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ABSTRACT
A class may need to obey temporal constraints in order to function

correctly. For example, the correct usage protocol for an iterator

is to always check whether there is a next element before asking

for it; iterating over a collection when there are no items left leads

to a NoSuchElementException. Automatic test case generation tools

such as Randoop and EvoSuite do not have any notion of these

temporal constraints. Generating test cases by randomly invoking

methods on a new instance of the class under test may raise run

time exceptions that do not necessarily expose software faults, but

are rather a consequence of violations of temporal properties.

This paper presents CallMeMaybe, a novel technique that uses
natural language processing to analyze Javadoc comments to iden-

tify temporal constraints. This information can guide a test case

generator towards executing sequences of method calls that respect

the temporal constraints. Our evaluation on 73 subjects from seven

popular Java systems shows that CallMeMaybe achieves a precision
of 83% and a recall of 70% when translating temporal constraints

into Java expressions. For the two biggest subjects, the integration

with Randoop flags 11,818 false alarms and enriches 12,024 cor-

rectly failing test cases due to violations of temporal constraints

with clear explanation that can help software developers.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; Documentation.

KEYWORDS
Specification inference, natural language processing, software test-

ing, automatic test case generation, test oracle generation
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1 INTRODUCTION
Test oracles — executable assertions that check relevant properties

— greatly enhance test cases [3]. Executable specifications help to

automate software engineering tasks such as test case generation

and debugging.

In software testing, for instance, executable specifications ex-

pressing pre-conditions may be used to automatically filter out

invalid inputs. Executable specifications expressing post-conditions

can be used as test oracles. Both can be used as run-time assertions,

aiding in software debugging.

Some approaches in the state of the art automatically generate ex-

ecutable assertions using Natural Language Processing (NLP), based
on the observation that many important properties are available as

code comments. For example, tagged Javadoc comments informally

state input, return, and exception conditions, while Javadoc sum-

maries informally state many general properties. iComment [31],

aComment [32], @tComment [33], Toradocu [14], and Jdoctor [5]

automatically generate pre-conditions and post-condition from

Javadoc tags. Other approaches such as ALICS [24] and MeMo [6]

automatically infer specifications from Javadoc summaries. When

similar specifications are available to automatic test case generators

such as Randoop [22] and EvoSuite [11], they reduce false alarms

and increase true alarms in generated test suites, while filtering out

invalid test cases.

This paper focuses on temporal constraints documented as natu-

ral language comments, and defined as “the allowed sequences of

method invocations in the API governing the secure and robust op-

eration of client software using the API” [23]. Temporal constraints

are also referred to as function precedence protocols [27], introduced
as protocols that “define ordering relations among function calls

in a program”, and method ordering constraints [25], defined by

stating that “not every method can be called at any point during

the execution of a program”. In a nutshell, temporal constraints

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3551349.3556961
https://doi.org/10.1145/3551349.3556961
https://doi.org/10.1145/3551349.3556961
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specify the correct sequence of method invocations, thus asserting

how to properly use software components. For instance, developers

who use an iterator on a collection instance in Java should always

check whether there is a next element before trying to retrieve an

element from the container. As another example, developers should

set a daemon before using a thread.

Executing test cases that violate temporal constraints may re-

sult in run-time exceptions that are difficult to classify as expected

versus faulty behavior for a test generation tool or a human tester.

Is the run-time exception the expected behavior? Does it expose a

fault in the unit under test? Without a machine-interpretable speci-

fication, this classification cannot be done automatically. Moreover,

executable specifications expressing temporal properties are also

useful for automated debugging, as they report violations of the

expected constraint.

Several approaches dynamically infer temporal constraints from

execution traces [1, 19, 25, 26]. They assess what is the actual be-

havior of a program, which may differ from the expected behavior.

Doc2Spec [37] and ICON [23] can infer some temporal constraints

statically from the code documentation, hence predicating on the

expected behavior. Doc2Spec relies on specific templates to recog-

nize the constraints inside the text, while ICON relies on machine

learning features and some heuristics.

This paper proposes CallMeMaybe, a technique to automatically

identify temporal constraints of Java classes from Javadoc method

summaries expressing the expected order of the operations as nat-

ural language sentences. CallMeMaybe parses each sentence of a

summary to identify temporal constraints, and produces temporal

specifications as simple JSON structures that indicate the required

order of operations. CallMeMaybe JSON structures are serializable

and ready to exploit in other tools such as automated test case

generators. CallMeMaybe translations are accurate and generalize

well on different documentation styles, without relying on patterns

and needing training data.

We evaluated the effectiveness of our technique as the impact of

CallMeMaybe temporal constrains on automatically generated test

suites. We integrated CallMeMaybe with Randoop [22], an open

source test case generator for Java, to automatically filter out error

test cases that invoke sequences violating CallMeMaybe temporal

constraints and explain expected exceptions violating the proper-

ties in normal test cases. When Randoop classifies a test case that

throws a declared exception as passing, Randoop enhanced with

CallMeMaybe reports the violations of any CallMeMaybe temporal

property, with a clear explanation about the violation that raised the

runtime exception. When Randoop flags a test case as potentially

exposing a fault, due to a runtime exception that is not explicitly

declared, Randoop enhanced with CallMeMaybe reports a false pos-
itive if the test case violates any CallMeMaybe temporal property.

