

(r4)
→ CGen([t1],≤,[Map.put1],[counts],false) ∪ . . .
(c4)
→ { [t1] ≤ I[counts](K) , . . .}

In other words, the type of t1 must be a subtype of the type of the
first parameter of Map.put in the context of the type of counts.
line 15: call add(iter.next()) to method MultiSet.add(Object)

(r4)
→ CGen([iter.next()],≤,[t1],[MultiSet.addAll.this],true)
(c2)
→ { [iter.next()] ≤ I[MultiSet.addAll.this]([t1]) }

This indicates that iter.next()’s type must be a subtype of the
type of t1 in the context of MultiSet.addAll.

3.3 Constraint Solving

A solution to the system of type constraints is computed
using the iterative worklist algorithm of Figure 6. During
solving, each variable α has an associated type estimate
Est(α). An estimate is a set of types, where types are as
defined in Figure 3. Each estimate is initialized to the set
of all possible (non-parametric) types and shrinks mono-
tonically as the algorithm progresses. When the algorithm
terminates, each estimate consists of exactly one type. Be-
cause type estimates do not contain parametric types, they
are finite sets, and algebraic operations such as intersection
can be performed directly. As an optimization, our imple-
mentation uses a symbolic representation for type estimates.

Algorithm Details. First, the algorithm initializes the
type estimate for each constraint variable, at lines 2 and 15–
22 in Figure 6.

The algorithm uses a workset P containing those con-
straint variables that it has decided shall become type pa-
rameters, but for which that decision has yet to be executed.
The set P is initially seeded with the constraint variable that
corresponds to the declaration that is selected either by a
heuristic or by the user (line 3). The inner loop of parame-
terize() (lines 5–11) repeatedly removes an element from P

and sets its estimate to a singleton type parameter. For new
type parameters, the upper bound is the declared type in the
original (unparameterized) program.

Whenever a type estimate changes, those changes must
be propagated through the type constraints, possibly reduc-



Notation:
Est (α) a set of types, the type estimate of constraint variable α

αP type of constraint variable α in the original program
Sub(τ ) set of all non-wildcard subtypes of τ

Wild(X) set of wildcard types (both lower- and upper-
bounded) for all types in type estimate X

US

E universe of all types, including all wildcard types
(i.e., both super and extends wildcards)

Subroutine parameterize():1
initialize()2
// P is a set of variables known to be type parameters
P ←− {automatically- or user-selected variable}3
repeat until all variables have single-type estimates4

while P is not empty do5
αtp←− remove element from P6
if Est(αtp) contains a type parameter then7

Est(αtp)←− {type parameter from Est(αtp)}8
else9

Est(αtp)←− {create new type parameter}10
propagate()11

if ∃α.|Est (α)| > 1 then12
Est(α)←− {select a type from Est(α)}13
propagate()14

// Set initial type estimate for each constraint variable
Subroutine initialize():15
foreach non-context variable α do16

if α cannot have wildcard type then17
Est(α) = Sub(αP)18

else19
Est(α) = Sub(αP) ∪Wild(Sub(αP ))20

foreach context variable Iα′ (α) do21
Est(Iα′(α)) = US

E22

// Reconcile the left and right sides of each type inequality
Subroutine propagate():23
repeat until fixed point (i.e., until estimates stop changing)24

foreach constraint α ≤ α′ do25
Remove from Est(α) all types that are not a subtype of26
a type in Est(α′)
Remove from Est(α′) all types that are not a supertype27
of a type in Est(α)
if Est(α) or Est(α′) is empty then28

stop: “No solution”29
foreach context variable Iα′ (α) do30

if Est(Iα′ (α)) is a singleton set with type parameter T31
and Est(α) does not contain T then

add α to P32

Figure 6: Pseudo-code for the constraint solving algorithm.

ing the type estimates of other variables as well. The propa-
gate() subroutine performs this operation, ensuring that the
estimates on both sides of a type constraint contain only
types that are consistent with the relation. Whenever a con-
text variable Iα

′(α) gets resolved to a type parameter, α

must also get resolved to type parameter (line 30). To see
why, suppose that α gets resolved to a non-type parameter

type, C. In that case, the context is irrelevant (as mentioned
in Section 3.1), and thus Iα

′(α) also must get resolved to
C (i.e., not a type parameter). This is a contradiction. This
step propagates parameterization choices between classes.

