Refactoring for Parameterizing

!'_ Java Classes

Adam Kiezun (MIT), Michael D. Ernst (MIT),
Frank Tip (IBM), Robert M. Fuhrer (IBM)




Parameterization

Goal: migration of Java code to generics

Generics (e.g., List<String>) enable creation of
type-safe, more reusable classes

Parameterization improves formality of
specification in lightweight way

Libraries and applications must be migrated
« Hard to do by hand



Parameterization Example

class Wrapper { class Cell {
private Cell C; private Object data;
Object get () { Object get () {
return c.get(); return data;
} }
void set (Object t) { void set (Object t) {
c.set (t); data = t;

} }
boolean in (Object o) { void copyFrom(Cell
return o.equals(get()); data = c.get();
} }
} vold addTo (Collection
c.add (data) ;



Parameterization Example

class Wrapper<E1>{ class Cell<EZ2>{
private Cell<El> c; private EZ2 data;
E1l get () { E2 get () {
return c.get () ; return data;
} }
void set (E1 t) { vold set (E2 t) {
c.set (t); data = t;

} }
boolean in (Object o) { void copyFrom(Cell<? extends E2> c) {
return o.equals(get()); data = c.get();
} }
} void addTo (Collection<? super E2Z2> c) {
c.add (data) ;



Migration Problem: 2 parts

1. Instantiation — updating clients to use generic libraries, e.q.,

Graph g; =2 Graph<Integer, String> g;

Efficient and accurate tools exist (e.qg., Eclipse’s INFER TYPE
ARGUMENTS, based on our work): OOPSLA'04, ECOOP’05

2. Parameterization — annotating classes with type parameters, e.q.,

class Graph =2 class Graph<V, E>

No usable tools exist — generic libraries parameterized by hand.
Parameterization subsumes instantiation.



Related Work

Constraint-based type inference for OO:
« Smalltalk: (Graver-Johnson’89), (Palsberg-Schwartzbach93)
= Java cast verification: (O'Callahan99), (Wang-Smith’01)
Refactoring using type constraints:
= Decoupling classes (TipEtAI'03, SteimannEtAI'06)
= Class library migration (BalabanEtAl'05)
= Class customization (deSutterEtAl'04)
Generic instantiation:
= Context-sensitive analysis (DonovanEtAl'04)
= Context-insensitive analysis (FuhrerEtAlI'05)
Generic parameterization:
= Generalize C methods from operator overloading (RepsSiff‘96)
= Java methods, unification based (Pluemicke’06)

= Start with over-generalizations, reduce imprecision heuristically
(Duggan’97), (Donovan’03), (vonDincklageDiwan’04)

= Only one implementation (vonDincklageDiwan’04) but incorrect results
(changes program behavior)



Type Inference Approach to
Parameterization

= Type inference using type constraints

= [ype constraints

= Capture type relationships between program elements
= additional constraints for behavior preservation
(method overriding)
= Solution to constraint system is a correct typing
of the program (and unchanged behavior)



Parameterization Algorithm

1. Generate type constraints for the program
= Syntax-driven, from source
= Close the constraint system using additional rules

2. Find types for constraint variables to satisfy all
constraints

=« Iterative work-list algorithm

= Many solutions possible: prefer eliminating more
casts

3.  Rewrite source code



Type Constraints

Notation:

= Qa :constraint variable (type of a program element), e.g.:

[e] : type of expression e

[Ret(A.m)] : return type of method A.m

[Param(2, A.m)) : type of the 2" parameter of A.m

String : type constant

? extends [a] : wildcard type upper-bounded by type of a

= a<a :type constraint (“a is equal to or a subtype of o’ )

Examples of type constraints:
= Assignment: a =Db;
constraint: [b] < [a]

= Method overriding: SubClass.m overrides SuperClass.m:
[Ret(SubClass.m)] < [Ret(SuperClass.m)] (return types)
[Param(i, SubClass.m)] = [Param(i, SuperClass.m)] (parameters)



Context Variables

Given this declaration:
class NumCell{
vold set (Number p) {..}

}
consider this call: c.set (arg)

What constraint for [arg]?:
= [arg] < Number
= NO: type of p may change as result of parameterization
= [arg] <[p]

= NO: type of p may differ for receivers, if NumCel1l gets parameterized
to NumCell<E>

If [c] is NumCell<Float>, then [p]is Float

= [arg] <Iy([p])
= “type of p in the context of the type of the receiver, c”
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Context Variables: examples

Given declaration
class Cell({
Object get () {..}

}
consider call c.get ()

= constraint: [c.get ()] = [;4[Ret(Cell.get)]

“type of the call is the return type of the method, in the
context of the type of the receiver”

= Return type depends on the receiver (unlike hon-generic type
system)

11



Context Variables: examples

Method overriding revisited:

SubClass.m overrides SuperClass.m
Types depend on subclass:

= [Ret(SubClass.m)] < I¢ paiasst REL(SuperClass.m)]
« [Param(i,SubClass.m)] = I¢ ,cassl Param(i,SuperClass.m)]

Examples (two subclasses of class Cell<E>):

class StringCell extends Cell<String>{
String get () {..}
void set (String n) {..}
}
class SubCell<T> extends Cell<T>{
T get () {..}
volid set (T n) {..}
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Type Constraints Closure

