Refactoring for Parameterizing

!'_ Java Classes

Adam Kiezun (MIT), Michael D. Ernst (MIT),
Frank Tip (IBM), Robert M. Fuhrer (IBM)

Parameterization

Goal: migration of Java code to generics

Generics (e.g., List<String>) enable creation of
type-safe, more reusable classes

Parameterization improves formality of
specification in lightweight way

Libraries and applications must be migrated
« Hard to do by hand

Parameterization Example

class Wrapper { class Cell {
private Cell C; private Object data;
Object get () { Object get () {
return c.get(); return data;
} }
void set (Object t) { void set (Object t) {
c.set (t); data = t;

} }
boolean in (Object o) { void copyFrom(Cell
return o.equals(get()); data = c.get();
} }
} vold addTo (Collection
c.add (data) ;

Parameterization Example

class Wrapper<E1>{ class Cell<EZ2>{
private Cell<El> c; private EZ2 data;
E1l get () { E2 get () {
return c.get () ; return data;
} }
void set (E1 t) { vold set (E2 t) {
c.set (t); data = t;

} }
boolean in (Object o) { void copyFrom(Cell<? extends E2> c) {
return o.equals(get()); data = c.get();
} }
} void addTo (Collection<? super E2Z2> c) {
c.add (data) ;

Migration Problem: 2 parts

1. Instantiation — updating clients to use generic libraries, e.q.,

Graph g; =2 Graph<Integer, String> g;

Efficient and accurate tools exist (e.qg., Eclipse’s INFER TYPE
ARGUMENTS, based on our work): OOPSLA'04, ECOOP’05

2. Parameterization — annotating classes with type parameters, e.q.,

class Graph =2 class Graph<V, E>

No usable tools exist — generic libraries parameterized by hand.
Parameterization subsumes instantiation.

Related Work

Constraint-based type inference for OO:
« Smalltalk: (Graver-Johnson’89), (Palsberg-Schwartzbach93)
= Java cast verification: (O'Callahan99), (Wang-Smith’01)
Refactoring using type constraints:
= Decoupling classes (TipEtAI'03, SteimannEtAI'06)
= Class library migration (BalabanEtAl'05)
= Class customization (deSutterEtAl'04)
Generic instantiation:
= Context-sensitive analysis (DonovanEtAl'04)
= Context-insensitive analysis (FuhrerEtAlI'05)
Generic parameterization:
= Generalize C methods from operator overloading (RepsSiff‘96)
= Java methods, unification based (Pluemicke’06)

= Start with over-generalizations, reduce imprecision heuristically
(Duggan’97), (Donovan’03), (vonDincklageDiwan’04)

= Only one implementation (vonDincklageDiwan’04) but incorrect results
(changes program behavior)

Type Inference Approach to
Parameterization

= Type inference using type constraints

= [ype constraints

= Capture type relationships between program elements
= additional constraints for behavior preservation
(method overriding)
= Solution to constraint system is a correct typing
of the program (and unchanged behavior)

Parameterization Algorithm

1. Generate type constraints for the program
= Syntax-driven, from source
= Close the constraint system using additional rules

2. Find types for constraint variables to satisfy all
constraints

=« Iterative work-list algorithm

= Many solutions possible: prefer eliminating more
casts

3. Rewrite source code

Type Constraints

Notation:

= Qa :constraint variable (type of a program element), e.g.:

[e] : type of expression e

[Ret(A.m)] : return type of method A.m

[Param(2, A.m)) : type of the 2" parameter of A.m

String : type constant

? extends [a] : wildcard type upper-bounded by type of a

= a<a :type constraint (“a is equal to or a subtype of o’)

Examples of type constraints:
= Assignment: a =Db;
constraint: [b] < [a]

= Method overriding: SubClass.m overrides SuperClass.m:
[Ret(SubClass.m)] < [Ret(SuperClass.m)] (return types)
[Param(i, SubClass.m)] = [Param(i, SuperClass.m)] (parameters)

Context Variables

Given this declaration:
class NumCell{
vold set (Number p) {..}

}
consider this call: c.set (arg)

What constraint for [arg]?:
= [arg] < Number
= NO: type of p may change as result of parameterization
= [arg] <[p]

= NO: type of p may differ for receivers, if NumCel1l gets parameterized
to NumCell<E>

If [c] is NumCell<Float>, then [p]is Float

= [arg] <Iy([p])
= “type of p in the context of the type of the receiver, c”

10

Context Variables: examples

Given declaration
class Cell({
Object get () {..}

}
consider call c.get ()

= constraint: [c.get ()] = [;4[Ret(Cell.get)]

“type of the call is the return type of the method, in the
context of the type of the receiver”

= Return type depends on the receiver (unlike hon-generic type
system)

11

Context Variables: examples

Method overriding revisited:

SubClass.m overrides SuperClass.m
Types depend on subclass:

= [Ret(SubClass.m)] < I¢ paiasst REL(SuperClass.m)]
« [Param(i,SubClass.m)] = I¢ ,cassl Param(i,SuperClass.m)]

Examples (two subclasses of class Cell<E>):

class StringCell extends Cell<String>{
String get () {..}
void set (String n) {..}
}
class SubCell<T> extends Cell<T>{
T get () {..}
volid set (T n) {..}

