
Combined Static and Dynamic
Automated Test Generation

Sai Zhang

University of Washington

Joint work with:

David Saff, Yingyi Bu, Michael D. Ernst

1

Unit Testing for Object-oriented Programs

 Unit test = sequence of method calls + testing oracle

 Automated test generation is challenging:

 Legal sequences for constrained interfaces
 Behaviorally-diverse sequences for good coverage
 Testing oracles (assertions) to detect errors

2

Unit Testing a Database Program

public void testConnection() {

 Driver driver = new Driver();

 Connection connection =

 driver.connect("jdbc:tinysql");

 Statement s = connection.createStmt();

 s.execute("create table test (name char(25))");

 s.close();

 connection.close();

}

Constraint 1:

Method-call orders

Constraint 2:

Argument values

It is hard to create tests automatically!

3

1

2

3

Palus: Combining Dynamic and
Static Analyses

 Dynamically infer an object behavior model

from a sample (correct) execution trace

 Capture method-call order and argument constraints

 Statically identify related methods

 Expand the (incomplete) dynamic model

 Model-Guided random test generation

 Fuzz along a specific legal path

4

Outline

 Motivation

 Approach

 Dynamic model inference

 Static model expansion

 Model-guided test generation

 Evaluation

 Related Work

 Conclusion and Future Work

5

Overview of the Palus approach

Program

Under Test

A Sample

Trace

JUnit Theories

(Optional)

Dynamic

Model Inference

Static Method

Analysis

Guided Random

Test Generation

JUnit Tests

Inputs:

Outputs:

Dynamic Model

 Method

Dependence

Testing Oracles

6

(1) Dynamic Model Inference

 Infer a call sequence model for each tested class

 Capture possible ways to create legal sequences

 A call sequence model

 A rooted, acyclic graph

 Node: object state

 Edge: method-call

 One model per class

7

An Example Trace for Model Inference

Driver d = new Driver()

Connection con = driver.connection(“jdbc:dbname”);

Statement stmt1 = new Statement(con);

stmt1.executeQuery(“select * from table_name”);

stmt1.close();

Statement stmt2 = new Statement(con);

stmt2.executeUpdate(“drop table table_name”);

stmt2.close();

con.close();

8

Model Inference for class Driver

Driver d = new Driver();

9

A

B

Driver class

<init>()

Model Inference for class Connection

Connection con = driver.connect(“jdbc:dbname”);

Nested calls are omitted for brevity 10

C

D

Driver.connect(“jdbc:dbname”)

Connection class

A

B

Driver class

<init>()

Connection con = driver.connect(“jdbc:dbname”);

con.close();

Nested calls are omitted for brevity

Model Inference for class Connection

11

C

D

E

close()

Driver.connect(“jdbc:dbname”)

Connection class

A

B

Driver class

<init>()

Model Inference for class Statement

Statement stmt1 = new Statement(con);

stmt1.executeQuery(“select * from table_name”);

stmt1.close();

A

B

Driver class

C

D

E

close()

Driver.connect(“jdbc:dbname”)

Construct a call sequence model for each observed object

F

Statement stmt1

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

Connection class

<init>()

12

Model Inference for class Statement

Statement stmt2 = new Statement(con);

stmt2.executeUpdate(“drop table table_name”);

stmt2.close();

A

B

Driver class

F

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

I

K

close()

J

L

executeUpdate(“drop * ..”);

<init>(Connection)

C

D

E

close()

Driver.connect(“jdbc:dbname”)

Construct a call sequence model for each observed object

<init>()

13

Connection class Statement stmt1 Statement stmt2

Merge Models of the Same class

Merge

Merge models for all objects to form one model per class

A

B

Driver class Connection class

I

K

close()

J

L

executeUpdate(“drop * ..”);

<init>(Connection)

Statement stmt2

C

D

E

close()

Driver.connect(“jdbc:dbname”) <init>()

14

F

Statement stmt1

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

Call Sequence Model after Merging

15

A

B

Driver class

C

D

E

close()

Driver.connect(“jdbc:dbname”)

Connection class

<init>()

F

Statement class

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

executeUpdate(“drop * ..”);

Enhance Call Sequence Models with
Argument Constraints

F

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)

executeUpdate (“drop * ..”);

Invoking the constructor requires
a Connection object

But, how to choose a desirable
Connection object ?

