
Program Synthesis from Natural Language
Using Recurrent Neural Networks

Xi Victoria Lin
UW CSE

Sea�le, WA, USA
xilin@cs.washington.edu

Chenglong Wang
UW CSE

Sea�le, WA, USA
clwang@cs.washington.edu

Deric Pang
UW CSE

Sea�le, WA, USA
dericp@cs.washington.edu

Kevin Vu
UW CSE

Sea�le, WA, USA
kevin.m.vu@gmail.com

Luke Ze�lemoyer
UW CSE

Sea�le, WA, USA
lsz@cs.washington.edu

Michael D. Ernst
UW CSE

Sea�le, WA, USA
mernst@cs.washington.edu

ABSTRACT
O�entimes, a programmer may have di�culty implementing a
desired operation. Even when the programmer can describe her
goal in English, it can be di�cult to translate into code. Existing
resources, such as question-and-answer websites, tabulate speci�c
operations that someone has wanted to perform in the past, but
they are not e�ective in generalizing to new tasks, to compound
tasks that require combining previous questions, or sometimes even
to variations of listed tasks.

Our goal is to make programming easier and more productive by
le�ing programmers use their own words and concepts to express
the intended operation, rather than forcing them to accommodate
the machine by memorizing its grammar. We have built a system
that lets a programmer describe a desired operation in natural lan-
guage, then automatically translates it to a programming language
for review and approval by the programmer. Our system, Tellina,
does the translation using recurrent neural networks (RNNs), a
state-of-the-art natural language processing technique that we aug-
mented with slot (argument) �lling and other enhancements.

We evaluated Tellina in the context of shell scripting. We trained
Tellina’s RNNs on textual descriptions of �le system operations
and bash one-liners, scraped from the web. Although recovering
completely correct commands is challenging, Tellina achieves top-3
accuracy of 80% for producing the correct command structure. In a
controlled study, programmers who had access to Tellina outper-
formed those who did not, even when Tellina’s predictions were
not completely correct, to a statistically signi�cant degree.

1 INTRODUCTION
Even if a competent programmer knows what she wants to do and
can describe it in English, it can still be di�cult to write code to
achieve her goal. Programmers increasingly work across libraries
and programming languages, creating more complex systems than
ever before, and cannot memorize every detail of all the systems
that must be used.

An increasingly common practice is to seek help from websites
such as Stack Over�ow. Tutorial and question-answering websites
are powerful resources with reams of speci�c examples of code
snippets and explanations of their behavior. When a programmer
�nds her exact question has been asked before, the community-
ve�ed answer is invariably useful. However, �nding the correct

�estion 1. I have a bunch of “.zip” �les in several directories
“dir1/dir2”, “dir3”, “dir4/dir5”. How would I move them all to
a common base folder? (h�p://unix.stackexchange.com/questions/
67503)

Solution: find dir*/ -type f -name "*.zip" -exec mv {}

"basedir" \;

�estion 2. I have one folder for log with 7 sub-folders. I
want to delete all the �les older than 15 days in all folders
including sub-folders without touching folder structure. (h�p:
//unix.stackexchange.com/questions/155184)

Solution: find . -type f -mtime +15 | xargs rm -f

Figure 1: Linux command-line questions posted on the Unix Stack
Exchange forum. �e answer to each is a bash one-liner: a com-
mand that can be typed at the bash command line.

answer may require the use of keywords the programmer does not
know. Furthermore, sometimes outdated or incorrect answers per-
sist even if the correct answer also appears. Finally, a programmer
who wishes to do something new may waste time searching for it,
and then must synthesize it on her own. Even a variation of task on
the website may be di�cult to �nd because of di�erent constants
and keywords.

Despite their limitations, tutorial and question-answering web-
sites are valuable sources of information that tools should exploit in
order to help developers solve programming tasks. We used these
websites to gather training data for a novel natural language (NL)
to code translation tool that allows the user to express their intent
in English and automatically translates it into executable programs.
Such synthesis methods have many advantages. �e learned mod-
els can o�en generalize to new NL descriptions or synthesize novel
code, and the programmer does not need to search through large
websites to complete her task. However, they are also inherently
error-prone. For the near future, all NL-driven synthesis methods
will make mistakes and care must be taken to present their output to
users in a way they can easily use, modify, or take inspiration from,
without requiring that they blindly accept a single system output.

�is paper presents a complete machine learning approach for
natural language (NL) to code translation, along with a detailed user
study that demonstrates the e�ectiveness of the overall approach

http://unix.stackexchange.com/questions/67503
http://unix.stackexchange.com/questions/67503
http://unix.stackexchange.com/questions/155184
http://unix.stackexchange.com/questions/155184

[+timespan]

X: find all log files older than 15 days
natural language input:

Step 1: open-vocabulary entity recognition

Step 2: NL template to program template translation

Step 3: argument filling

entity mentions: {filename: “log”,
timespan: “15 days”}

: find all [filename] files older than [timespan]

: find [path] -name [regex] -mtime [+timespan]

: find [path] -type f -name [regex] -mtime [+timespan]

: find [path] -type f -perm [permission]

: find [path] -name [regex] -mtime [+timespan] |
 xargs ls

synthesized program templates:

Y1: find . -name “*.log” -mtime +15

Y2: find . -type f -name “*.log” -mtime +15
Y3: find . -name “*.log” -mtime +15 | xargs ls

complete programs:

“log”[regex]

“15 days”

“log” [path]

“log” [+timespan]

“15 days” [path]

“15 days” [regex]

nearest-neighbor classification:

: …

Y4: …

natural language template:
X
~

Y1
~

Y2
~

Y3
~

Y4
~

Y5
~ -

-

+

+

-

-

+
+

+
+

+
+

+
+ +

+

+
++ + +

-

-
- --
- -

-

-

-
-

Figure 2: Tellina’s three-step architecture for program synthesis from natural language. Step 2 shows the RNN encoder-decoder model used
for translating natural language templates to program templates. �e blue rectangles and the yellow rectangles represent the RNN cells for
the encoder and decoder respectively. Step 3 shows the nearest neighbor classi�cation method used for evaluating the compatibility of an
entitymention and a program slot. Each data point is an 〈entity, slot〉 pair represented as the concatenation of the hidden state vectors of their
corresponding RNN cells. �e compatible entity-slot pairs, 〈“log”, [regex]〉 and 〈“15 days”, ”[+timespan]”〉, are closer to the positive training
examples (“+”s), while the non-compatible pairs are closer to the negative training examples (“-”s).

even when the predicted code is not completely correct. Our system,
Tellina, is instantiated for the problem of bash scripting, where a
user must perform complex �le system operations. Figure 1 shows
two example tasks that users posed in this domain. Such problems
are worthy of study because programmers must perform them
o�en but the individual commands are complex enough to make
it di�cult to remember the exact details. For example, the Linux
find utility, which searches the �le system, supports more than 70
�ags1 to control the search criteria and perform operations on the
returned �les; it is also commonly combined with other commands
like mv or grep for more complex tasks. Man pages describe these
commands and �ags, but can be hard to discover and understand.
Community sites exist2 and cover a wide variety of commands, but
can be hard to search and will not cover all users’ intents. None of
these problems are speci�c to the command line or shell scripting;
similar problems arise in other libraries and languages.

