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Parameterization

� Goal: migration of Java code to generics

� Generics (e.g., List<String>) enable creation of 

type-safe, more reusable classes

� Parameterization improves formality of 
specification in lightweight way

� Libraries and applications must be migrated

� Hard to do by hand
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Parameterization Example

class Wrapper    {

private Cell     c;

Object get(){

return c.get(); 

}

void set(Object t){

c.set(t); 

}

boolean in(Object o){

return o.equals(get());

}

}

class Cell    {

private Object data; 

Object get(){

return data; 

} 

void set(Object t){ 

data = t;

}

void copyFrom(Cell               c){

data = c.get(); 

}

void addTo(Collection             c){

c.add(data); 

}

}
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Parameterization Example

class Wrapper<E1>{

private Cell<E1> c;

E1 get(){

return c.get(); 

}

void set(E1    t){

c.set(t); 

}

boolean in(Object o){

return o.equals(get());

}

}

class Cell<E2>{

private E2    data; 

E2    get(){

return data; 

} 

void set(E2    t){ 

data = t;

}

void copyFrom(Cell<? extends E2> c){

data = c.get(); 

}

void addTo(Collection<? super E2> c){

c.add(data); 

}

}
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Migration Problem: 2 parts

1. Instantiation – updating clients to use generic libraries, e.g., 

Graph g;  � Graph<Integer, String> g;

Efficient and accurate tools exist (e.g., Eclipse’s INFER TYPE 
ARGUMENTS, based on our work): OOPSLA’04, ECOOP’05

2. Parameterization – annotating classes with type parameters, e.g., 

class Graph � class Graph<V,E>

No usable tools exist – generic libraries parameterized by hand.
Parameterization subsumes instantiation.
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Related Work

� Constraint-based type inference for OO:
� Smalltalk: (Graver-Johnson’89), (Palsberg-Schwartzbach’93)
� Java cast verification: (O’Callahan’99), (Wang-Smith’01)

� Refactoring using type constraints:
� Decoupling classes (TipEtAl’03, SteimannEtAl’06)
� Class library migration (BalabanEtAl’05)
� Class customization (deSutterEtAl’04)

� Generic instantiation:
� Context-sensitive analysis (DonovanEtAl’04)
� Context-insensitive analysis (FuhrerEtAl’05)

� Generic parameterization:
� Generalize C methods from operator overloading (RepsSiff’96)
� Java methods, unification based (Pluemicke’06)
� Start with over-generalizations, reduce imprecision heuristically 

(Duggan’97), (Donovan’03), (vonDincklageDiwan’04)
� Only one implementation (vonDincklageDiwan’04) but incorrect results 

(changes program behavior)
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Type Inference Approach to 
Parameterization

� Type inference using type constraints

� Type constraints

� capture type relationships between program elements

� additional constraints for behavior preservation 
(method overriding)

� Solution to constraint system is a correct typing 
of the program (and unchanged behavior)



8

Parameterization Algorithm

1. Generate type constraints for the program
� Syntax-driven, from source
� Close the constraint system using additional rules

2. Find types for constraint variables to satisfy all 
constraints

� Iterative work-list algorithm
� Many solutions possible: prefer eliminating more 

casts

3. Rewrite source code
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Type Constraints

Notation:
� α : constraint variable (type of a program element), e.g.:

� [e]  : type of expression e

� [Ret(A.m)] : return type of method A.m

� [Param(2, A.m)) : type of the 2nd parameter of A.m

� String : type constant

� ? extends [a]  : wildcard type upper-bounded by type of a

� α ≤ α’ : type constraint (“α is equal to or a subtype of α’ ”)

Examples of type constraints:
� Assignment:  a = b;

constraint:  [b] ≤ [a]

� Method overriding: SubClass.m overrides SuperClass.m: 

[Ret(SubClass.m)]         ≤ [Ret(SuperClass.m)]             (return types)
[Param(i, SubClass.m)] = [Param(i, SuperClass.m)]       (parameters)
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Context Variables

� Given this declaration:
class NumCell{

void set(Number p){…}

}

consider this call: c.set(arg)

� What constraint for [arg]?:
� [arg] ≤ Number

� no: type of p may change as result of parameterization
� [arg] ≤ [p]       

� no: type of p may differ for receivers, if NumCell gets parameterized 
to NumCell<E>

� If [c] is NumCell<Float>, then [p] is Float

� [arg] ≤ I[c]([p])  

� “type of p in the context of the type of the receiver, c”
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Context Variables: examples

Given declaration
class Cell{

Object get(){…}

}

consider call c.get()

� constraint:  [c.get()] = I[c][Ret(Cell.get)] 

“type of the call is the return type of the method, in the 
context of the type of the receiver”

� Return type depends on the receiver (unlike non-generic type 
system)
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Context Variables: examples

Method overriding revisited: 
SubClass.m overrides SuperClass.m

� Types depend on subclass:

� [Ret(SubClass.m)]       ≤ ISubClass[Ret(SuperClass.m)] 
� [Param(i,SubClass.m)] = ISubClass[Param(i,SuperClass.m)]

� Examples (two subclasses of class Cell<E>):

class StringCell extends Cell<String>{

String get(){…}

void set(String n){…}

}

class SubCell<T> extends Cell<T>{

T get(){…}

void set(T n){…}

}
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Type Constraints Closure

� Java’s type system enforces additional constraints

� Invariance
� e.g., List<A> ≤ List<B> iff A = B

� Subtyping of actual type parameters
� e.g.,  given class MyClass<T1, T2 extends T1>, 
declaration MyClass<String, Number> is not allowed 