We evaluated CallMeMaybe on 73 classes randomly selected from

seven popular Java systems in which we manually identified 89

temporal constraints. On this ground truth, CallMeMaybe achieves
a good accuracy of 83% precision and 70% recall. We also evaluated

CallMeMaybe on ICON [23]’s dataset, and confirmed that CallMe-
Maybe identifies all the constraints in their Java ground truth. In

our experiments with Randoop, CallMeMaybe prevented 11,818

false alarms and 12,024 brittle regression tests (false positives).

The remainder of the paper is structured as follows. Section 2

motivates our work with Javadoc comments taken from popular

Java systems. Section 3 defines CallMeMaybe and its core compo-

nents. Section 4 presents our experimental setting and discusses

our empirical results. Section 5 discusses the related work. Section 6

summarizes the main contribution of this paper.

2 MOTIVATING EXAMPLE
Temporal constraints, sometime referred to also as call protocols [27],
specify the correct sequences of invocations of method calls. Tem-

poral constraints describe either the effects of some executions in

terms of expected sequence of events (hereafter descriptive con-
straints) or the proper usage of a class, to prevent undesired con-

sequences during the program execution (hereafter prescriptive
constraints).

Listing 1 shows a descriptive constraint from Cern’s Colt library.

The comment describes the effects of calling method clear() on
an instance of AbstractCollection after the return of the call.

Listing 1: Descriptive temporal constraint from class Ab-
stractCollection of the Colt library
1 /∗ ∗ The receiver will be empty after this call returns . ∗/
2 public void clear () { . . .

Listing 2 shows a prescriptive constraint from Apache Commons

Collections. The comment states the order of method calls that is

required to avoid undesirable behavior, by ruling out any usage

of an instance of method IteratorEnumeration before invoking
method setIterator.

Listing 2: Prescriptive temporal constraint from class Itera-
torEnumeration of Apache Commons Collections
1 /∗ ∗ Constructs a new IteratorEnumeration that will not function until
2 setIterator ( Iterator ) is invoked . ∗/
3 public IteratorEnumeration () { . . .

Developers document temporal constraints both in method and

class summaries, and describe temporal constraints in two ways:

(1) by stating state that some specific methods should or should

not be invoked (called, used, etc.) in some order relative to

other operations or events. Namely, developers explicitly

mention the operations that the API user should or should

not perform (typically method calls, constructor calls, field

accesses). We refer to this type of constraint description as

explicit operation.
(2) by stating some actions that the API user should or should

not perform, implicitly encoding code identifiers. Namely,

developers implicitly refer to the operations in the API via

natural language English terms. We refer to this type of

constraint description as implicit action.

We illustrate how the same temporal constraintmay be expressed

in either ways with the following example that we adapt from a

constraint described in the JDK java.lang.Thread class:

(1) Explicit Operation “method setDaemon should be called
before method start”. This comment explicitly mentions

the method names that the temporal constraint involves,

setDaemon and start. The term call refers to a legitimate

operation the user can perform with the code elements. List-

ings 3 and 4 are other examples of explicit descriptions, in a

method summary and a class summary, respectively.
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(2) Implicit Action “the thread should be started after setting the
daemon”. In this comment, the term started implicitly refers

to an invocation of method start, and the phrase setting
the daemon to method setDaemon. The method invocations

are suggested in the propositions (subject and verb pairs) [9],

and not explicitly spelled out.

Listing 3: Temporal constraint that explicitly namesmethods,
from class LoopingListIterator of Apache Commons Collec-
tions
1 /∗ ∗ This method can only be called after at least one {@link #next } or
2 {@link # previous } method call ∗/
3 public void remove() . . .

Listing 4: Temporal constraint from GraphStream class sum-
mary
1 /∗ ∗
2 ∗ Allows to run a layout in a distinct thread .
3 ∗
4 ∗ . . .
5 ∗
6 ∗ Once you finished using the runner , you must call release () to break the
7 ∗ link with the event source and stop the thread . The runner cannot be used
8 ∗ after .
9 ∗/
10 public class LayoutRunner extends java.lang.Thread

Listing 5 reports the original temporal constraints, which is a mix

of implicit and explicit documentation: The JDK Javadoc specifica-

tion explicitly mentions the operation of invoking the documented

method, setDaemon, and implicitly specifies that the method should

be invoked before invoking method start, by means of the propo-

sition (the thread, is started). In the following, we refer to

propositions expressing temporal constraints as “temporal proposi-

tions”.

Listing 5: Temporal constraint both explicitly and implicitly
referring to methods and operations, from class Thread of
the JDK
1 /∗ ∗ This method must be invoked before the thread is started . ∗/
2 public final void setDaemon(boolean on) . . .

Class summaries may specify both desirable (good) and undesir-

able (bad) class usages by means of code snippets. Listing 6 shows

a Google Guava summary that indicates a bad usage of a class by

combining a snippet with some discouraging statements. The text

terms highlighted in red indicate the bad usage, and occur both

before and inside the snippet as code comments.

Listing 6: Summary that describes a “bad constraint” from
Google Guava
1 /∗ ∗
2 ∗ Overrides the {@link ImmutableMultiset } static methods that lack {@link
3 ∗ ImmutableSortedMultiset } equivalents with deprecated , exception−throwing
4 ∗ versions . This prevents accidents like the following :
5 ∗
6 ∗ {@code
7 ∗ List <Object> objects = ...;
8 ∗ // Sort them:
9 ∗ Set<Object> sorted = ImmutableSortedMultiset . copyOf( objects );
10 ∗ // BAD CODE!
11 ∗ // The returned multiset is actually an unsorted ImmutableMultiset !
12 ∗ }

13 ∗
14 ∗ . . .
15 ∗/
16 abstract class ImmutableSortedMultisetFauxverideShim<E> extends
17 ImmutableMultiset<E>

Listing 7 shows an Apache Commons Collections summary that

indicates a good, legitimate usage.