Our learning approach incorporates recent advances in neural
machine translation [2, 32, 35] within a novel learning architecture
that reduces data sparsity by abstracting over constants in the input
speci�cations (e.g., names of �les, dates, etc.). A key challenge is
to learn to align the correct input strings with parameter values
for the output commands, which we show is possible with a k-
nearest neighbor classi�er and greedy matching algorithms. We
trained the model on a newly gathered corpus of over 5000 natural
language and bash command pairs. Our experiments show that the
proposed model is competitive for this task: evaluated on unseen
natural language descriptions, it achieves 80% top-3 accuracy for
determining command structures and 36% top-3 accuracy for full
commands.

1Flags are also called command-line options. Some �ags also take arguments.
2Including Unix Stack Exchange (h�p://unix.stackexchange.com/), CommandLineFu
(h�p://www.commandlinefu.com/), and Bash One-Liners (h�p://www.bashoneliners.
com/).

We also present a user study that measures the performance of
programmers using this learned model instantiated in an assistant
tool, Tellina. Compared to the current state of the art (man pages
and online resources such as question-answering forums and web
search tools), programmers bene��ed from using Tellina to a statis-
tically signi�cant degree. For example, despite the fact that Tellina
does not always produce fully correct command suggestions, it
shortened the working time by 21.7% for programmers on bash �le
system tasks.

In summary, this paper makes the following contributions:

• We propose a novel deep-learning approach for synthesizing
programs from natural language. Our approach combines state-
of-the-art recurrent neural networks with a learning approach
for inserting constants into the generated programs.

• We instantiated the approach for a challenging domain: bash
commands containing 17 �le system utilities, more than 200
�ags, 9 types of open-vocabulary constants, and nested com-
mand structures such as pipelines, command substitution, and
process substitution.

• In order to provide data for training and evaluation, we col-
lected over 5,000 〈NL, command〉 pairs.

• We evaluated the accuracy of our approach. Our model achieves
top-3 accuracy of 80.0% for determining program structure —
that is, ignoring constant values. Our model achieves top-3
accuracy of 36.0% for full commands.

• We conducted a controlled user study to determine whether a
good, but not perfectly accurate, model aids end users’ program-
ming e�ciency. Compared to existing programming resources
such as man pages, Stack Over�ow, and Google, Tellina short-
ened the working time by 21.7% for end-user programmers
on bash �le system tasks. �is improvement was statistically
signi�cant (p-value < 0.01).

2

http://unix.stackexchange.com/
http://www.commandlinefu.com/
http://www.bashoneliners.com/
http://www.bashoneliners.com/

• Our source code and dataset will be released upon publication
to support reproducibility in so�ware engineering research.

2 PROBLEM DEFINITION AND FORMAL
OVERVIEW

Problem De�nition. Following Desai et al. [5], we de�ne program-
ming by natural language (PBNL) as synthesizing a ranked list of
programs [Y1,Y2, . . . ,Yk] based on the speci�cation expressed as a
single natural language sentence (denoted asX). A natural language
sentence is de�ned as a sequence of words X = (x1, . . . ,xm) and
a program is de�ned a sequence of tokens Y = (y1, . . . ,yn). �is
de�nition di�ers from prior work [5], which relies on a context-free
grammar de�nition of the programming language.

Our Approach. We present a machine learning approach for
PBNL, which trains the synthesizer using pairs of natural language
and programs (denoted as 〈X ,Y 〉). Figure 1 shows two such training
examples. We use a novel three-step deep-learning approach, as
illustrated in Figure 2:
(1) A user provides a natural language sentence X , which Tellina

transforms to a template X̃ by recognizing and abstracting over
domain-speci�c constants, such as �le names or times (§4.1).

(2) A recurrent neural network (RNN) encoder-decoder model
translates X̃ into a ranked list of possible program templates Ỹi ,
where each Ỹi contains argument slots to be �lled by entities
recognized in item 1 (§3).

(3) �e slots in each Ỹi are replaced by program literals to produce
an output program Yj , using a k-nearest neighbor classi�er
which identi�es the corresponding source entities (§4.2).

We train this model on a new corpus of English paired with Bash
commands that we collected (§5.1), which focuses on a complex
subset of the language (see �g. 3). �e complete system, Tellina,
permits users to input an example queries. Tellina outputs a list of
proposed bash commands that may solve the user queries.

Our user studies demonstrate that Tellina signi�cantly outper-
forms existing alternatives, even when there are mistakes in the set
of proposed commands (§7).

3 RNN ENCODER-DECODER MODEL FOR
TRANSLATION

Inspired by recent progress in neural machine translation [2, 32, 35]
and its successful application in the domain of formal languages [6,
19, 33], we adopt an RNN encoder-decoder (sequence-to-sequence)
model to translate a natural language template into a list of com-
mand templates. �is section �rst explains RNNs (§3.1) and encoder-
decoders (§3.2). Next, it describes the a�ention mechanism, a com-
mon practice which signi�cantly improves the performance of
encoder-decoders (§3.3). Finally, it presents the implementation
and training details of the Tellina model (§3.4).

3.1 Recurrent Neural Network (RNN)
A recurrent neural network [11] encodes an input sequence of
vectors into a single vector or expands an input vector into an
output sequence of vectors. In the most general case, it serves both
purposes at the same time. In our context, the sequences of vectors

In-scope syntax structures:
• Single command
• Logical connectives: &&, ||, parentheses ()

• Nested commands: pipeline |, command substitution $(),
process substitution <()

Out-of-scope syntax structures:
• I/O redirection <, <<
• Variable assignment =
• Parameters $1

• Compound statements: if, for, while, until, blocks, function
de�nition

• Regex structure (every string is a single opaque token)
• Non-bash program strings triggered by command inter-

preters such as awk, sed, python, java

Figure 3: �e subset of bash commands used as Tellina’s domain.

represent sequences of words or tokens (English sentences or bash
commands).

An RNN consists of a set of cells, each consisting of three layers:
input, hidden and output (�g. 4). Each token/vector in a sequence is
processed by a di�erent cell in turn. �e input layer maps a token
in the input sequence to an input state vector:

xt = I (xt). (1)

�e hidden layer takes the input state and the previous hidden state
as input, and generates the current hidden state as output:

ht = f (ht−1,xt). (2)

�e output layer takes the current hidden state as input, and
generates an output state vector:

ot = д(ht). (3)

Discrete output symbols can be decoded from the output state.
�e standard practice is to project ot into a |V |-dimensional space,
where |V | is the size of the output vocabulary, and apply the so�max
function:

yt = so�max(Woot). (4)
�e so�max function outputs a unit vector. �erefore yt can be
interpreted as a probability distribution of the output vocabulary
conditioned on the partial input history x1, . . . ,xt :

yt ∼ p (yt |x1, . . . ,xt). (5)

In general, I is a look-up table and f , д are non-linear func-
tions. �e Tellina model de�nes f and д to be gated recurrent units
(GRUs) [4].