16

Statement class

Argument Constraints

 Argument dependence constraint
 Record where the argument object values come from

 Add dependence edges in the call sequence models

 Abstract object profile constraint
 Record what the argument value “is”

 Map each object field into an abstract domain

 as a coarse-grained measurement of “value similarity”

17

Argument Dependence Constraint

 Represent by a directed edge (below)

 Means: transition F  G has data dependence on node D, it uses

the result object at the node D

 Guide a test generator to follow the edge to select argument

A

B

<init>

Driver class

F

H

close()

G

G

executeQuery(“select * ..”);

<init>(Connection)
C

D

E

close()

Driver.connect(“jdbc:dbname”)

executeUpdate(“drop * ..”);

18 Connection class Statement class

Abstract Object Profile Constraint

 For each field in an observed object

 Map the concrete value  an abstract state

 Numeric value  > 0, = 0, < 0

 Object  = null, != null

 Array  empty, null, not_empty

 Bool /enum values  not abstracted

 Annotate model edges with abstract object profiles of

the observed argument values from dynamic analysis

 Guide test generator to choose arguments similar to what was

seen at runtime

19

Annotate Model Edges with Abstract
Object Profiles

 Class Connection contains 3 fields
 Driver driver; String url; String usr;

 All observed valid Connection objects have a profile like:
{driver != null, url != null, usr != null}

 Annotate the method-call edge: <init>(Connection)

Argument Connection’s profile:
{driver != null, url != null, usr !=null}

Palus prefers to pick an argument with the same profile,

when invoking : <init>(Connection)

20

(2) Static Method Analysis

 Dynamic analysis is accurate, but incomplete

 May fail to cover some methods or method invocation orders

 Palus uses static analysis to expand the dynamically-

inferred model

 Identify related methods, and test them together

 Test methods not covered by the sample trace

21

Statically Identify Related Methods

Two methods that access the same fields may be related

(conservative)

 Two relations:

 Write-read: method A reads a field that method B writes

 Read-read: methods A and B reference the same field

22

Statically Recommends Related Methods
for Testing

 Reach more program states

 Call setX() before calling getX()

 Make the sequence more behaviorally-diverse

 A correct execution observed by dynamic analysis will never

contain:
 Statement.close();

 Statement.executeQuery(“…”)

 But static analysis may suggest to call close() before
executeQuery(“…”)

23

Weighting Pair-wise Method Dependence

 tf-idf weighting scheme [Jones, 1972]

 Palus uses it to measure the importance of a field to a method

 Dependence weight between two methods:

24

(3) Model-Guided Random Test Generation:
 A 2-Phase algorithm

• Phase1:
 Loop:

 1. Follow the dynamically-inferred model to select
methods to invoke

 2. For each selected method
 2.1 Choose arguments using:
 - Argument dependent edge
 - Captured abstract object profiles
 - Random selection
 2.2 Use static method dependence information to
 invoke related methods

• Phase 2:
 Randomly generate sequences for model-uncovered methods
 - Use feedback-directed random test generation [ICSE’07]

25

Specify Testing Oracles in JUnit Theory

 A project-specific testing oracle in JUnit theory

 @Theory
 public void checkIterNoException(Iterator it) {

 assumeNotNull(it);

 try {

 it.hasNext();

 } catch (Exception e) {

 fail(“hasNext() should never throw exception!”);

 }

 }

Palus checks that, for every Iterator object, calling hasNext()

should never throw exception!

26

Outline

 Motivation

 Approach

 Dynamic model inference

 Static model expansion

 Model-guided test generation

 Evaluation

 Related Work

 Conclusion and Future Work

27

Research Questions

 Can tests generated by Palus achieve higher

structural coverage

 Can Palus find (more) real-world bugs?

 Compare with three existing approaches:

28

Approaches Dynamic Static Random

Randoop [ICSE’07] ●

Palulu [M-TOOS’06] ● ●

RecGen [ASE’ 10] ● ●

Palus (Our approach) ● ● ●

Subjects in Evaluating Test Coverage

 6 open-source projects

Program Lines of Code

tinySQL 7,672

SAT4J 9,565

JSAP 4,890

Rhino 43,584

BCEL 24,465

Apache Commons 55,400

Many

Constraints

Few

Constraints

29

Experimental Procedure

 Obtain a sample execution trace by running a simple

example from user manual, or its regression test suite

 Run each tool for until test coverage becomes saturated,

using the same trace

 Compare the line/branch coverage of generated tests

30

Test Coverage Results

Palus increases test coverage

 Dynamic analysis helps to create legal tests

 Static analysis / random testing helps to create behaviorally-

diverse tests

 Palus falls back to pure random approach for programs

with few constraints (Apache Commons)
 31

Approaches Dynamic Static Random Avg Coverage

Randoop [ICSE’07] ● 39%

Palulu [M-TOOS’06] ● ● 41%

RecGen [ASE’ 10] ● ● 30%

Palus (Our approach) ● ● ● 53%

Evaluating Bug-finding Ability

 Subjects:

 The same 6 open-source projects

 4 large-scale Google products

 Procedure:

 Check 5 default Java contracts for all subjects

 Write 5 simple theories as additional testing

oracles for Apache Commons, which has partial spec

32

Finding Bugs in 6 open-source Projects
 Checking default Java language contracts:

 E.g., for a non-null object o: o.equals(o) returns true

 Finds the same number of bugs as Randoop

 Writing additional theories as testing oracle

 Palus finds one new bug in Apache Commons

 FilterListIterator.hasNext() throws exception

 Confirmed by Apache Commons developers 33

Dynamic Static Random Bugs

Randoop [ICSE’07] ● 80

Palulu [M-TOOS’06] ● ● 76

RecGen [ASE’ 10] ● ● 42

Palus (Our approach) ● ● ● 80

Finding Bugs in 4 Google Products

 4 large-scale Google products

 Each has a regression test suite with 60%+ coverage

 Go through a rigorous peer-review process

Google Product Number of tested classes

Product A 238

Product B 600

Product C 1,269

Product D 1,455

34

Palus Finds More Bugs

 Palus finds 22 real, previously-unknown bugs

 3 more than existing approaches

 Primary reasons:

 Fuzz a long specific legal path

 Create a legal test, diversify it, and reach program states

that have not been reached before 35

Dynamic Static Random Bugs

Randoop [ICSE’07] ● 19

Palulu [M-TOOS’06] ● ● 18

RecGen [ASE’ 10] ● ● --

Palus (Our approach) ● ● ● 22

Outline

 Motivation

 Approach

 Dynamic model inference

 Static model expansion

 Model-guided test generation

 Evaluation

 Related Work

 Conclusion and Future Work

36

Related Work
 Automated Test Generation

 Random approaches: Randoop [ICSE’07], Palulu [M-Toos’06],

RecGen[ASE’10]

 Challenge in creating legal / behaviorally-diverse tests

 Systematic approaches: Korat [ISSTA’02], Symbolic-execution-

based approaches (e.g., JPF, CUTE, DART, KLEE…)

 Scalability issues; create test inputs, not object-oriented

method sequences

 Capture-replay -based approaches: OCAT [ISSTA’10], Test

Factoring [ASE’05] and Carving [FSE’05]

 Save object states in memory, not create method sequences

 Software Behavior Model Inference

 Daikon [ICSE’99], ADABU [WODA’06], GK-Tail [ICSE’08] …

 For program understanding, not for test generation 37

Outline

 Motivation

 Approach

 Dynamic model inference

 Static model expansion

 Model-guided test generation

 Evaluation

 Related Work

 Conclusion and Future Work

38

Future Work

 Investigate alternative ways to use program analysis

techniques for test generation

 How to better combine static/dynamic analysis?

 What is a good abstraction for automated test

generation tools?

 We use an enhanced call sequence model in Palus, what

about other models?

 Explain why a test fails

 Automated Documentation Inference [ASE’11 to appear]

 Semantic test simplification

39

Contributions

 A hybrid automated test generation technique

 Dynamic analysis: infer model to create legal tests

 Static analysis: expand dynamically-inferred model

 Random testing: create behaviorally-diverse tests

 A publicly-available tool

 http://code.google.com/p/tpalus/

 An empirical evaluation to show its effectiveness

 Increases test coverage

 Finds more bugs

40

Backup slides

Sensitivity to the Inputs

 Investigate on two subjects: tinySQL and SAT4J

 This approach is not very sensitive to the inputs

 Not too many constraints in subjects?

Subject Input Size Coverage

tinySQL 10 SQL Statements 59%

ALL Statements from Manual 61%

SAT4J A 5-clause formula 65%

A 188-clause formula 66%

A 800-clause formula 66%

Breakdown of Contributions in
Coverage Increase