Listing 7: Summary that describes a “good constraint” from
Apache Commons Collections
1 /∗ ∗
2 ∗ Defines an iterator that operates over a {@code Map}.
3 ∗ . . .
4 ∗
5 ∗ In use , this iterator iterates through the keys in the map. After each
6 ∗ call to {@code next ()}, the {@code getValue ()} method provides direct
7 ∗ access to the value . The value can also be set using {@code setValue ()}.
8 ∗
9 ∗ {@code
10 ∗ MapIterator< String , Integer > it = map.mapIterator ();
11 ∗ while ( it .hasNext ()) {
12 ∗ String key = it . next ();
13 ∗ Integer value = it . getValue ();
14 ∗ it . setValue ( value + 1);
15 ∗ }
16 ∗ }
17 ∗
18 ∗/
19 public interface MapIterator<K, V> extends Iterator <K>

2.1 Problem Domain
To define an automatic translator from natural language comments

into temporal constraints, we analyze the specific problem domain

to explain our goals and outline the challenges we must face:

Prescriptive vs. descriptive constraints. Both prescriptive and de-

scriptive constraints are useful for developers and tools. We fo-

cus on prescriptive constraints because they are more useful than

descriptive constraint in improving automatically generated test

suites: Test case generators are unaware of prescriptive constraints

informally described in code comments, and generate many in-

valid sequences leading to errors, thus resulting in false alarms.

They can benefit from temporal constraints obtained from natu-

ral language comments to prune invalid test cases. For example,

Randoop [22] cannot infer the temporal constraint informally ex-

pressed in the method summary shown in Listing 2 that requires an

Iterator to be set after instantiating an IteratorEnumeration.
It thus generates many error test cases that instantiate a new

IteratorEnumeration without invoking setIterator, which are

actually false alarms. By translating the prescriptive constraint into

a temporal constraint, CallMeMaybe offers an automatic mean to

reduce false alarms.

Order of events. The problem of recognizing temporal informa-

tion in natural language text is a tough computational linguistic

challenge [16, 29]. To the best of our knowledge, ICON [23] is

the only known approach to automatically identify temporal con-

straints in software informal specifications without relying on a

fixed set of patterns. ICON is mostly based on machine learning

and authors report a recall of 60% on their ground truth, noticing

that the approach has difficulty in recognizing implicit constraints.



ASE ’22, October 10–14, 2022, Rochester, MI, USA Blasi et al.

To solve this challenge, we take advantage of the fact that we

are operating on a domain (program operations) which is much

narrower than the general linguistic problem, and does not require

to address totally arbitrary natural language text.

Direction of a constraint. Existing approaches that derive proper-

ties involving multiple method calls, for example to identify equiv-

alence metamorphic relations [6], can rely on the fact that such

relations are bi-directional. Temporal constraints must obey precise

directions, as an event either follows or precedes the other, and

not the contrary. We thus define a new approach to determine the

direction of the method calls in the constraint. ICON [23] relies on

the heuristic of solely looking at the verb tense, which does not

necessarily generalize well for any documentation style.

3 CALL ME MAYBE
CallMeMaybe finds and translates method call constraints by iden-

tifying their natural-language descriptions in code comments, and

translating them into temporal constraints expressed with precise

JSON structures. CallMeMaybe is generally applicable to natural

language comments. In this paper, we define CallMeMaybe referring
to Javadoc method summaries.

Pandita et al.’s study on the java.io package of the JDK indi-

cates that informal descriptions of temporal constraints are mostly

present in summaries and block tags [23]. In particular, the publicly

available ICON dataset
1
reports a total of 90 temporal constraints

that the authors identified by manually inspecting the package, 34

of which are in summaries, 56 in @throws2, none in other parts of

the Javadoc comments.

We decide to consider method summaries and ignore temporal

constraints in exception tags. The main reason is that all the con-

straints reported in the @throws text of the java.io package prove
to refer to exceptions explicitly declared in method signatures, i.e.,

exceptions that by default would not lead to a false alarm in test

case generators when triggered [11, 22]. Beside, these constraints

also show to be redundant with respect to what declared already

in the summaries anyway.

Figure 1 overviews the CallMeMaybe process. CallMeMaybe ex-
tracts summaries from Javadoc method specifications (Summary
Extractor), identifies description of constraints on sequences of

method calls (Constraint Finder), translates the informal descrip-

tions of constraints into temporal constraints (Translator), and gen-

erates precise JSON structures that can be integrated into test case

generators to either augment or prune test suites (JSON Specs Gen-
erator).

3.1 CallMeMaybe Summary Extractor
The CallMeMaybe Summary Extractor takes in input the Java source

code of a single class and operates on its methods’ Javadoc. The

Extractor both normalizes the English text of the summaries, by

applying simplifications such as removing formatting information

(e.g., HTML tags), and identifies the sentences that comprise the

cleaned summary text. Each normalized sentence of each summary

comprises the input for the next component.

1
https://sites.google.com/site/temporalspec

2
We treat every occurrence of @exception as @throws, since they are synonyms.

3.2 CallMeMaybe Constraint Finder
The CallMeMaybe Constraint Finder processes the sentences that
it obtains from the CallMeMaybe Summary Extractor to identify

propositions that describe temporal constraints: It builds a semantic

graph for the English text with the Stanford Parser [20], traverses

the graph to identify propositions relevant to temporal dependen-

cies, and exploits temporal dependencies to build temporal propo-

sition series.