3.2 Encoder-decoder models
As described in §3.1, an RNN can be used to encode an input se-
quence or to generate an output sequence. For most translation
problems, the input sequence and output sequence are of di�er-
ent lengths; hence, it is di�cult to use a single RNN to model
both. Such problems can be solved using the combination of an

3

y1

h1

x1

y2

h2

x2

y3

h3

x3

y4

h4

x4

y5

h5

x5

find [filename] files in the

y6

h6

x6

current

Encoder y’1

h’1

x’1

y’2

h’2

x’2

y’3

h’3

x’3

y’4

h’4

x’4

y’5

h’5

x’5

<START>

find [path] -name [regex] <EOS>

Decodery7

h7

x7

folder [path] -name [regex]find

Figure 4: Con�guration of the Seq2Seq neural network translation model. Each layer (input, hidden, and output from bottom to top) is
labeled with the state vector it produces. �e encoder reads the natural language description and passes its �nal hidden state to the decoder.
�e decoder consumes the encoder’s �nal hidden state and generates the program starting from the special symbol <START>. For the decoder,
each input symbol is the output symbol from the previous step (denoted by the dotted lines connecting the input layer at each step with the
previous output layer). �egreen dotted linesmark theword alignments learned via the attentionmechanism. While the attentionmechanism
computes an alignment score for each pair of encoder hidden state and decoder hidden state, the �gure illustrates only the alignments with
high scores.

encoder RNN and a decoder RNN, which is commonly referred to
as encoder-decoder modeling (Seq2Seq, �g. 4).3

As shown in �g. 4, the encoder RNN and decoder RNN are con-
nected in the hidden layer. �e source sequence is fed into the
encoder RNN. �e output sequence is decoded from the decoder
RNN, and the generation is biased by the �nal hidden state of the
encoder RNN. �e input symbol at step t is its output symbol at
step t − 1. Using eq. (4):

y′t ∼ p (y
′
t |y
′
1, . . . ,y

′
t−1,h�nal). (6)

Applying the chain rule to eq. (6), the decoder RNN de�nes a con-
ditional probability distribution of the target sequences given the
(encoded) source sequence:

p (y′1, . . . ,y
′
T ′ |h�nal) =

T ′∏
t=1

p (y′t |y
′
1, . . . ,y

′
t−1,h�nal). (7)

�e translation problem is hence reduced to decoding the target
sequence with the maximum conditional likelihood:

Ȳ ′ = argmax
y′i , ...,y

′

T ′

p (y′1, . . . ,y
′
T ′ |h�nal). (8)

�e optimization in eq. (8) cannot be computed e�ciently since
p (y′1, . . . ,y

′
T ′ |h�nal) does not factorize step-wise. E�ective approxi-

mations include beam search [32] (which Tellina uses) or greedily
picking the token with the maximum local score at each step.

3.3 Attention
Recent work in neural machine translation has shown that the
model can bene�t from making the prediction of a target output
token depend directly on the encodings of the input tokens [2, 33].
For example, in �g. 4 the choice of the output token “[regex]” might
be triggered by the tokens “[�lename]” and “�les” in the source
sequence.

An a�ention mechanism [33] can be used to �nd and encode
the relevant inputs. Speci�cally, it computes an alignment model
3Some recent work used tree-structured RNNs in the encoder-decoder framework [6,
27]. We tried both. A Seq2Tree network did not yield signi�cant performance im-
provement compared to Seq2Seq, but was dependent on a speci�c grammar de�nition.
Future work can investigate more sophisticated encoder-decoder architectures.

α between the encoder and decoder hidden states, and a context
vector ct which is a sum of all encoder hidden states weighted by
α :

αti = a(h′t ,hi) (9)

ct =
T∑
i=1

αtihi . (10)

�e context vector ct is then used as the input to the decoder output
layer together with the current hidden state h′t

o′t = д(h
′
t ,ct). (11)

In general, αti is de�ned to be the probability that the output at
step t of the decoder is translated from the input at step i of the
encoder. Following Dong and Lapata [6], we de�ne αti as the inner
product between the decoder hidden state and the encoder hidden
state, normalized over all encoder steps.

αti =
exp(h′t · hi)∑T
j=1 exp(h′t · hj)

. (12)

3.4 Training and hyperparameter setting
�e Tellina model uses a bi-directional RNN [31] encoder, which
consists of a forward RNN that reads the input sequence in the usual
order and a backward RNN that reads the input sequence in the
reversed order. �e hidden states of the two RNNs are concatenated
to generate the output state. �e rest of the construction is the
same as the base model presented above.

We trained the encoder-decoder using pairs of natural language
and program templates. We use the standard sequence-to-sequence
training objective [32] which maximizes the likelihood of the ground-
truth program template given the natural language template. We
trained the neural network (consists of all token embeddings and
layer parameters) end-to-end using mini-batch gradient descent
with Adam [14].

We set up the decoder RNN to be 400-dimensional, and the two
RNNs in the bi-directional encoder to be 200-dimensional. We
set the mini-batch size to 16, the initial learning rate to 0.0001,

4

• Pa�ern
– File: �le name
– Directory: directory name
– Path: absolute path
– Permission: Linux �le permission code
– Date/Time: date and time expression
– Regex: other pa�ern arguments

• �antity
– Number : number
– Size: �le size
– Timespan: time duration

Figure 5: Two-level type hierarchy of the open-vocabulary entities
de�ned on the �le system operation domain.

and the momentum hyperparameters of Adam to their default
values [14]. We set the beam size to 100 for beam-search decoding.
�e hyperparameters were set based on the model’s performance
on a development dataset (§5.3). We will release our trained model
and source code to support reproducible research.

4 ARGUMENT FILLING
�e neural encoder-decoder model (§3) takes a templated NL sen-
tence as input and produces a ranked list of program templates,
which contain empty argument slots to be �lled. In this section, we
describe how the NL templates are constructed and how the pro-
gram slot values are �lled, to complete the full processing pipeline.

4.1 Template Generation
We use a domain-speci�c heuristic approach for �nding and ab-
stracting over the textual entities in the input sentences and the
corresponding argument values in the programs they are paired
with.

In the domain of bash commands, we identi�ed two categories
of open-vocabulary entities, pa�erns and quantities, and several
second-level semantic types (�g. 5). To recognize and assign types to
the entity mentions in the natural language sentence, we manually
de�ned a regular expression for each semantic type to match the
entities of that type.4 �e recognizers for quantities perform well
in general, since numerical expressions are strong predictors for
such entities. However, these recognizers perform poorly for a few
semantic types. For example, instead of writing a date expression in
standard format like “08/02/2017”, the user may describe it verbally,
e.g., “the 2nd of August of 2017”, and our heuristic pa�erns cannot
cover all possible cases. To generate a natural language template
used as input to the sequence-to-sequence RNN from a sentence,
we replace each open-vocabulary entity in the sentence with its
semantic type.

We also generate command templates from commands. First, we
type each argument in the command according to its type de�nition
in man pages. Second, we map the man-page types to one of the
9 semantic types de�ned in �g. 5. For example, in Linux man
pages, the target directory argument of find is of type path, and the

4�e regex-based recognizers we de�ned perform recognition solely based on the
surface form of the entity mentions and do not leverage the context.

argument of the option -name is of type pa�ern; our rules map path
to Path and pa�ern to Regex. Finally, we replace each command
argument with its semantic type.

4.2 Program Slot Filling
Entity mentions in an NL sentence o�en form a one-to-one mapping
with a subset of the arguments in its corresponding program. Hence,
Tellina performs argument �lling in two steps. It �rst aligns the list
of entity mentions with the program slots using the stable matching
algorithm (§4.2.1, §4.2.2). �en, it extracts the argument values from
the aligned entity mentions and �lls the argument slots to form the
complete program (§4.2.3).

Aligning entities with argument slots is challenging because
of the following two types of ambiguity. First, there are usually
multiple entity mentions and multiple argument slot. While type-
matching provides a strong signal for the alignment, there may
exist multiple entities of the same type. Such ambiguities need
to be resolved based on the contextual information of the entity
mentions. For example, in the task of “moving some �les from the
source directory to the target directory”, the algorithm needs to
correctly identify the source and target directory without swapping
their positions. Second, inferencing entity and argument types
based on heuristics may be imprecise, and wrong types can lead
to wrong alignment results. For example, heursitically, we cannot
con�dently determine whether the substring “2017*” in a user’s
input refers to a list of �les, directories, or some other entity without
looking into its context.