Assembly of Parametric Types. The type estimates cre-
ated during the constraint solution algorithm are all non-
parametric, even for constraint variables that represent pro-
gram entities whose type was parametric (e.g., c1 on line 12
in Figure 1), or will be parametric after refactoring (e.g., t1
on line 6 in Figure 1). A straightforward algorithm, applied
after solving, assembles these results into parametric types.
For instance, the type Collection for [c1] and the type
? extends T1 for I[c1](E) are assembled into the type
Collection<? extends T1> for [c1].

A technical report [13] walks through a detailed example
of the solving algorithm. It also discusses how our system
handles interfaces and abstract classes.

Some classes are not parameterizable by any tool [13].
If the presented algorithm is applied to such a class (e.g.,
String), then the algorithm either signals that parameter-
ization is impossible (line 28 in Figure 6) or else produces
a result in which the type parameter is used in only 1 or
2 places. An implementation could issue a warning in this
case, but our prototype does not have this feature.

Our analysis, like many others, does not account for the
effects of reflective method calls, but use of parameterized
reflection-related classes (such as java.lang.Class<T>)
poses no problems. The analysis can approximate the flow
of objects in a native method based on the signature.

3.3.1 Heuristics

The algorithm of Figure 6 makes an underconstrained
choice on lines 3, 6, 12, and 13. (On line 8, there is only
one possibility.) Any choice yields a correct (behavior-
preserving and type-safe) result, but some results are more
useful to clients (e.g., permit elimination of more casts).
Our implementation makes an arbitrary choice at lines 6
and 12, but uses heuristics at lines 3 and 13 to guide the
algorithm to a useful result.

Our tool lets a user select, with a mouse click, a type to
parameterize. Otherwise, it uses the following heuristic.

1. If a generic supertype exists, use the supertype’s signa-
tures in the subtype. This is especially useful for cus-
tomized container classes.

2. Parameterize the return value of a “retrieval” method.
A retrieval method’s result is downcasted by clients,
or it has a name matching such strings as get and
elementAt. Even classes that are not collections of-
ten have such retrieval methods [7].

3. Parameterize the formal parameter to an insertion
method. An insertion method has a name matching such
strings as add or put.

Given a type estimate to narrow, line 13 chooses one of
its elements. The heuristic minimizes the use of casts in



parameterizable classes time diff vs. manual
library classes LOC type uses (sec.) same better worse

concurrent 14 2715 415 115 353 37 25
apache 74 9904 1183 301 1011 116 56
jutil 9 305 80 1 65 15 0
jpaul 17 827 178 6 148 22 8
amadeus 8 604 129 5 125 1 3
dsa 9 791 162 3 158 4 0
antlr 10 601 140 6 n/a n/a n/a
eclipse 7 582 100 5 n/a n/a n/a
Total 148 16329 2387 442 1860 195 92

Figure 7. Experimental results. “Classes” is the number of pa-
rameterizable classes in the library, including their nested classes.
“LOC” is lines of code. “Type uses” is the number of occurrences
of a reference (non-primitive) type in the library; this is the maxi-
mal number of locations where a type parameter could be used in-
stead. The next column shows the cumulative run time. The “diff
vs. manual” columns indicate how our tool’s output compares to
the manual parameterization.

client code, while preserving flexibility in cases where this
does not affect type-safety: it prefers (in this order):

i) types that preserve type erasure over those that do not,
ii) wildcard types over non-wildcard types, and

iii) type parameters over other types, but only if such a
choice enables inference of type parameters for return
types of methods.