The Constraint Finder looks for specific dependencies inside the

graph, namely subject dependencies (typically nsubj and nsubjpass)
along with advcl and advmod dependencies. These dependencies
identify adverbs and adverbial clauses, which fall into several cate-

gories, one of them being time
3
. By referring to time dependencies,

this component identifies clauses that express the occurrence of an

event with respect to another event.

The running example of Listing 5 and the function at line 2 in

Algorithm 1 show how the CallMeMaybe Constraint Finder exploits
temporal dependencies to build temporal proposition series. The

CallMeMaybe Constraint Finder parses the method summary “This
method must be invoked before the thread is started” (Listing 5) by
generating and traversing the following semantic graph:

-> invoked/VBN (root)

-> method/NN (nsubjpass)

-> This/DT (det)

-> must/MD (aux)

-> be/VB (auxpass)

-> started/VBN (advcl:before)

-> before/IN (mark)

-> thread/NN (nsubjpass)

-> the/DT (det)

-> is/VBZ (auxpass)

The CallMeMaybe Constraint Finder observes that the depen-
dency advcl:before (in bold in the graph above) identifies an adver-

bial clause together with its specific modifier, before, thanks to the

Enhanced English Universal Dependencies parsing [30]. It discov-

ers this advcl:before dependency, along with subject dependencies
(lines 4 and 5 of Algorithm 1), and extracts three propositions from

them:

nsubjpass: (This method, be invoked)
nsubjpass: (thread, is started)
advcl:before: (invoked, started)

As a final step, the CallMeMaybe Constraint Finder combines the

three propositions in the following proposition series (line 6):

(This method, be invoked) BEFORE (thread, is started)

3.3 CallMeMaybe Translator
The CallMeMaybe Translator transforms temporal proposition se-

ries into temporal constraints, by recognizing the code identifiers

3
https://universaldependencies.org/en/dep/advcl.html

https://sites.google.com/site/temporalspec
https://universaldependencies.org/en/dep/advcl.html
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Figure 1: CallMeMaybe’s workflow

involved in the temporal proposition that it obtains from the Con-

straint Finder (Algorithm 1, from line 9). The Translator finds code

identifiers that correspond to both explicit operation and implicit ac-
tion, the two constraint description styles that we discuss in Section

2, and substitutes the matching in the input proposition to generate

a temporal constraint.

Explicit operations The CallMeMaybe Translator recognizes
the presence of legitimate operations by relying on the

SO_word2vec model [10], which is a word2vec model for

the software engineering domain, pre-trained on over 15GB

of textual data from Stack Overflow posts. The CallMeMay-
be Translator starts from a basic golden set of three words

(operation, call, and use) and queries the model with these

positive examples to get a whole new set of related concepts

that include words such as invocation or return. If any of the

verbs in the proposition belongs to this set, the CallMeMaybe
Translator assumes the presence of a temporal operation,

with the proposition subject being an explicit reference to a

code element and the verb being a legitimate operation. If it

fails in recognizing an operation as legitimate, the Translator

looks for the presence of an implicit action instead.

Implicit Actions The CallMeMaybe Translator identifies ac-
tions by relying on lexical similarities between the English

words in the proposition and the code identifiers. It first

tries to match the subject, by looking for a code identifier

with very close lexical similarity with respect to the English

subject. If it finds a promising candidate for the subject, it

generates a list of suitable candidates for the predicate, by

looking for invocations that match the code subject. Like-

wise, it assesses the list of candidate predicates according

to the lexical similarity with respect to the English text. If

it fails finding a match for the subject or the predicate, the

Translator aborts the translation.

We illustrate the CallMeMaybe Translator by referring to the run-
ning example of Listing 5. The CallMeMaybe Translator identifies
the subject of the first proposition (This method, be invoked) as
the documented method (Algorithm 1, line 10), it normalizes “this

method” with the corresponding method signature (Algorithm 1,

line 12), and identifies the predicate, “invoked” as a concept of in-

terest by means of the word2vec model strategy, thus successfully

completing the matching of the first proposition (This method,
be invoked). The CallMeMaybe Translator then matches the sub-

ject and predicate expressed as implicit operations in the second

proposition, (thread, is started), by looking for syntactic sim-

ilarities with code identifiers (Algorithm 1, line 17). It successfully

matches subject thread to the instance of the receiving object of

class Thread, and predicate is started to a call to method start().
The CallMeMaybe Translator completes the translation by in-

stantiating the final proposition (This method, be invoked) BEFORE
(thread, is started) with the identified matches to obtain the tempo-

ral constraint:

receiverObject.setDaemon(args[0]) BEFORE receiverOb-
ject.start()

The only part that still needs a translation is the specific temporal

modifier (BEFORE in our running example).

3.4 CallMeMaybe Direction Chief
The CallMeMaybe Director Chief infers the direction of the tem-

poral constraint from the temporal modifier of the proposition it

receives from the CallMeMaybe Translator. This inference happens
according to a small set of fixed rules, one for each temporal par-

ticle. The rules dictate the direction of the link between the two

proposition: either a left ←, or a right → arrow. Table 1 shows

the rules currently encoded in our CallMeMaybe implementation,

that is, rules for AFTER, ONCE, BEFORE, PRIOR and UNTIL. The
current CallMeMaybe implementation does not deal either with cy-

cles or with temporal constraints involving more than two method

calls. Yet, this small set of rules already proves to serve a large

number of cases, and the set can be trivially extended to include

the application of further rules.