To tackle above challenges, our slot-�lling algorithm makes use
of the contextual information of the entities and the slots.

4.2.1 Global entity-slot alignment. Algorithm 1 computes the
alignment between the entities and slots using a modi�ed version
of the stable matching algorithm [21]. Besides entities and slots,
the algorithm also takes as input a local entity-slot match scoring
function γ (i, j) whose output represents how likely the entity ei
is to be matched with the slot sj based on local information. For
example, such a local function may be type based, and “15 days”
is more likely to be an argument of -mtime compared to “log �les”
since their types match.

Upon initialization, the algorithm �rst computes a preference list
of slots for each entity, based on the local matching scores returned
by γ (i, j). At each iteration of the while loop, the algorithm selects
an unmatched entity mention ei with a non-empty preference list
Sei , and a�empts to match it with the highest-ranked slot sj in
Sei . If sj is not matched or sj prefers ei to the entity mention ei′ it
is currently matched to, ei and sj become matched. Otherwise ei
stays unmatched.

�e while loop is guaranteed to terminate. Upon termination, it
is guaranteed that every entity is aligned to at most one slot [21]. If
every entity mention is aligned to exactly one argument slot, it re-
turns the alignment. Otherwise, it returns the null value indicating
not all entities can be aligned to a slot.5 In both cases, it is possible
for some argument slots to be le� unmatched.

5In practice, we found this is an e�ective rule for detecting wrong program templates.
�erefore Tellina �lters out all command templates that do not have enough argument
slots for the recognized entities.

5

Algorithm 1: Global entity-slot alignment
Input : List of entities E, list of argument slots S , local

entity-slot compatibility function γ (i, j).
Output : List of matched entity-slot pairs M if every entity is

aligned to a slot; null otherwise.
1 M = ∅;
2 /* compute the preference list for each entity */
3 for ei ∈ E do
4 Priority�eue Sei ;
5 for sj ∈ S do
6 if γ (i, j) ,-inf then
7 Sei .Enqueue(sj)
8 end
9 end

10 end
11 /* compute the stable alignment */
12 while ∃ei s.t. ∀sj (ei ,sj) < M ∧ Sei , ∅ do
13 sj = Sei .Dequeue();
14 if ∃ei′ s.t. (ei′ ,sj) ∈ M then
15 if γ (i ′, j) < γ (i, j) then
16 M = M ∪ {(ei ,sj)} \ {(ei′ ,sj)};
17 end
18 else
19 M = M ∪ {(ei ,sj)};
20 end
21 end

For some slots that are le� empty, we automatically �ll in default
values based on heuristics. For example, we use “.” as the default
value for the target directory of find, since the users o�en omit the
target directory in their NL description if it is the current directory.
If a slot is not de�ned with a default value, we leave it empty when
presenting to users.

4.2.2 K-nearest neighbor classifier for local entity-slot matching.
We developed a novel k-nearest neighbor formulation for the lo-
cal matching function γ (i, j) introduced in alg. 1. It is based on
the intuition that given the embeddings of the entity mentions
and argument slots generated by the encoder-decoder (�g. 4), the
embeddings of a matched entity-slot pair shall be closed to other
matched entity-slot pairs in the embedding space and farther away
from the unmatched entity-slot pairs.

Speci�cally, we sampled a set of positive and negative entity-slot
pairs from our training data and use them as the training set of
the k-NN classi�er. We represent each entity-slot pair (ei ,sj) using
the concatenation of the hidden state vectors (hi ,h′j) of the neural
encoder-decoder model. For each test (ei ,sj) pair, we de�ne γ (i, j)
as a voting score weighted by the distances between (hi ,h′j) and
all the positive and negative training examples in the embeddings
space:

γ (i, j) =
∑

(c,d)∈NN (i,j,k)

d(i,j), (c,d) · v (c,d), (13)

where NN (i, j,k) is the set of k-nearest neighbors of (ei ,sj) in the
training set. d(i,j), (c,d) is the distance function and v (c,d) is the

vote of neighbor example (ec ,sd), as de�ned below

d(i,j), (c,d) = cos((hi ,h′j), (hc ,h
′
d)), (14)

v (c,d) =



1, if (ec ,sd) match
0,otherwise

. (15)

�is approach leverages the contextual information of both the
entity mention and the argument slot, since the hidden state rep-
resentations of ei and sj encode their context information. For
example, the hidden states of the two occurrences of “css” in the
sentence “�nd all css �les in the folder css” are di�erent, because
they are surrounded by di�erent words.

4.2.3 Post-processing. Given the aligned entities and argument
slots, extracting the entity values and reforma�ing them to com-
plete the argument �lling is easier and heuristics-based approach
works well. Some entities such as �le paths and string pa�erns can
be directly copied into the slots. We de�ne a small set of heuristic
rules for reforma�ing the entities that cannot be directly copied,
such as adding wild-card symbol “*.” in the front of a �le extension
and converting “x weeks” to “7x days”. �ese rules o�en work well
in practice, but do introduce some errors. For example, if a user de-
scribes a regular expression pa�ern verbally as “all log �les whose
name starts with 2016”, we do not have a rule which can infer the
regular expression “2016*.log”. Further improving argument value
extraction is an interesting area for future work.6

5 DATA
We collected 8,000 pairs of NL description and bash command from
the web (§5.1), from which 5,413 pairs remained a�er �ltering
(§5.1). We split this data into train, dev, and test sets, subject to the
constraint that no NL description appears in more than one dataset
(§5.3). Our dataset is publicly available for use by other researchers.

5.1 Data Collection
We hired freelancers who were familiar with shell scripting through
Upwork7 to collect data. �ey searched for web pages that contain
bash commands and recorded command-text pairs from them. Each
text in a pair is a sentence that describes the command, either ex-
tracted from the webpage or described by the freelancer based on
their background knowledge and web page contexts. We restricted
the bash commands to be one-liners and the natural language de-
scription to be a single sentence. �e source web pages include tuto-
rials, tech blogs, question-answering forums, and course materials.
�e freelancers collected data through a web interface developed
by us, which helps them with page searching, pair recording, and
duplicate data elimation. On average, each freelancer collected 50
pairs per hour.

Filtering. A�er obtaining text-command pairs colecled by the
freelancer, we �rst �lter the dataset with the following rules. First,
we discarded all commands that cannot be parsed by the bash parser

6 Locascio et al. [19] uses RNN encoder-decoder to synthesize regular expressions
based on a natural language description. Integrating a similar module into Tellina’s
neural architecture to synthesize the argument content could be an interesting future
direction.
7h�p://www.upwork.com/

6

http://www.upwork.com/

Bashlex8. Second, we discarded all commands that contain out-of-
scope bash operators, as shown in Figure 3. Finally, we discarded
commands that contain an operator appeared less than 20 times in
our dataset (e.g. cut, du, bzip2, etc.), since the model is unlikely to
learn them from the data due to sparsity.

Cleaning. A�er �ltering, we clean both texts and commands
in the data set. For texts, we use a probabilistic spell checker9 to
correct spelling errors in the English descriptions. We also manually
corrected a subset of the spelling errors that bypassed the spell
checker in the English and in the bash commands.

For commands, we �rst remove sudo and shell input prompt
characters such as “$” and “#” from the beginning of each com-
mand and replaced absolute command pathnames by their base
names (e.g., we changed “/bin/�nd” to find). �en, we used a parser
augmented from Bashlex to parse the command into an AST. �e
Bashlex AST handles nested command structures such as pipelines,
command substitution, and process substitution. We augmented
it to map each argument to the utility or utility �ag it a�aches to,
using the command syntax de�ned in the Linux man pages. �e
augmented syntax is used to generate the bash command templates,
as described in §4.1.