12

Type Constraints Closure

= Java’'s type system enforces additional constraints

= Invariance
= .., List<A> < ListiffA = B

= Subtyping of actual type parameters

= €.9J., given class MyClass<Tl, T2 extends T1>,
declaration MyClass<String, Number> is not allowed

= Algorithm adds constraints that enforce this (i.e., closes
the constraint system)

13

Type Constraint Solving

Type estimate (set of types) associated with
each constraint variable

Estimates initialized depending on element

Estimates shrink during solving

= Algorithm iteratively:
= Selects a constraint
= Satisfies it by shrinking estimates for both sides

Finally, each estimate is a singleton

14

Solving: examples

Example 1
Constrainta <b
estimate(b) = {Number, ? super Number, -Date}

estimate(a) = {String, Number, *-super-integer}

Example 2
Creating type parameters for inter-dependent classes:
estimate(Ij,;[Ret(A.m)]) = {E extends Object} (type parameter)
This implies that [Ret(A.m)] must be a type parameter too
« If [Ret(A.m)] is a non-parameter, so is I;[Ret(A.m)]
= E.g., if [Ret(A.m)] = String, then I;,;[Ret(A.m)] = String
= because context is irrelevant for non-parametric types

15

Type Constraint Solving:
pseudo-code

(O

Initialize estimates
while (not every estimate is singleton):
repeat for each a < b until fix-point:
remove from estimate(a) all types that are not a
subtype of a type in estimate (b)
remove from estimate(b) all types that are not a
supertype of a type in estimate(a)
find variable v with non-singleton estimate

select a type for v

16

Heuristics for non-
deterministic choice

6 find variable v with non-singleton estimate
7 select a type for v

Step 7 uses heuristics:

= preserves type erasure (to preserve behavior)

= prefer wildcard types

= prefer type parameters, if this propagates to return types

Result: better solutions
= eliminates more casts
= more closely matches JDK style

17

Type Estimates

= Estimates are finite sets containing:
= simple types: String, MyClass|]
» type parameters: E extends Number
= pre-existing or created during solving
= wildcard types: ? super Date

= Estimate initialization:
= Program elements from JDK have fixed types

= User may restrict choices by selecting a set of
references to parameterize — new type
parameters

= Other variables are initialized to set of all types is

Optimization: Symbolic
Representation of Estimates

= Symbolic representation, e.q.,

M SUp(C)
= Set of all supertypes of type C

= Sub(? extends Number)
= Set of all subtypes of type ? extends Number

= Efficient operations
= Creation, e.qg., Sup(Intersect(Sub(C), Sup(D)))
= Simplifications, e.g.: Sub(Sub(D)) = Sub(D)

= Symbolic representation expanded only for
explicit enumeration

19

Evaluation

= Correctness: program behavior is unchanged
= We verified erasure preservation

= Usability: tool reduces work
= We measured tool run-time and counted source edits

= Accuracy: result is close to what a human would do

= We measured difference between manual and automatic
parameterization

= When manual parameterization was unavailable, we asked
developers to examine results

20

Subject Programs

Parameterized 16000+ LOC, largest class 1303 LOC

Generic libraries (total more than 150kLOC)
= Apache collections

= jPaul

= jUtl

= java.util.concurrent

= Amadeus

= DSA

Non-generic libraries
= ANTLR
= Eclipse

21

Correctness

Correctness is a strict prerequisite for migration

Preserving erasure guarantees correctness

=« Compiled bytecode remains the same

= Generic type information unavailable on runtime
Previous approaches (e.g., vonDincklage'04) did
not achieve correctness

= Bytecode modified

= Method overriding relationships broken — affects
method dispatch

We verified erasure preservation

22

Usability

= Performance:
=« manual: “several weeks of work” (Apache developer)
= automated: less than 3 seconds per class

= Source modifications:
= manual: 1655 source edits (9% sub-optimal results)

= automated: tool finds all edits (4% sub-optimal
results)

23

Accuracy on Generic Libraries

= Experiments:
= We removed generic types from source
= Our tool reconstructed them
= We compared manual parameterization with tool results

= Results:

= In 87% of cases, computed results equal to manual

= In 4% of cases, computed results are worse
= too many type parameters (2 vs. 1) in two cases
= reference left un-parameterized

= In 9% of cases, computed results are better
= wildcard inferred — improved flexibility of use
= type parameter inferred in inner class — allows removing casts
= confirmed by developers (Doug Lea, Alexandru Salcianu)

24

Accuracy on non-Generic
Libraries

= We used the tool to infer generic types
= We asked developers to examine results

= Developers found less than 1% of edits that
they considered sub-optimal

= [results] look pretty good” (ANTLR
developer)

= 'good and useful for code migration to Java
5.0” (Eclipse developer)

25

Future work: Data-independence
for model checking

= Discover data-independent classes
(manipulate data without examining it)

= Apply to software model-checking:

= Environment generation
= No need to exercise all inputs if values are ignored

» State-matching abstraction
= NO need to store ignored portion of state

26

Conclusions

Automatic parameterization of Java classes
Correct: preserves behavior for clients
Infers wildcards — increases flexibility of solution

Evaluated on real library code:

= 96% of results better or equal to manual
parameterization

= Fast — saves a lot of manual work

= Are there any doubts that such a refactoring would be
useful? * (Eclipse developer)

27

28