Table 1: Rules currently encoded in CallMeMaybe

Modifier Direction
AFTER ←
ONCE ←
BEFORE →
PRIOR →
(NOT) UNTIL →
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Algorithm 1 Temporal constraint finder and translator

1: /** Find temporal constraints inside the comment text. Given the English

text, the function traverses its semantic graph and builds a temporal

proposition series.*/

2: function find-temporal-constraints(natural language comment)

3: semantic-graph =build-semantic-graph(natural language com-

ment)

4: subj-propositions = identify-subject-relations(semantic-graph)

5: adv-propositions = identify-adverbial-relations(semantic-

graph)

6: proposition-series = connect-propositions-with-modifier(subj-

propositions, adv-propositions)

7: end function

8: /** Translate identified propositions into Java expressions. Given the

list of propositions in English, the function matches each part against

code elements in the Java source code. */

9: function translate(proposition-series)

10: if verb is explicit operation then
11: if subject refers to documented method then
12: normalize-proposition-subject(proposition-subject)

13: else
14: match-proposition-subject(proposition-subject)

15: end if
16: else
17: if verb is implicit method call then
18: match-proposition-subject(proposition-subject)

19: match-predicate(matched-subject, proposition-verb)

20: end if
21: end if
22: end function

23: /** Given an English subject, finds the correct code elements to match

it looking at lexical similarity. */

24: function match-proposition-subject(proposition-subject)

25: subjCandidateList = get-subject-candidates(subject)

26: matchedSubject = lexical-match(subject, subjCandidateList)

27: if no match for subject then
28: abort

29: end if
30: end function

31: /** Given the matched subject, finds the correct code elements to match

the predicate looking at lexical similarity. */

32: function match-predicate(matched-subject, proposition-predicate)

33: predCandsList = get-predicate-candidates(matched-subject,

proposition-predicate)

34: matchedPredicate = lexical-match(proposition-predicate, pred-

CandsList)

35: if no match for predicate then
36: abort

37: end if
38: end function

By referring back to out running example, the CallMeMaybe
Direction Chief solves the full constraint of our example as:

receiverObject.setDaemon(args[0]) → receiverOb-
ject.start()

We selected a rule-based strategy over a heuristic-based strategy

to reduce the risks of unsafe translations. ICON [23]’s heuristic

relies on the tense of the verb: A past tense indicates a method call

that must happen before, and vice-versa. This strategy does not

generalize well to all temporal sentences. For instance, it would

be difficult to asses the direction of a temporal constraint such

as “start should be invoked after setDaemon is invoked” just by

considering the sentence tense, while a rule-based strategy can

safely deal with cases like this.

3.5 CallMeMaybe Generator
The CallMeMaybe Generator produces temporal constraints as sim-

ple JSON structures that indicate whether an operation should

either precede or succeed any other operation. This JSON format

has the advantage of being serializable and machine readable, mak-

ing the output of CallMeMaybe ready to exploit by other tools such

as automated test case generators. Listing 8 shows the excerpt of

JSON output for our running example.

Listing 8: CallMeMaybe’s real example of JSON output
1 [
2 . . .
3 {
4 "signature": "java.lang.Thread.setDaemon(boolean)",
5 "name": "setDaemon",
6 "containingClass": {
7 "qualifiedName": "java.lang.Thread",
8 "name": "Thread",
9 "isArray": false
10 },
11 . . .
12 "mustPrecede": "receiverObject.start()",
13 "mustFollow": "",
14 . . .
15 ]

The code of CallMeMaybe is open source. A complete replication

package is available at:

https://github.com/ariannab/callmemaybe

4 EVALUATION
Our experimental evaluation addresses the following research ques-

tions:

• RQ1: Can CallMeMaybe identify natural language sentences

that express temporal constraints and translate them into

temporal formulas?

• RQ2: Do CallMeMaybe constraints reduce the manual ef-

fort of assessing false alarms and expected exceptions in

automated testing when used as oracles?

• RQ3: How do CallMeMaybe constraints recognition capabili-

ties compare with the state of the art technique ICON [23]’s?

We evaluated CallMeMaybe on a benchmark of 73 classes ran-

domly selected from seven popular Java systems.

For each project, we randomly selected a sample comprising at

least 10% of their documented classes, and then manually inspected

their Javadoc, keeping only classes containing at least one temporal

constraint. From this random sample, it seems the projects with

the most prevalent number of constraints are the JDK and Apache

https://github.com/ariannab/callmemaybe
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Table 2: Ground truth: manually-identified temporal con-
straints

Project Selected Classes Temporal Constraints

Colt 9 9

Commons Collections 10 11

GraphStream 5 6

Guava 3 3

JDK 32 43

Lucene 7 10

Weka 7 7

TOTAL 73 89

Commons Collections. This is partly confirmed by Pandita et al.’s

study which concerned the JDK specifically.

We produced the ground truth by inspecting all Javadoc sen-

tences in the dataset andmanually translating the sentences express-

ing temporal constraints into temporal formulas. Table 2 reports the

considered projects, the number of randomly selected classes and

temporal constraints that we manually identified for each project.