5.2 Data Statistics
A�er �ltering and cleaning, our dataset contains 5,413 〈NL, bash〉
pairs. �ese commands contain 17 di�erent bash utilities and more
than 200 �ags. In descending order of frequency, the utilities are
find, xargs, grep, egrep, fgrep, ls, rm, cp, mv, wc, chmod, chown, chgrp,
sort, head, tail, tar.

Similar to other machine translation datasets [26], in our 〈NL,
bash〉 dataset, one natural language description may have multi-
ple corresponding correct bash command solutions, and one bash
command may be phrased in multiple di�erent NL descriptions.
In general, higher number of such multiple-to-multiple correspon-
dences between NL descriptions and bash commands implies bigger
challenges for learning and evaluation. First, we are unlikely to
collect all possible translations for an NL description, and the model
could wrongly penalize correct predictions which it does not rec-
ognize during training. Second, at test time, the model may predict
correct translations that are di�erent from the ground-truth, and
manual evaluation has to be done to compute the correct evaluation
metrics (§6.1.2). We present the statistics of such correspondences
in Table 1.

5.3 Data split
We split the �ltered data into train, development (dev) and test
sets. We �rst clustered the pairs by their NL templates — a cluster
contains all pairs with the identical NL template. �en, we randomly
split the clusters into 80% training, 10% dev, and 10% test. �is
prevents the model from testing a NL template that was included
in the training set, which allows us to evaluate the model’s ability
to generalize to new NL inputs. Table 1 shows the statistics of our
data split.

8h�ps://github.com/idank/bashlex
9h�p://norvig.com/spell-correct.html

pairs cmd/nl percentage nl/cmd percentage
Train 4330 1.21 13% 2.13 27%
Dev 559 1.13 9% 1.39 19%
Test 524 1.19 12% 1.40 15%

Table 1: Data statistics. “cmd/nl” is the average number of bash com-
mands per NL description, and the following column is the percent-
age of NL with more than one bash command translations. Simi-
larly, “nl/cmd” is the average number of NL descriptions per bash
command, and the following column is the percentage of bash com-
mand with more than one NL descriptions.

Following the machine learning practice, we �rst trained our
model on the training set and use the dev set to tune the hyper-
parameters (§3.4). �en, we trained our �nal model on the com-
bination of both training and dev sets, with the hyperparameters
achieving translation accuracy on the dev set (§6.1) obtained during
parameter tuning phase.

6 MODEL EVALUATION
We report the end-to-end translation and argument �lling accuracy
(§6.1) for our new bash dataset, and a short discussion of qualitative
results (§6.2).

6.1 Translation Accuracy
We report the end-to-end translation accuracy, both automatic
and manually computed, of the Tellina model and a code retrieval
baseline.

6.1.1 Baseline Model. We implement a code retrieval (CR) base-
line using the tf-idf information retrieval (IR) technique [20]. �e
IR model encodes every NL description in the dataset into a bag-of-
words feature vector using the tf-idf statistics. Given a test example,
it computes the cosine-similarity between the test NL feature vector
and the training NL features vectors, and returns the top-k most
similar commands. We improved the IR model by �rst retrieving
the command template using the NL template similarity, and then
perform argument �lling for the NL template using type-matching
heuristics.10

6.1.2 Evaluation Methodology. We report two types of accuracy:
top-k full-command accuracy (AcckF) and top-k command-template
accuracy (AcckT). We de�ne AcckF to be the percentage of test ex-
amples11 for which a correct full command is ranked k or above in
the model output, and AcckT to be the percentage of test examples
for which a correct command template is ranked k or above in the
model output (i.e. ignoring errors in the constants).

As described in §5.2, many test examples have more than one
correct commands and our collected data may not cover them all.
�erefore, we asked three freelancers from Upwork who are famil-
iar with shell scripting to evaluate the model output manually. �e
freelancers independently examined the top-3 translations of both
the CR baseline and the Tellina model for all test examples, and

10We found the retrieval results based on full NL description to be signi�cantly worse,
since the constants are likely to receive high idf weights while not being representa-
tive of the command semantics.
11We treat the 〈bash, NL〉 pairs with the same NL description as a single test example.

7

https://github.com/idank/bashlex
http://norvig.com/spell-correct.html

Model Acc1
F Acc3

F Acc1
T Acc3

T
CR Baseline 13.0% 20.6% 54.7% 67.9%

Tellina Model 30.0% 36.0% 69.4% 80.0%
Table 2: Translation accuracies of the Tellina model and the code
retrieval baseline.

k Precision Recall F1
1 82.9 87.0 84.9
5 84.6 89.0 86.7
10 82.1 86.2 84.1
100 79.8 84.0 81.9
200 77.2 81.2 79.1

Table 3: Development set performance of the argument �lling com-
ponent for di�ering k nearest neighbor values.

evaluate correctness of the commands at both the full-command
level and the command-template level. For each command transla-
tion, we use the majority vote of the three freelancers as the �nal
evaluation.

6.1.3 Results. Table 2 shows the translation accuracies of both
the Tellina model and the CR baseline. �e Tellina model beats the
CR baseline by a large margin on all accuracy metrics. It achieves
strong template-based accuracy, up to 80% on the top-3 metric, in-
dicating the e�ectiveness of the neural encoder-decoder model. On
the other hand, both models struggle to generate full commands,
o�en making mistakes with one or more of the command argu-
ments. Nonetheless, as we will see in §7.6, users still found these
predictions useful, even if the �nal output needs some corrections
before it can be executed.

We also evaluate the argument �lling component individually
by using alg. 1 to �ll in the arguments for ground truth templates.
Table 3 shows the precision, recall, F1 measurement on the devel-
opment set with varying k parameters. �e model presents high
accuracy in �lling arguments to the templates (∼86.7% F1 with opti-
mal k). However, due to cascading errors from entity detection and
template selection, the overall command correctness ratio is much
lower than template correctness ratio, as we will discuss below.

6.2 Error Analysis
While the template correctness and argument �lling accuracies
are high (Table 2), we observed that complete command accuracy
is much lower overall. To be�er understand this phenomena, we
sampled 50 synthesized commands whose template is correct but
full command is incorrect.

Among these 50 incorrect commands, 41 of them are caused by
Tellina’s failure to recognize the argument from the NL description,
5 are caused by wrong command alignment, 2 caused by the fact
that the NL description does not provide a concrete argument, and
the last 2 are caused by predicting incorrect templates (which the
freelancers failed to catch). �e vast majority of the NL entity recog-
nition failures involve missing idioms in the task description. For
example, our algorithm is unable to extract the directory argument
‘/’ from the idioms “root directory” or “full �le system”, and so is

the case for extracting permission code “100” from idiom “read
permission”.

However, while this type of error harms the full-command trans-
lation accuracy of Tellina model, it does not signi�cantly harm the
tool usability: we observed in our user study (§7) that many users
can easily formulate arguments that our algorithm failed to recog-
nize based on their knowledge of the �le system; as a result, these
errors can be easily �xed given correct template and alignment.

7 USER STUDY
We conducted a user study to determine whether Tellina helps
programmers complete �le system tasks using bash.

7.1 Experiment Design
We measured each participant’s performance under the following
two treatment conditions.

• Control treatment: �e participant may use any local resource
(such as man pages and experimentation on the command
line) and any Internet resource (such as tutorials, question-
and-answer websites, and web search). �is emulates how a
programmer would normally solve a �le system task.