= Java’'s type system enforces additional constraints

= Invariance
= .., List<A> < List<B>iffA = B

= Subtyping of actual type parameters

= €.9J., given class MyClass<Tl, T2 extends T1>,
declaration MyClass<String, Number> is not allowed

= Algorithm adds constraints that enforce this (i.e., closes
the constraint system)
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Type Constraint Solving

Type estimate (set of types) associated with
each constraint variable

Estimates initialized depending on element

Estimates shrink during solving

= Algorithm iteratively:
= Selects a constraint
= Satisfies it by shrinking estimates for both sides

Finally, each estimate is a singleton
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Solving: examples

Example 1
Constrainta <b
estimate(b) = {Number, ? super Number, -Date}

estimate(a) = {String, Number, *-super-integer}

Example 2
Creating type parameters for inter-dependent classes:
estimate(Ij,;[Ret(A.m)]) = {E extends Object} (type parameter)
This implies that [Ret(A.m)] must be a type parameter too
« If [Ret(A.m)] is a non-parameter, so is I;[Ret(A.m)]
= E.g., if [Ret(A.m)] = String, then I;,;[Ret(A.m)] = String
= because context is irrelevant for non-parametric types
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Type Constraint Solving:
pseudo-code

(O

Initialize estimates
while (not every estimate is singleton):
repeat for each a < b until fix-point:
remove from estimate(a) all types that are not a
subtype of a type in estimate (b)
remove from estimate(b) all types that are not a
supertype of a type in estimate(a)
find variable v with non-singleton estimate

select a type for v
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Heuristics for non-
deterministic choice

6 find variable v with non-singleton estimate
7 select a type for v

Step 7 uses heuristics:

= preserves type erasure (to preserve behavior)

= prefer wildcard types

= prefer type parameters, if this propagates to return types

Result: better solutions
= eliminates more casts
= more closely matches JDK style
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Type Estimates

= Estimates are finite sets containing:
= simple types: String, MyClass|]
» type parameters: E extends Number
= pre-existing or created during solving
= wildcard types: ? super Date

= Estimate initialization:
= Program elements from JDK have fixed types

= User may restrict choices by selecting a set of
references to parameterize — new type
parameters

= Other variables are initialized to set of all types is



Optimization: Symbolic
Representation of Estimates

= Symbolic representation, e.q.,

M SUp(C)
= Set of all supertypes of type C

= Sub(? extends Number)
= Set of all subtypes of type ? extends Number

= Efficient operations
= Creation, e.qg., Sup(Intersect(Sub(C), Sup(D)))
= Simplifications, e.g.: Sub(Sub(D)) = Sub(D)

= Symbolic representation expanded only for
explicit enumeration
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Evaluation

= Correctness: program behavior is unchanged
= We verified erasure preservation

= Usability: tool reduces work
= We measured tool run-time and counted source edits

= Accuracy: result is close to what a human would do

= We measured difference between manual and automatic
parameterization

= When manual parameterization was unavailable, we asked
developers to examine results
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Subject Programs

Parameterized 16000+ LOC, largest class 1303 LOC

Generic libraries (total more than 150kLOC)
= Apache collections

= jPaul

= jUtl

= java.util.concurrent

= Amadeus

= DSA

Non-generic libraries
= ANTLR
= Eclipse
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Correctness

Correctness is a strict prerequisite for migration

Preserving erasure guarantees correctness

=« Compiled bytecode remains the same

= Generic type information unavailable on runtime
Previous approaches (e.g., vonDincklage'04) did
not achieve correctness

= Bytecode modified

= Method overriding relationships broken — affects
method dispatch

We verified erasure preservation
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Usability

= Performance:
=« manual: “several weeks of work” (Apache developer)
= automated: less than 3 seconds per class

= Source modifications:
= manual: 1655 source edits (9% sub-optimal results)

= automated: tool finds all edits (4% sub-optimal
results)
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Accuracy on Generic Libraries

= Experiments:
= We removed generic types from source
= Our tool reconstructed them
= We compared manual parameterization with tool results

= Results:

= In 87% of cases, computed results equal to manual

= In 4% of cases, computed results are worse
= too many type parameters (2 vs. 1) in two cases
= reference left un-parameterized

= In 9% of cases, computed results are better
= wildcard inferred — improved flexibility of use
= type parameter inferred in inner class — allows removing casts
= confirmed by developers (Doug Lea, Alexandru Salcianu)
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Accuracy on non-Generic
Libraries

= We used the tool to infer generic types
= We asked developers to examine results

= Developers found less than 1% of edits that
they considered sub-optimal

= [results] look pretty good” (ANTLR
developer)

= 'good and useful for code migration to Java
5.0” (Eclipse developer)
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Future work: Data-independence
for model checking

= Discover data-independent classes
(manipulate data without examining it)

= Apply to software model-checking:

= Environment generation
= No need to exercise all inputs if values are ignored

» State-matching abstraction
= NO need to store ignored portion of state
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Conclusions

Automatic parameterization of Java classes
Correct: preserves behavior for clients
Infers wildcards — increases flexibility of solution

Evaluated on real library code:

= 96% of results better or equal to manual
parameterization

= Fast — saves a lot of manual work

= Are there any doubts that such a refactoring would be
useful? * (Eclipse developer)
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