4.1 (RQ1) Translation Accuracy
We answer RQ1 by measuring precision and recall of CallMeMay-
be on the 73 considered classes. Precision is defined as the ratio

between the number of correct outputs and the total number of

outputs:

precision =
|𝐶 |

|𝐶 | + |𝑆 | + |𝑊 |

Recall measures completeness as the proportion of desired out-

puts that the tool produced, and it is defined as the ratio between

the number of correct outputs and the total number of desired

outputs:

recall =
|𝐶 |

|𝐶 | + |𝑊 | + |𝑀 |
CallMeMaybe output is Correct (C) when the temporal constraint

matches exactly our expected translation. It is Wrong (W) when the

tool gives in output a constraint that does not match the one we are

expecting. It is Spurious (S) when we are not expecting any output

for a given natural language sentence, but CallMeMaybe produces
one anyway in error. Finally, it is Missing (M) when we expect a

constraint in output, but the output is not present. Table 3 reports

the number of Correct, Missing, Wrong and Spurious temporal con-

straints that CallMeMaybe automatically identifies. The table also

reports the good precision and recall that CallMeMaybe achieves for
each project, with an average precision over all projects of 83% and

an average recall of 70%. A prominent observation is that CallMe-
Maybe does not produce Spurious translations in this ground truth.

That is, CallMeMaybe never considers a natural language sentence
as reporting a legitimate temporal constraint when in fact it does

not. This is not surprising, as CallMeMaybe Finder and Translator

operate different checks before concluding that a natural language

sentence is legitimately expressing a temporal constraint on Java

elements. In the perspective of generating test oracles, this is a good

result, since having a wrong oracle would be worse than having

none. Nonetheless, CallMeMaybe produces 13 Wrong constraints

with respect to our expectations. Some constraints can be indeed

difficult to translate automatically, such as the one in Listing 9 from

the JDK:

Listing 9: Temporal constraint that CallMeMaybe correctly
identifies but wrongly translates
1 /∗ ∗ Removes all of this collection ' s elements that are also contained in the
2 ∗ specified collection ( optional operation ). After this call returns , this
3 ∗ collection will contain no elements in common with the specified collection
4 ∗/
5 public void removeAll( java . util . Collection <?> c) . . .

CallMeMaybe wrongly translates the above as:

receiverObject.contains(args[0]) <- receiverOb-
ject.removeAll(args[0])

While a correct translation would be:

Collections.disjoint(receiverObject, args[0]) <- receiverOb-
ject.removeAll(args[0])

CallMeMaybe also misses 14 translations our ground truth would

expect. In particular, it misses all 3 we expect from Google Guava.

While this library is well-documented, the documentation may

express constraints using relatively complex concepts, hard for

CallMeMaybe to automatically translate into code expressions. For

example, a translation CallMeMaybe misses is one for the comment

“The specified map [...] should not be accessed directly after this

method returns”. The concept of “accessing amap” does notmatches

a clear and specific method call, thus the current implementation

of CallMeMaybe does not know how to deal with it.

4.2 (RQ2) Randoop Enhancment
We answer RQ2 by integrating CallMeMaybe with Randoop into

a new tool, Randoop+CallMeMaybe, that enhances the output of
Randoop [22] with the CallMeMaybe outputs.

When a Randoop test throws an exception, Randoop heuristi-

cally classifies the test as (1) error-revealing test, which requires

manual inspection, (2) normal behavior, which Randoop labels as

a regression test and proposes for manual inspection only in the

case of future failures, or (3) invalid test, which Randoop discards.

Randoop+CallMeMaybe improves these heuristics by flagging

each test that violates a CallMeMaybe temporal constraint, signifi-

cantly reducing the effort for manually inspecting error revealing

and regression tests.

Randoop error-revealing tests Let us consider a test that

Randoop classifies as revealing an error because somemethod

call that violates a temporal constraint throws an exception.

Randoop would present the output for manual inspection

with no further information. The manual inspection would

reveal the violation of the temporal constraint and discard

the test. Randoop+CallMeMaybe automatically identifies the

violation of the temporal constraint and clearly flags the
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Table 3: Effectiveness of CallMeMaybe on 73 classes

Project Correct Missing Wrong Spurious Precision Recall

Colt 9 0 0 0 1.00 1.00

Commons Collections 10 1 0 0 1.00 0.91

GraphStream 5 1 0 0 1.00 0.83

Guava 0 3 0 0 0.00 0.00

JDK 32 6 5 0 0.86 0.84

Lucene 4 3 3 0 0.57 0.57

Weka 2 0 5 0 1.00 0.29

TOTAL 62 14 13 0 0.83 0.70

test as a false alarm, thus reducing the effort of manually

inspecting the test results.

Randoop regression tests Let us consider a test that violates

some temporal constraints and that Randoop classifies as ex-

pected behavior, being not aware of the temporal constraint

informally described in the method summary (it is irrelevant

if the call does or does not throw an exception). It would

be error-prone to output a regression test that requires the

current behavior (the specific value returned or the specific

exception thrown), because such a regression test is brittle. In

general, an invalid call may result in arbitrary behavior, so an

implementation change could result in a different exception,

or no exception, being thrown. The brittle regression test

would fail after such an implementation change, wasting the

developers’ time. In some cases, a method might be specified

to behave in a certain way (say, throw a certain exception)

when a temporal constraint is violated. Discarding the test

is not incorrect in such circumstances, but it does make the

regression test suite smaller. If a developer desires such tests

despite their potential brittleness, then at the developer’s

option, Randoop+CallMeMaybe could output such tests, but

with a descriptive comment. If the test fails in the future, the

comment tells the developer what went wrong and how a

legitimate sequence should look.

We generated test cases with both Randoop and Randoop+Call-
MeMaybe for the Commons Collections and JDK projects of Table 2.