� Algorithm adds constraints that enforce this (i.e., closes 
the constraint system)
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Type Constraint Solving

� Type estimate (set of types) associated with 
each constraint variable

� Estimates initialized depending on element

� Estimates shrink during solving

� Algorithm iteratively:

� Selects a constraint

� Satisfies it by shrinking estimates for both sides

� Finally, each estimate is a singleton
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Solving: examples

Example 1

Constraint a ≤ b

estimate(b) = {Number, ? super Number, Date}

estimate(a) = {String, Number, ? super Integer}

Example 2

Creating type parameters for inter-dependent classes:

estimate(I[a][Ret(A.m)]) = {E extends Object}   (type parameter)

This implies that [Ret(A.m)] must be a type parameter too

� If [Ret(A.m)] is a non-parameter, so is I[a][Ret(A.m)]

� E.g., if [Ret(A.m)] = String, then I[a][Ret(A.m)] = String
� because context is irrelevant for non-parametric types
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Type Constraint Solving: 
pseudo-code

1 Initialize estimates

2 while (not every estimate is singleton):

3   repeat for each a ≤ b until fix-point:

4     remove from estimate(a) all types that are not a

subtype of a type in estimate(b)

5     remove from estimate(b) all types that are not a

supertype of a type in estimate(a)

6   find variable v with non-singleton estimate

7     select a type for v
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Heuristics for non-
deterministic choice

...

6   find variable v with non-singleton estimate

7     select a type for v

Step 7 uses heuristics:
� preserves type erasure (to preserve behavior)
� prefer wildcard types
� prefer type parameters, if this propagates to return types

Result: better solutions
� eliminates more casts
� more closely matches JDK style
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Type Estimates

� Estimates are finite sets containing:
� simple types:  String, MyClass[]
� type parameters:  E extends Number

� pre-existing or created during solving

� wildcard types:  ? super Date

� Estimate initialization:
� Program elements from JDK have fixed types
� User may restrict choices by selecting a set of 
references to parameterize – new type 
parameters

� Other variables are initialized to set of all types
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Optimization: Symbolic 
Representation of Estimates

� Symbolic representation, e.g.,
� Sup(C)

� set of all supertypes of type C

� Sub(? extends Number)
� set of all subtypes of type ? extends Number

� Efficient operations
� Creation, e.g., Sup(Intersect(Sub(C), Sup(D))) 

� Simplifications, e.g.: Sub(Sub(D)) � Sub(D)

� Symbolic representation expanded only for 
explicit enumeration
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Evaluation

� Correctness: program behavior is unchanged
� We verified erasure preservation

� Usability: tool reduces work
� We measured tool run-time and counted source edits

� Accuracy: result is close to what a human would do
� We measured difference between manual and automatic 
parameterization

� When manual parameterization was unavailable, we asked 
developers to examine results
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Subject Programs

� Parameterized 16000+ LOC, largest class 1303 LOC

� Generic libraries (total more than 150kLOC)
� Apache collections
� jPaul
� jUtil
� java.util.concurrent
� Amadeus
� DSA

� Non-generic libraries
� ANTLR 
� Eclipse
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Correctness

� Correctness is a strict prerequisite for migration
� Preserving erasure guarantees correctness

� Compiled bytecode remains the same
� Generic type information unavailable on runtime

� Previous approaches (e.g., vonDincklage’04) did 
not achieve correctness
� Bytecode modified
� Method overriding relationships broken – affects 
method dispatch

� We verified erasure preservation
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Usability

� Performance: 

� manual: “several weeks of work” (Apache developer)

� automated: less than 3 seconds per class

� Source modifications:

� manual: 1655 source edits (9% sub-optimal results)

� automated: tool finds all edits (4% sub-optimal 
results)
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Accuracy on Generic Libraries

� Experiments:
� We removed generic types from source
� Our tool reconstructed them
� We compared manual parameterization with tool results

� Results:
� In 87% of cases, computed results equal to manual 
� In 4% of cases, computed results are worse

� too many type parameters (2 vs. 1) in two cases
� reference left un-parameterized

� In 9% of cases, computed results are better
� wildcard inferred – improved flexibility of use
� type parameter inferred in inner class – allows removing casts
� confirmed by developers (Doug Lea, Alexandru Salcianu)
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Accuracy on non-Generic 
Libraries

� We used the tool to infer generic types

� We asked developers to examine results

� Developers found less than 1% of edits that 
they considered sub-optimal

� “[results] look pretty good” (ANTLR 
developer)

� “good and useful for code migration to Java 
5.0” (Eclipse developer)
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Future work:  Data-independence 
for model checking

� Discover data-independent classes 
(manipulate data without examining it)

� Apply to software model-checking:

� Environment generation

� No need to exercise all inputs if values are ignored

� State-matching abstraction

� No need to store ignored portion of state
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Conclusions

� Automatic parameterization of Java classes

� Correct: preserves behavior for clients

� Infers wildcards – increases flexibility of solution

� Evaluated on real library code:

� 96% of results better or equal to manual 
parameterization

� Fast – saves a lot of manual work

� “Are there any doubts that such a refactoring would be 
useful? “ (Eclipse developer)
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