4 Evaluation
A practical type parameterization tool must be correct,

accurate, and usable. Correctness requires that run-time be-
havior is not modified for any client. Accuracy requires that
the parameterization is close to what a human would have
written by hand. Usability requires that the tool is easier to
use than other available approaches. This section describes
our experimental evaluation of these desiderata.

4.1 Implementation

We implemented our technique in a refactoring tool that
is integrated with the Eclipse integrated development en-
vironment. Our previous work on the instantiation prob-
lem [10] was adopted by the Eclipse developers and made
into Eclipse 3.1’s INFER GENERIC TYPE ARGUMENTS
refactoring. Our parameterization tool builds on that pre-
vious implementation work and is integrated with Eclipse
in a similar way.

A programmer can use our tool interactively to direct a
refactoring process (each step of which is automatic) by se-
lecting (clicking on) an occurrence of a type in the program.
The tool automatically rewrites (parameterizes) the class in
which the mouse click occurred, and possibly other classes
as well. Alternatively, a programmer can specify a set of
classes to parameterize, and the tool heuristically selects
type occurrences. The tool uses Eclipse’s built-in support

for displaying changes, and the user can examine them one-
by-one, accept them, or back out of the changes.

4.2 Methodology

Our evaluation uses a combination of 6 libraries that have
already been parameterized by their authors, and 2 libraries
that have not yet been made generic; these two varieties of
evaluation have complementary strengths and weaknesses.
Use of already-parameterized libraries lets us evaluate our
technique’s accuracy by comparing it to the judgment of a
human expert other than ourselves. However, it is possible
that the library authors performed other refactorings at the
same time as parameterization, to ease that task. Use of
non-parameterized libraries avoids this potential problem,
but the evaluation is more subjective, and a human reading
the tool output may not notice as many problems as one
who is performing the full task. (It would be easy for us
to parameterize them ourselves, but such an approach has
obvious methodological problems.)

Our experiments started with a complete, non-param-
eterized library. (For already-parameterized libraries, we
first applied a tool that erased the formal and actual type
parameters and added necessary type casts.) Not all classes
are amenable to parameterization; we selected a subset of
the library classes that we considered likely to be param-
eterizable. Our tool failed to parameterize 34-40% of se-
lected classes due to limitations of the current implementa-
tion. For example, the implementation does not yet support
inference of F-bounded type parameters, e.g., T extends
Comparable<T>. Also, our prototype implementation still
contains a few bugs that prevent it from processing all
classes (but do not affect correctness when it does run).

The experiments processed the classes of the library in
the following order. We built a dependence graph of the
classes, then applied our tool to each strongly connected
component, starting with those classes that depended on no
other (to-be-parameterized) classes. This is the same order
a programmer faced with the problem would choose.

All experiments used our tool’s fully automatic mode.
For example, at each execution of line 3 of Figure 6, it chose
the lexicographically first candidate type use, according to
the heuristics of Section 3.3.1. To make the experiment ob-
jective and reproducible, we did not apply our own insight,
nor did we rewrite source code to make it easier for our tool
to handle, even when doing so would have improved the
results.

Figure 7 lists the subject programs. All of these li-
braries were written by people other than the authors of
this paper. concurrent is the java.util.concurrent
package from Sun JDK 1.5. apache is the Apache col-
lections library (larvalabs.com/collections/). ju-
til is a Java Utility Library (cscott.net/Projects/
JUtil/). jpaul is the Java Program Analysis Utility Li-
brary (jpaul.sourceforge.net). amadeus is a data
structure library (people.csail.mit.edu/adonovan/).



dsa is a collection of generic data structures (www.cs.fiu.
edu/˜weiss/#dsaajava2). antlr is a parser generator
(www.antlr.org). eclipse is a universal tooling platform
(www.eclipse.org). The last two libraries have not been
parameterized by their authors.

Most of the classes are relatively small (the largest
is 1303 lines), but this is true of Java classes in general.
Our tool processes each class or related group of classes in-
dependently, so there is no obstacle to applying it to large
programs.