This accounts for most of the discovered constraints.We omitted the

other projects in Table 2 because they have temporal constraints on

file systems operation and on other domains that reduce the ability

of Randoop to generate tests without some external suggestions

for the inputs to be fed (like the names of files in the file system, to

be passed to the open routine).
We ran both Randoop and Randoop+CallMeMaybe with a time

limit of 100 seconds per class. Table 4 reports the number of test that

Randoop erroneously classifies as error-revealing and normal tests,

and that Randoop+CallMeMaybe flags as violating temporal con-

straints that CallMeMaybe automatically identifies in the method

summaries. Randoop+CallMeMaybe flags 11,818 false alarms that

Randoop would report as failing tests (“error-revealing” column),

and 12,024 brittle regression tests that might have confusingly failed

in a regression test suite for manual inspection with no useful in-

formation (“normal” column).

Table 4: Invalid tests generated by Randoop but prevented by
Randoop+CallMeMaybe. The columns indicate how Randoop
classified the tests.

Project Error-revealing Normal

Commons Collections 10948 8298

JDK 870 3726

TOTAL 11818 12024

We spot-checked 100 random tests, and confirm that Randoop+Call-
MeMaybe looks consistently correct in its assessments. Considering

the high number of correct temporal constraints CallMeMaybe can
deliver and the absence of spurious translation(RQ1), this is not

surprising. We discuss two representative cases:

IteratorChain example. Let us consider the constructor of class
IteratorChain presented in Listing 10.

Listing 10: Prescriptive constraint from class IteratorChain
of Apache Commons Collections
1 /∗ ∗ Construct an IteratorChain with no Iterators .
2 You will normally use addIterator ( Iterator ) to add some iterators after using
3 this constructor . ∗/
4 public IteratorChain () { . . .

CallMeMaybe translates the protocol in Listing 10 into the fol-

lowing temporal constraint:

IteratorChain.addIterator(java.util.Iterator<? extends E>)
← receiverObject.IteratorChain()

Listing 11 is an excerpt of a Randoop-generated test case for

class IteratorChain.

Listing 11: Randoop generated test for class IteratorChain
of Commons Collections
1 IteratorChain< Serializable > serializableItor0 =
2 new IteratorChain< Serializable >();

4 // The following exception was thrown during execution in test generation
5 try {
6 serializableItor0 . remove();
7 org . junit . Assert . fail ( "Expected exception of type
8 java . lang . IllegalStateException ; message: Iterator contains no
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9 elements" );
10 } catch ( java . lang . IllegalStateException e) {
11 // Expected exception .
12 /∗ CallMeMaybe Constraint violation :
13 "Construct an IteratorChain with no Iterators .
14 You will normally use {@link # addIterator ( Iterator )} to add some
15 iterators after using this constructor ." ∗/
16 }

The Randoop test instantiates a new IteratorChain at line

1, and invokes a removal operation on the newly instantiated

iterator at line 6 with no actions in-between. CallMeMaybe cor-
rectly recognizes and translates the constraint for the construc-

tor, reporting that a correct sequence would first invoke method

addIterator on the newly instantiated iterator. In this case, the

IllegalStateException exception is expected, as specified by

remove, though a comprehensive explanation on how to avoid such

behavior is not present. Randoop+CallMeMaybe correctly flags the

test indicating the violation of the temporal constraints.

Deflater example. Let us consider the documentation of method

end() of class Deflater in Listing 12.

Listing 12: Prescriptive constraint from class Deflater of the
JDK
1 /∗ ∗ Closes the compressor and discards any unprocessed input . This
2 method should be called when the compressor is no longer being used , but
3 will also be called automatically by the finalize () method. Once this method
4 is called , the behavior of the Deflater object is undefined . ∗/
5 public void end() { . . .

CallMeMaybe translates the temporal constraint informally de-

scribed in Listing 12 into the following temporal constraint, where

the logical negation operator ! before receiverObject indicates
that no further invocation should happen on the receiver object):

receiverObject.end()→ !receiverObject

Listing 13 shows a test that Randoop generates for class Deflater
and Randoop+CallMeMaybe correctly flags as containing a violation
of a temporal constraint that CallMeMaybe successfully identifies.

Listing 13: Real example of Randoop+CallMeMaybe behavior
for the JDK
1 Deflater deflater2 = new Deflater ((−1), true );
2 long long3 = deflater2 . getBytesWritten ();
3 deflater2 . setLevel (2);
4 deflater2 .end ();

6 /∗ during test generation this statement threw an exception of type
7 java . lang . NullPointerException in error
8 But, CallMeMaybe Constraint violated too :
9 "Closes the compressor and discards any unprocessed input . This method
10 should be called when the compressor is no longer being used , but will also
11 be called automatically by the finalize () method. Once this method is called ,
12 the behavior of the Deflater object is undefined ." ∗/
13 long long7 = deflater2 . getBytesWritten ();

The Randoop test instantiates a new Deflater object at line 1,
calls end() at line 4, and invokes getBytesWtitten on the Deflater
object at line 13. This raises a NullPointerException “in error” (line

7), while the correct usage of the class dictates that no further

invocation should happen after end(), as Randoop did instead.

Radoop+CallMeMaybe correctly identifies a constraint violation

and flags the false alarm.

4.3 (RQ3) Comparison with ICON
We answer RQ3 by comparing CallMeMaybe with ICON [23] on

the ICON’s public dataset. As reported in the original publication
4
,

the ICON project website reports the natural language sentences

manually labeled as temporal constraints or not, and annotated with

a summary of the results of ICON with respect to this ground truth.