• Experimental treatment: �e participant may use any of the
above resources, and also Tellina.

We adopted a counterbalanced factorial design in which each
participant performs two sets of tasks, one with each treatment.
�is design prevents confounding due to order e�ects by randomly
assigning the participants into four groups, which correspond to
all four taskset and treatment combinations.

We recruited 39 students in the computer science major to partic-
ipate in the experiment (24 graduate students, 15 undergraduates).
None were familiar with Tellina. All of them were familiar with
bash. We accepted only graduate students who self-reported to be
bash users, and we accepted only undergraduates who had com-
pleted or were enrolled in our department’s Linux tools course.

We excluded data from 4 of the participants, because 3 of them
forgot to switch treatment conditions between the tasksets and 1
of them did not complete the study.

7.2 Tasks
Each taskset is made up of 8 tasks. Each task consists of an Eng-
lish description of a �le system operation, and a �le system in
a pre-de�ned initial state. �e desired outcome is either a list
of �les (possibly with additional a�ributes such as modi�cation
time or number of lines) or a change in the �le system, such as
deleted/added/modi�ed �les. �e user’s goal is to write a bash com-
mand that performs the desired operation without causing extra
�le system changes. All tasks have outcomes that are automatically
veri�able.

�e participant may a�empt a task multiple times. �e partici-
pant may reset the �le system to its original state in order to start
over from a fresh slate. Each task has a 10-minute timeout. If the
participant gives up on a task, we count the participant as having
spent 10 minutes. In addition, each taskset has a time limit of 40
minutes.12

12Eleven participants hit this time limit in the experiment (o�en only for the �rst
taskset).

8

7.2.1 Selection and filtering. �e experiment uses real tasks
selected from four websites o�ering programming help: Stack
Over�ow (h�p://stackover�ow.com/), Super User (h�p://superuser.
com/), commandlinefu.com (h�p://www.commandlinefu.com/), and
Bash One-Liners (h�p://www.bashoneliners.com/).

To obtain candidate tasks from the �le system domain, we �rst
extracted all questions from these websites tagged with “bash” and
“�nd”, and obtained 401 questions. We retained the 146 of them
that can be answered using the 17 bash utilities that appear in
Tellina’s training set. We did not �lter tasks by the �ags, and a task
may require a �ag that is not in Tellina’s training set. Finally, we
randomly sampled 16 out of the 146 tasks. �e answers to those 16
tasks use find, xargs, mv, cp, rm, grep, wc, ls, and tar.

7.2.2 Rewriting. We asked researchers who are not involved in
this project to paraphrase the descriptions of the selected tasks. �is
prevents the original task from being trivially found on the web
in case the user copy-and-paste the task description into a search
engine. Eight researchers in total contributed to the rewriting,
and each of them rewrote 1 to 3 tasks. �is avoids biasing the
participants’ phrasing of their natural language queries to be similar
to a speci�c writer.

7.2.3 File system. We selected a code repository from GitHub13

and used it as the �le system for our tasks. �e �le hierarchy is 4
levels deep and consists of 29 folders and 62 �les. We changed all
constant values in the task descriptions to match the contents of
this �le system.

7.3 Tool Interface
Tellina is a web application which can be accessed through a URL.
It has an interface similar to the Google search engine. A user types
a natural language sentence describing a task, then the website
displays the RNN model’s top 20 bash command translations of the
sentence.

To help users understand the output commands, a user can hover
over a token, such as a program name or �ag, and see the man page
description of the token. To provide a level playing �eld and avoid
con�ating this explanation feature with use of Tellina, we gave
the participants a third-party tool, explainshell (h�p://explainshell.
com/), which provides exactly the same man-page explanation
functionality in the control treatment.

To help users in all treatments understand the e�ects of their
commands, we provided a visual �le system comparison tool (simi-
lar to Araxis Merge, KDi�3, or Meld) that indicates which �les and
directories di�er and permits the user to interactively navigate the
�le system. �is enables a user to understand what is wrong with
his or her command without interpreting voluminous, possibly
confusing di� output.

7.4 Training
Before starting a taskset, each participant completes a training
task with the appropriate treatment condition. �e Tellina website
includes a tutorial to explain the usage of the interface (e.g., the
input should be a complete imperative sentence) and the output

13h�ps://github.com/icecreamma�/class-website-template. �is repository is ran-
domly selected and is not related to the authors of this paper.

Variable Domain

Independent

Subject {1, . . . ,35}
Treatment {Control, Tellina}

Taskset {TS1,TS2}
Order {1st,2nd}

Dependent Time spent (sec.) [0, 2400]
Success rate [0,1]

Table 4: Experimental variables. Order indicates whether the
taskset was the user’s �rst or second taskset. Success rate is the
fraction of the 8 tasks in the taskset that the user completed suc-
cessfully.

presentation. We assumed all participants were familiar with web
search and man pages and did not provide training for them.

7.5 �antitative results
Table 4 lists the independent and dependent variables. We per-
formed a four-way analysis of variance (ANOVA) for each depen-
dent variable. �e statistically signi�cant results (p < 0.01) are that
all four independent variables predict the time spent, and subject
and taskset also predict the success rate.

�e e�ects of subject on time are expected, because the par-
ticipants are at di�erent bash pro�ciency levels. �ere was no
statistically signi�cant e�ect of subject on success rate because the
generous time limits (10 minutes per task, 40 minutes per taskset)
enabled most users to complete most tasks. �e overall success rate
was 88%, and we were more interested in how to help programmers
become more e�cient, because we know that programmers can
manage to solve tasks if given enough time.

�e e�ects of order are also expected. On average, the partici-
pants spent 20% more time on the �rst taskset they encountered
than on the second (1767 seconds vs. 1414 seconds), but were less
successful (84% vs. 92% success rate). �is learning e�ect re�ects in-
creasing participant familiarity with the example �le system, tools
such as �le system di�, and bash tricks they learned earlier in the
experiment.

�e e�ects of taskset indicate that we failed to create two tasksets
of equal di�culty. Users spent 24% more time, but were 10% less
successful, with taskset TS2.

Our counterbalanced factorial design enables the most interest-
ing e�ects, those of treatment, to be accurately determined despite
the e�ects of subject, order, and taskset. Participants in the Tellina
treatment spent on average 22% less time (1397 seconds vs. 1784 sec-
onds). �is indicates that Tellina helps programmers to write bash
commands in less time. �e e�ect of treatment on success rate is
signi�cant only at the p < 0.1 level (µTellina = 90%, µControl = 85%),
for the reasons noted above when discussing the e�ect of subject
on success rate.

7.6 �alitative Results
Each participant �lled out a questionnaire about their experience
during the study.

�e �rst part of the questionnaire consists of four Likert-scale
questions (table 5). On average the participants wanted to use
Tellina in the future (5.8/7). Tellina’s partially correct suggestions
were helpful (5.2/7) and did not slow down the users (3.2/7), but

9

http://stackoverflow.com/
http://superuser.com/
http://superuser.com/
http://www.commandlinefu.com/
http://www.bashoneliners.com/
http://explainshell.com/
http://explainshell.com/
https://github.com/icecreammatt/class-website-template

�estion Response
Do you want to use Tellina in the future? 5.8 ± 1.2
How o�en did partially correct suggestions
help you? 5.2 ± 1.5

How o�en were you slowed down by the
incorrect suggestions made by Tellina? 3.2 ± 1.4

How easy was it for you to correct the
incorrect suggestions made by Tellina? 4.6 ± 1.2

Table 5: Mean and standard deviation of the participant responses
to the Likert-scale questions. All questions have scale 1–7.