4.3 Results

4.3.1 Correctness

A parameterization is correct if it is backward-compatible
and self-consistent. Backward compatibility requires that
the erasure of the resulting parameterized classes is iden-
tical to the input. If so, then the compiled .class file be-
haves the same as the original, unparameterized version: for
example, all method overriding relationships hold, exactly
the same set of clients can be compiled and linked against
it, etc. Consistency (type-correctness) requires that the pa-
rameterized classes satisfy the typing rules of Java generics;
more specifically, that a Java compiler issues no errors when
compiling the parameterized classes.

Our tool’s output for all the tested library classes is cor-
rect: it is both backward-compatible and consistent.

4.3.2 Accuracy

We determined our tool’s accuracy in different ways for li-
braries for which no generic version is available (antlr and
eclipse) and those for which a generic version is available
(all others).

When no generic version of a library was available, its
developers examined every change made by our tool and
gave their opinion of the result. A developer of Eclipse
concluded that the changes were “good and useful for code
migration to Java 5.0.” He mentioned only 1 instance (out
of 100 uses of types in the Eclipse classes we parameter-
ized) where the inferred result, while correct, could be im-
proved. A developer of ANTLR stated that the changes
made by our tool are “absolutely correct”. He mentioned 1
instance (out of 140 uses of types in the parameterized
classes) where the inferred result, while correct, could be
improved.

When a generic version of a library is available, we ex-
amined each difference between the pre-existing parame-
terization and our tool’s output. For 87% of all type anno-
tations, the output of our tool is identical or equally good.
For 4% of annotations, the output of our tool is worse than
that created by the human. For 9% of annotations, the tool
output is better than that created by the human. Figure 7
tabulates the results.

Given two parameterizations, we used two criteria to de-
cide which was better. The first, and more important, is
which one allows more casts to be removed—in clients or

in the library itself. The secondary criterion is which one
more closely follows the style used in the JDK collections;
they were developed and refined over many years by a large
group of experts and can be reasonably considered models
of style. (When multiple styles appear in the JDK, we did
not count differences in either the “better” or “worse” cate-
gory.) The two criteria are in close agreement. We present
three examples from each category.

Examples when the output of our tool was worse:
i. Our tool does not instantiate the field next in mem-

ber type LinkedBlockingQueue.Node (in concurrent) as
Node<E>, but leaves it raw. Such a choice is safe, but it is less
desirable than the manual parameterization.

ii. Our tool does not infer type parameters for methods; for ex-
ample, apache’s PredicatedCollection.decorate.

iii. Our tool inferred two separate type parameters for interface
Buffer in the apache library. In this case the manual param-
eterization had only one.

Examples when the output of our tool was better (in each
case, the developers of the package agreed the inferred so-
lution was better than their manual parameterization):

i. Our tool adds a formal type parameter to member class Syn-
chronousQueue.Node in concurrent. The parameter al-
lows elimination of several casts inside SynchronousQueue.

ii. In method VerboseWorkSet.containsAll in jpaul, our
tool inferred an upper-bounded type parameter wildcard for
the Collection parameter. This permits more flexible use
and fewer casts by clients, and also adheres to the standard
collections style from the JDK.

iii. Our tool inferred Object as the type of the parameter of
method Canonical.getIndex in amadeus. This is more
flexible with fewer casts (and follows the JDK style). A sim-
ilar case occurred in jpaul (our tool inferred Object for the
parameter of WorkSet.contains).

4.3.3 Usability

Our tool operated fully automatically, processing each class
in under 3 seconds on average. A user who elected to man-
ually select type uses would only need to make 89 mouse
clicks to add 135 type parameters to 148 classes. As men-
tioned, 4% of the computed results are sub-optimal, requir-
ing manual correction.

By comparison, manual parameterization requires mak-
ing 1655 edits to add generic types — after reading the code
to decide what edits to make. The human result was sub-
optimal 9% of the time, so adjusting the results after finish-
ing is even more work than in the tool-assisted case.

We cannot compare our tool to any other tool because
we know of none that supports this refactoring.