The ICON website does not include either the implementation of

the tool or the translations it produces, so we run CallMeMaybe on
the ground truth of ICON as provided by the authors.

ICON produces temporal formulas using a formal language. Its

Java ground truth comprises temporal constraints coming from

@throws Javadoc tags and Javadoc summaries. CallMeMaybe oper-
ates on Javadoc summaries, thus we experimented on the Javadoc

summaries in the ICON’s dataset, which are all from the classes of

package java.io of the JDK, and include 34 temporal constraints

that the authors of ICON’s paper manually identified.

CallMeMaybe correctly identifies all the 34 temporal constraints,
thus achieving an accuracy of 100% with respect to the ground truth

reported in the ICON’s dataset. ICON’s paper and dataset do not

indicate the amount of temporal constrains that ICON identifies

in the summaries of the java.io package alone, thus we cannot

directly compare this data. CallMeMaybe improves over ICON by

identifying legitimate exceptions that automatic test case gener-

ators would not, as discussed in Section 4.2, while ICON mostly

identifies exceptions declared in the method’s signatures, which

automatic test case generators easily recognize as legitimate. Call-
MeMaybe achieves an overall precisions of 83% and a recall of 70%,

as reported in Section 4.1, both higher than the precision and recall

reported in the ICON’s paper, 79% and 60%, respectively. We would

like to notice that the data are not homogeneous, being computed

on different data sets.

5 RELATEDWORK
Temporal constraints, or function precedence protocols [27] ormethod
ordering constraints [25] in the literature, are often inferred dy-

namically [2, 4, 12, 17, 18, 35, 36] and formalized as finite state

machines [1, 25]. The inferred specification can be used as a target

for verification (e.g., model checking) [7, 8, 13, 15, 21] or to sup-

port testing activities, for example by comparing the execution of

generated tests against inferred API protocols [26, 34]. Our work

is motivated by the observation that free-text Javadoc summaries

of methods and classes often document temporal constraints. This

implies that we can support testing by formalizing the documented
behavior of a program as specified by API developers, and doing so

in a static fashion.

Doc2Spec is the first approach [37] to infer temporal constraints

on resources following a similar intuition. Specifically, Doc2Spec

infers temporal constraints formalized as finite state machines fol-

lowing a specific template: “resource creation methods, followed

by resource manipulation methods, followed by resource release

methods”. The more recent ICON by Pandita et al. [23] correctly

4
https://sites.google.com/site/temporalspec

https://sites.google.com/site/temporalspec
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observes that temporal constraints are not necessarily restricted to

such a template, and attempts to offer a more general technique to

recognize them based on specific machine learning features. How-

ever, to the best of our knowledge, ICON was not applied to any

specific task in testing or other software engineering activities.

CallMeMaybe is a new approach that improves and complements

all the above.

The intuition of deriving executable oracles from natural lan-

guage specification is exploited by different techniques in the state

of the art. The iComment [31], aComment [32], @tComment [33],

Toradocu [14] and Jdoctor [5] approaches all extract some form of

specifications from code comments. These approaches all rely on

semi-structured natural language documentation, meaning they

cannot deal with unstructured text that documents properties in

Javadoc summaries. Other similar approaches such as ALICS [24]

and MeMo [6] deal with unstructured documentation, as CallMe-
Maybe does. However, they do not recognize and model temporal

constraints.

6 CONCLUSION
CallMeMaybe derives temporal constraints from natural language

specification of Java systems. CallMeMaybe generates machine-

parsable sequences of Java expressions that can improve the results

of automatic test case generators by flagging false alarms and ex-

plaining expected exceptions. CallMeMaybe analyzes unstructured
natural language text and recognizes informal descriptions of tem-

poral constraints in free text. It then finds a suitable translation

into Java expressions, recognizing the right direction of the method

calls involved.

CallMeMaybe proves to be accurate in its temporal constraint

translations, with a precision of 83% and a recall of 70% on a ground

truth of 89 expected Java specifications across 73 classes of differ-

ent Java systems. In this paper, we integrate CallMeMaybe into
Randoop to show how to use CallMeMaybe temporal constraints

to improve automatic test case generation, while state-of-the-art

approaches, like ICON, do not exploit temporal constraints for

software engineering activities. Randoop+CallMeMaybe correctly
flags thousands false alarms [22], thus substantially reducing the

effort of manual inspection. CallMeMaybe is the first approach that

aids automatic testing by relying of natural language information

with temporal constraints, while state-of-the-art approaches focus

on preconditions, postconditions, exceptions [5, 14, 24, 33] and

metamorphic relations [6].

The results that we document in this paper suggest further im-

provements of CallMeMaybe. CallMeMaybe translations can be used
to improve the complex temporal relations modeled with finite state

machines [1, 25, 27] by using CallMeMaybe constraints to verify

the correctness of dynamically inferred models. Indeed, while Call-
MeMaybe derives constraints based on developers’ specifications

of expected behavior, dynamically inferred models represent the

actual program behavior. In this paper we used CallMeMaybe to
infer temporal constraints from method summaries; CallMeMaybe
can be straightforwardly extended to other kinds of informal spec-

ifications. Constraints in class summaries would deserve a study

on their own, as class documentation tends to differ from method

summaries, and is not yet widely explored in the state of the art [28].

Class summaries are often expressed by means of code snippets (as

our examples in Section 2 show), thus opening new opportunities

to automatically distinguish code snippets that represent good and

bad usages of the class.
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