What features of Tellina are the most helpful to you?
What mistakes made by Tellina a�ected you most?
Please list the features that you think we should add to Tellina.
Please give us any additional comments you have about Tellina.
Table 6: Open-ended questions in the post-study questionnaire.

were di�cult to correct (4.6/7). �ese results con�rm our hypothesis
that programmers are resilient to noise in the Tellina output and
can use it as inspiration when formulating the correct command
themselves. Anecdotally, while using Tellina ourselves we learned
about command-line �ags that we had not known about.

�e second part of the questionnaire was four open-ended ques-
tions asking the participants to comment on speci�c features of
Tellina and suggest future improvement (table 6). Below summa-
rizes our �ndings.

Useful features. Many participants noted the usefulness of par-
tially correct suggestions. Even when the full command was not
correct, the web interface gave documentation and prompted the
users to look up command options that they otherwise would not
have remembered. Participants also liked the fact that Tellina sug-
gests multiple solutions, which allows users to compare them and
decide which one to try. Some participants liked Tellina’s argument-
�lling feature. Tellina returned an answer with constants appropri-
ate to the user’s query, enabling the user to try out the command
immediately without having to adjust the constants manually.

Limitations. Some participants noted that when Tellina sug-
gested a wrong command that was close to a correct suggestion,
it was di�cult to trouble-shoot exactly what went wrong. Partici-
pants were also frustrated by subtle syntactic errors that prevented
the commands from being run as is. (Tellina gives no guarantee that
its output is a legal bash command.) Some participants were slowed
down by incorrect argument forma�ing in Tellina’s output, such as
a missing “+” sign in the argument to find’s -mtime �ag. Sometimes
the RNN model suggested unusually complex commands (e.g., long
pipelines), and the participants found them distracting even if some
of the commands in them were correct.

Suggestions. Many participants requested be�er explanations of
the output commands, so that they can be�er decide which one to
try. For example, Tellina could incorporate a bash→English transla-
tor (either hand-coded or a learned RNN model) to explain its bash
command output. Some participants suggested �agging which com-
mands are syntactically valid, or providing sample output. Some

participants also suggest interactive features that would enable the
user to correct the output or give hints such as “the task needs to
be solved using the tar utility”.

8 RELATEDWORK
Programming by natural language. �ere has been extensive

research on synthesizing programs from natural language descrip-
tions. Rule-based approaches have been developed to synthesize
SQL queries [18], SmartPhone scripts [17], Java method speci�ca-
tions [25], and Spreadsheet programs [9]. �ese methods can o�en
produce complex programs, but may require non-trivial manual
e�ort to build and maintain. Recently, machine learning techniques
have been developed to build probabilistic models to represent the
joint distribution of text and programs [5, 10, 13]. We extend this
line of work by introducing an RNN encoder-decoder approach
which can be applied to many di�erent synthesis problems with
relatively li�le domain-speci�c e�ort.

Our approach is also related to other deep-learning based PBNL
approaches. DeepAPI [8] addresses the problem of retrieving API
call sequences based on the user’s natural language queries, us-
ing the RNN encoder-decoder model. CodeMend [30] proposed
encoder-decoder models which complete partial programs by jointly
modeling user’s natural language input and the contextual pro-
grams. In comparison, Tellina directly synthesizes executable pro-
grams from NL descriptions and is able to handle open world argu-
ments using our novel argument �lling algorithm. Neural Program-
mer [23, 24] is a recently proposed deep learning architecture that
allows direct encoding of discrete operators to improve learning e�-
ciency. Since command languages cannot be succinctly represented
using a few core operators, it is di�cult to apply this approach to
our domain. In addition, we present the �rst controlled user study
demonstrating signi�cant e�ectiveness of such techniques, despite
their imperfect accuracy.

Semantic parsing. �e problem of mapping natural language to
programs or other formal representations has been extensively stud-
ied in the natural language processing community [1, 3, 6, 29, 36].
Earlier machine learning research in this area focus on learning
formal grammars for mapping language to meaning representa-
tions [3, 36]. However, it has recently been shown that deep-
learning based approaches work equally well, for example to pro-
duce regular expressions [16] and database queries [6, 23]. We ex-
pand the domain by studying deep learning for producing command
languages, and evaluate the e�ect of such systems on programmers.

Deep learning in so�ware engineering. Finally, deep-learning
based approaches have also been applied to other so�ware en-
gineering problems, such as defect prediction [34], program feature
extraction [22, 28], summarizing code using natural language [12],
and program induction [7, 15]. In general, these applications lever-
age big data and design custom neural architectures for each appli-
cation. In comparison, our focus is on studying the usefulness RNN
encoder-decoder models, which have been shown to work well for
a wide variety of program synthesis problems.

10

9 CONCLUSION
�is paper presents an approach for program synthesis from natu-
ral language that leverages state-of-the-art neural machine transla-
tion techniques, augmented with slot (argument) �lling and other
techniques. We studied the complex domain of bash �le system
operations and conducted a controlled user study which shows that
our tool, Tellina, signi�cantly improves programmers’ e�ciency
despite being imperfect in its program predictions.

As future work, it would be interesting to extend our neural
architecture so that the entire framework for entity recognition,
template translation and argument �lling can be learned end-to-end.
It should also be possible to extend the approach to cover more
programming languages.

REFERENCES
[1] Yoav Artzi and Luke Ze�lemoyer. 2011. Bootstrapping Semantic Parsers from

Conversations. In Proceedings of the Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP ’11). Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 421–432. h�p://dl.acm.org/citation.cfm?id=2145432.
2145481

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine
Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473
(2014). h�p://arxiv.org/abs/1409.0473

[3] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic
Parsing on Freebase from �estion-Answer Pairs.. In EMNLP, Vol. 2. 6.

[4] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
CoRR abs/1412.3555 (2014). h�p://arxiv.org/abs/1412.3555

[5] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare,
Mark Marron, Sailesh R, and Subhajit Roy. 2016. Program Synthesis Using
Natural Language. In Proceedings of the 38th International Conference on So�ware
Engineering (ICSE ’16). ACM, New York, NY, USA, 345–356. DOI:h�p://dx.doi.
org/10.1145/2884781.2884786

[6] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural A�en-
tion. In Proceedings of the 54th AnnualMeeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Berlin, Germany, 33–43. h�p://www.aclweb.org/anthology/P16-1004

[7] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines.
arXiv preprint arXiv:1410.5401 (2014).

[8] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API Learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of So�ware Engineering (FSE 2016). ACM, New York, NY,
USA, 631–642. DOI:h�p://dx.doi.org/10.1145/2950290.2950334

[9] Sumit Gulwani and Mark Marron. 2014. NLyze: interactive programming by
natural language for spreadsheet data analysis and manipulation. In International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014. 803–814. DOI:h�p://dx.doi.org/10.1145/2588555.2612177

[10] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java Expressions from
Free-form �eries. In Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). ACM, New York, NY, USA, 416–432. DOI:h�p://dx.doi.org/10.
1145/2814270.2814295

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. DOI:h�p://dx.doi.org/10.1162/neco.
1997.9.8.1735

[12] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Ze�lemoyer. Sum-
marizing source code using a neural a�ention model. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, Vol. 1. 2073–
2083.

[13] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014. Phrase-Based
Statistical Translation of Programming Languages. In Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Re�ections on
Programming & So�ware (Onward! 2014). ACM, New York, NY, USA, 173–184.
DOI:h�p://dx.doi.org/10.1145/2661136.2661148

[14] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[15] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. 2015. Neural random-
access machines. arXiv preprint arXiv:1511.06392 (2015).