Those results illustrate that manual parameterization re-
quires a significant amount of work. Parameterization of the
apache collections took “a few weeks of programming”, ac-
cording to one of the developers. It is an error-prone activity
and, to quote the same developer, “the main advantage we
had was the over 11,000 test cases included with the project,
that let us know we hadn’t broken anything too badly.”



5 Related Work
Duggan [8] presents an automatic approach for parame-

terizing classes written in PolyJava, a Java subset extended
with parameterized types. Duggan’s type inference infers
one type parameter for each declaration in a class. Even af-
ter applying simplifications to reduce the number of useless
type parameters, Duggan’s analysis leads to classes with ex-
cess type parameters. Duggan’s analysis is inapplicable to
Java because PolyJava differs from Java 1.5 in several im-
portant ways, and Duggan does not address issues related to
raw types, arrays of generic types, and wildcard types that
arise in practice. Duggan does not report an implementation
or empirical results.

Donovan and Ernst [6] present another automated ap-
proach for the parameterization of Java classes. The tech-
nique determines both type parameters and where decla-
rations should refer to those type parameters. The ap-
proach first performs an intra-class analysis that constructs
a type constraint graph using dataflow rules. Then, after
collapsing strongly connected components and making ad-
ditional graph simplifications, an inter-class analysis fuses
type parameters where required to preserve method over-
riding. The algorithm also determines how references to
generic classes should be updated, by inferring actual type
parameters. Our work differs in several significant ways.
Although Donovan and Ernst state that the desired solution
is computed for several examples, they report that “often the
class is over-generalized” (has too many type parameters).
Their work pre-dates Java 1.5 generics and targets a transla-
tion to GJ [3]. As a result, they may infer arrays of generic
types (disallowed in Java 1.5 generics), and do not consider
the inference of wildcard types. They report no empirical
results.

Von Dincklage and Diwan [20] also present a combined
approach for the parameterization of classes and for the in-
ference of actual type parameters in clients of those classes.
Similarly to Duggan [8], their tool (Ilwith) creates one type
parameter per declaration, then uses heuristics to merge
type parameters. Our system differs in its (1) algorithm, (2)
implementation, and (3) evaluation. (1) Ilwith is unsound,
due to insufficient type constraints — it is missing those for
preserving erasure for methods and fields, and overriding
relationships between methods. As a result, the behavior
of both the library and its clients may change after pa-
rameterization, without warning; this makes the technique
unsuitable in practice. By contrast, our approach is cor-
rect (see Section 4.3.1) and uses heuristics only to choose
among legal solutions. Unlike our approach, Ilwith does
not handle key features of Java generics such as raw types
and wildcards. To control run time and the number of con-
straint variables, Ilwith uses special cases in the algorithm
to handle other Java features, such as calls to static meth-
ods and methods in generic classes, and context-, field-, and
instance-sensitivity; by contrast, our system is more uni-
form, and we have not found performance to be a problem.

Ilwith creates maximally many type parameters and then
tries to merge them via heuristics (though other heuristics,
such as the requirement that every field declaration men-
tions a type parameter, may leave the result over-general).
By contrast, our technique starts with no type parameters
and incrementally adds them. (2) We mention only two
differences between the two implementations. First, Ilwith
does not rewrite source code, but merely prints method sig-
natures without providing details on how method bodies
should be transformed. Second, Ilwith took “less than 2
minutes” per class on a 2.66 GHz machine, whereas our
implementation averaged less than 3 seconds per class on
a 2.2 GHz machine. (3) The experimental evaluation of
the two tools differs as well. Ilwith was evaluated on 9
data structures (5 lists, 1 stack, 1 set, and 2 maps) cho-
sen from two libraries (47 classes altogether, including in-
ner classes, interfaces and abstract classes). The authors
made whatever edits were necessary to enable Ilwith to suc-
ceed, so the classes are most like the pre-parameterized li-
braries in our evaluation. However, the authors did not
evaluate the accuracy of the solution, either via examina-
tion by a Java expert or via comparison to existing param-
eterized versions of the libraries (then available, for exam-
ple, from the GJ project and from JDK 1.5 beta releases).
Even the example signatures shown in the paper differ from
what a programmer would have written manually, for exam-
ple in addAll, contains, equals, putAll, remove, and
removeEntryForKey. (The authors state that the results
are consistent with Eiffel, but a Java programmer perform-
ing a refactoring is more likely to care about Java semantics
and backward compatibility.)