[16] Nate Kushman and Regina Barzilay. 2013. Using Semantic Uni�cation to Generate
Regular Expressions from Natural Language. In Human Language Technologies:
Conference of the North American Chapter of the Association of Computational
Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,

Georgia, USA, Lucy Vanderwende, Hal Daumé III, and Katrin Kirchho� (Eds.).
�e Association for Computational Linguistics, 826–836. h�p://aclweb.org/
anthology/N/N13/N13-1103.pdf

[17] Vu Le, Sumit Gulwani, and Zhendong Su. 2013. Smartsynth: Synthesizing
smartphone automation scripts from natural language. In Proceeding of the 11th
annual international conference on Mobile systems, applications, and services. ACM,
193–206.

[18] Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural Language
Interface for Relational Databases. PVLDB 8, 1 (2014), 73–84. h�p://www.vldb.
org/pvldb/vol8/p73-li.pdf

[19] Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon, Nate Kushman,
and Regina Barzilay. 2016. Neural Generation of Regular Expressions from
Natural Language with Minimal Domain Knowledge. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, EMNLP
2016, Austin, Texas, USA, November 1-4, 2016, Jian Su, Xavier Carreras, and
Kevin Duh (Eds.). �e Association for Computational Linguistics, 1918–1923.
h�p://aclweb.org/anthology/D/D16/D16-1197.pdf

[20] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, and others.
2008. Introduction to information retrieval. Vol. 1. Cambridge university press
Cambridge.

[21] D. G. McVitie and L. B. Wilson. 1971. �e Stable Marriage Problem. Commun.
ACM 14, 7 (July 1971), 486–490. DOI:h�p://dx.doi.org/10.1145/362619.362631

[22] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural
Networks over Tree Structures for Programming Language Processing. In Pro-
ceedings of the �irtieth AAAI Conference on Arti�cial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA., Dale Schuurmans and Michael P. Wellman (Eds.).
AAAI Press, 1287–1293. h�p://www.aaai.org/ocs/index.php/AAAI/AAAI16/
paper/view/11775

[23] Arvind Neelakantan, �oc V. Le, Martı́n Abadi, Andrew McCallum, and Dario
Amodei. 2016. Learning a Natural Language Interface with Neural Programmer.
CoRR abs/1611.08945 (2016). h�p://arxiv.org/abs/1611.08945

[24] Arvind Neelakantan, �oc V. Le, and Ilya Sutskever. 2015. Neural Programmer:
Inducing Latent Programs with Gradient Descent. CoRR abs/1511.04834 (2015).
h�p://arxiv.org/abs/1511.04834

[25] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. 2012. Inferring method speci�cations from natural language API
descriptions. In So�ware Engineering (ICSE), 2012 34th International Conference
on. IEEE, 815–825.

[26] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics (ACL ’02).
Association for Computational Linguistics, Stroudsburg, PA, USA, 311–318. DOI:
h�p://dx.doi.org/10.3115/1073083.1073135

[27] Emilio Pariso�o, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. 2016. Neuro-Symbolic Program Synthesis. CoRR
abs/1611.01855 (2016). h�p://arxiv.org/abs/1611.01855

[28] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. 2015. Building
program vector representations for deep learning. In International Conference on
Knowledge Science, Engineering and Management. Springer, 547–553.

[29] Chris �irk, Raymond J. Mooney, and Michel Galley. 2015. Language to Code:
Learning Semantic Parsers for If-�is-�en-�at Recipes. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. �e Association for Computer Linguistics, 878–888.
h�p://aclweb.org/anthology/P/P15/P15-1085.pdf

[30] Xin Rong, Shiyan Yan, Stephen Oney, Mira Dontcheva, and Eytan Adar. 2016.
CodeMend: Assisting Interactive Programming with Bimodal Embedding. In
Proceedings of the 29th Annual Symposium on User Interface So�ware and Tech-
nology (UIST ’16). ACM, New York, NY, USA, 247–258. DOI:h�p://dx.doi.org/10.
1145/2984511.2984544

[31] M. Schuster and K.K. Paliwal. 1997. Bidirectional Recurrent Neural Networks.
Trans. Sig. Proc. 45, 11 (Nov. 1997), 2673–2681. DOI:h�p://dx.doi.org/10.1109/78.
650093

[32] Ilya Sutskever, Oriol Vinyals, and �oc V Le. 2014. Sequence to sequence
learning with neural networks. In Advances in neural information processing
systems. 3104–3112.

[33] Oriol Vinyals, L ukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geo�rey
Hinton. 2015. Grammar as a Foreign Language. In Advances in Neural Information
Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garne� (Eds.). Curran Associates, Inc., 2773–2781. h�p://papers.nips.cc/paper/
5635-grammar-as-a-foreign-language.pdf

[34] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International Conference
on So�ware Engineering. ACM, 297–308.

[35] Yonghui Wu, Mike Schuster, Zhifeng Chen, �oc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Je�
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, �ukasz Kaiser, Stephan

11

http://dl.acm.org/citation.cfm?id=2145432.2145481
http://dl.acm.org/citation.cfm?id=2145432.2145481
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1412.3555
http://dx.doi.org/10.1145/2884781.2884786
http://dx.doi.org/10.1145/2884781.2884786
http://www.aclweb.org/anthology/P16-1004
http://dx.doi.org/10.1145/2950290.2950334
http://dx.doi.org/10.1145/2588555.2612177
http://dx.doi.org/10.1145/2814270.2814295
http://dx.doi.org/10.1145/2814270.2814295
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/2661136.2661148
http://aclweb.org/anthology/N/N13/N13-1103.pdf
http://aclweb.org/anthology/N/N13/N13-1103.pdf
http://www.vldb.org/pvldb/vol8/p73-li.pdf
http://www.vldb.org/pvldb/vol8/p73-li.pdf
http://aclweb.org/anthology/D/D16/D16-1197.pdf
http://dx.doi.org/10.1145/362619.362631
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://arxiv.org/abs/1611.08945
http://arxiv.org/abs/1511.04834
http://dx.doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1611.01855
http://aclweb.org/anthology/P/P15/P15-1085.pdf
http://dx.doi.org/10.1145/2984511.2984544
http://dx.doi.org/10.1145/2984511.2984544
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/78.650093
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cli� Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macdu� Hughes, and Je�rey Dean. 2016.
Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation. CoRR abs/1609.08144 (2016). h�p://arxiv.org/abs/1609.
08144

[36] Luke S. Ze�lemoyer and Michael Collins. 2005. Learning to Map Sentences to
Logical Form: Structured Classi�cation with Probabilistic Categorial Grammars.
In In Proceedings of the 21st Conference on Uncertainty in AI. 658–666.

12

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

	Abstract
	1 Introduction
	2 Problem Definition and Formal Overview
	3 RNN Encoder-decoder Model for Translation
	3.1 Recurrent Neural Network (RNN)
	3.2 Encoder-decoder models
	3.3 Attention
	3.4 Training and hyperparameter setting

	4 Argument Filling
	4.1 Template Generation
	4.2 Program Slot Filling

	5 Data
	5.1 Data Collection
	5.2 Data Statistics
	5.3 Data split

	6 Model Evaluation
	6.1 Translation Accuracy
	6.2 Error Analysis

	7 User Study
	7.1 Experiment Design
	7.2 Tasks
	7.3 Tool Interface
	7.4 Training
	7.5 Quantitative results
	7.6 Qualitative Results

	8 Related Work
	9 Conclusion
	References