Previous work by the present authors includes two al-
gorithms [7, 10] that, given a set of generic classes, infer
how client code can be updated by inferring actual type
parameters and removing casts that have been rendered re-
dundant. This paper extends the constraint formalism and
implementation of [10]. As discussed in Section 3.1, the
most significant of these extensions are the introduction of
context constraint variables and wildcard constraint vari-
ables with corresponding extensions of the solver, and the
use of heuristics to guide the solver towards solutions pre-
ferred by human programmers. Although [10] includes a
mode for inferring method type parameters by means of a
context-sensitive analysis, it does not infer class type pa-
rameters. Other previous work uses type constraints for
refactorings related to generalization [19], customization of
library classes [5], and refactorings for migrating applica-
tions between similar library classes [1]. The INFER TYPE
refactoring by Steimann et al. [18] lets a programmer select
a given variable and determines a minimal interface that can
be used as the type for that variable. If such an interface
does not yet exist, it is created automatically. Steimann et
al. only present their type inference algorithm informally,
but they constraints appear similar to those of [19].

A number of authors have explored compile-time para-



metric type inference to ease the burden of explicit parame-
terization in languages supporting parametric types [14, 16,
12]. Many of these approaches were applied to functional
programming languages, and thus focus on introducing type
parameters for functions, rather than for classes or modules.
Such languages differ from Java in the lack of a class hier-
archy with inheritance and overriding, or in the use of struc-
tural (cf. nominal) subtyping, or in the lack of the notion of
type erasure. These differences in semantics and structure
necessitate significantly different constraint systems. More-
over, the type systems in many functional languages (e.g.,
ML) induce a unique principle type for each program vari-
able, whereas in our case the constraint system leaves the
possibility to select a desirable result from a software engi-
neering perspective, which is a critical concern for source-
to-source transformations. Yet other works describe para-
metric type inference even for languages with mandatory
explicit parameterization for the purpose of statically type
checking such diverse languages as Cecil, constraint logic
programming [9] or ML. Again, these works differ from
ours in many critical details of the language’s type system.

Siff and Reps [17] translate C functions into C++ func-
tion templates by using type inference to detect latent poly-
morphism. Opportunities for introducing polymorphism
stem from operator overloading, references to constants that
can be wrapped by constructor calls, and from structure
subtyping. De Sutter et al. [4] perform code compaction
via link-time inference of reusable C++ object code frag-
ments. Their work reconstitutes type-parametric functions
from template instantiations created during compilation, but
does so using code similarity detection rather than type in-
ference, and on a low-level representation (object code).

6 Conclusion

We have presented a solution to the parameterization
problem, which involves adding type parameters to exist-
ing, non-generic class declarations. This is a complex task
due to requirements of backward compatibility and behav-
ior preservation, the existence of multiple type-correct solu-
tions, complications posed by raw and wildcard types, and
the necessity to simultaneously parameterize and (generi-
cally) instantiate multiple interrelated classes. Our algo-
rithm handles all these issues and the full Java language.

Our parameterization algorithm subsumes previous al-
gorithms for generic instantiation, which change library
clients to take advantage of libraries that have been made
generic. Our analysis computes an instantiation at the same
time as it performs parameterization.

We have implemented our algorithm in the context of
the Eclipse IDE and run experiments to verify its correct-
ness, accuracy, and usability. The results are correct: they
are backward-compatible and they maintain behavior. The
results are even more accurate than parameterizations per-
formed by the library authors: 9% of the tool results are
better, and 4% of the tool results are worse.
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