
Mock Object Creation

for Test Factoring

David Saff, Michael D. Ernst

MIT CSAIL

PASTE, 2004 June

2/24

Motivation

• Continuous testing plug-in for the Eclipse

IDE*

• Test suite:

• Problem: find out about errors faster

• Solution: mock objects to replace Eclipse
framework

Set up Eclipse

30 secs 1 sec / plug-in test

* Saff, Ernst, ETX 2004: Continuous

testing in Eclipse

3/24

Outline

• Mock objects introduced

• Test factoring introduced

• Mock object creation for test factoring

• Conclusion

4/24

Outline

• Mock objects introduced

• Test factoring introduced

• Mock object creation for test factoring

• Conclusion

5/24

Plug-in

Unit test for plug-in

Provided Checked

6/24

Plug-in

System Test for plug-in

Eclipse

Provided Checked

7/24

Unit Test with Mock Object

Mock Objects replacing Eclipse

Plug-in

Provided Checked

Checked Checked

CheckedProvided

ProvidedProvided

A mock object:

• provides part of the functionality of the original object(s)

• is focused on allowing the test to proceed

8/24

Mock objects for our example

• Using a debugger, determined:

– 147 static calls from plug-in to framework

• Defined on 49 classes

– 8 callbacks from framework to plug-in

• Substantial work to define mock objects.

• How well can we automate this process

without additional manual effort?

9/24

Outline

• Mock objects introduced

• Test factoring introduced

• Mock object creation for test factoring

• Conclusion

10/24

What is a factored test?

• Split a system test into several smaller

factored tests that

– exercise less code than system test

– can be added to the suite and prioritized

• Find out about errors faster

– embody assumptions about future code

changes

11/24

Pros and cons of factored tests

• Pro: factored test should be faster if system test

– is slow

– requires an expensive resource or human interaction

• Pro: isolates bugs in subsystems

• Con: if assumptions about how developer will

change the code are violated, can lead to:

– false negatives: OK, some delay

– false positives: bad, distract developer

12/24

Change language

• When change language is violated, factored test

must be discarded and re-created

– Can detect violation through analysis, or incorrect

result.

db.insertRecord(“alice”, “617”);

db.insertRecord(“bob”, “314”);

db.insertRecord(“bob”, “314”);

db.insertRecord(“alice”, “617”);

Change method order?

db.insertRecords(

“alice: 617, bob: 314”

);

Replace with equivalent call?

Change language: the set of tolerated changes

13/24

A small catalog of test factorings

• Like refactorings, test factorings can be

catalogued, reasoned about, and

automated

Separate Sequential Code:

Also “Unroll Loop”, “Inline Method”, etc. to produce sequential code

14/24

A small catalog of test factorings

Original test

Mocked Eclipse

Plug-in

Mocked Plug-in

Eclipse

Introduce Mock:

15/24

Binkley ’97

(static)

This work

(static +

dynamic)

Related work

Developer makes change

Produce

factored

tests

Slice

based on

change

Run

factored

tests

Run

factored

tests

Run

original

tests

Early warning

if assumptions

hold

Correct

test

results

16/24

Outline

• Mock objects introduced

• Test factoring introduced

• Mock object creation for test factoring

• Conclusion

17/24

Basic Procedure:

Trace Capture

Tested Realm

Mocked Realm

Params,

Returns,

Callbacks

MockExpectations

“B
o
u
n
d
a
ry

”

18/24

Basic Procedure: code generation

• MockExpectations encodes a state

machine:

MockExpectations

0

1

2

3

DebugPlugin.getDefault() → [object id 347]

[object id 347].getLaunchManager() → [object id 78]

[object id 78].uniqueLaunchNameFrom(“a”) → “a134”

19/24

Expanding the change language

• Current tolerated change language

includes:

– Extract method

– Inline method

• Using static analysis on mocked code,

improve the procedure to include:

– Reorder calls to independent objects

– Add or remove calls to pure methods

20/24

Reorder calls to independent

objects

• Group objects that share state into state

sets

• One MockExpectations per state set:

MockExpectations A

0 1 2 3

MockExpectations C

0 1 2 3

MockExpectations B

0 1 2 3

21/24

Add or remove pure method calls

• Allow reordering, addition, removal of calls

to pure methods:

MockExpectations

0

1

DebugPlugin.getDefault() → [object id 347]

[object id 347].getLaunchManager() → [object id 78]

[object id 78].uniqueLaunchNameFrom(“a”) → “a134”

[object id 78].removeLaunch(“a134”) → NEXT STATE

22/24

Outline

• Mock objects introduced

• Test factoring introduced

• Mock object creation for test factoring

• Conclusion

23/24

Future work

• Develop a framework for test factoring

• Implement the “Implement Mock” factoring

• Analytic evaluation of framework

– Capture real-project change data*

– Measure notification time, false positives

• Case studies of test factoring in practice

– How do developers feel about the feedback

they receive?
* Saff, Ernst, ISSRE 2003: Reducing

wasted development time via

continuous testing

24/24

Conclusion

• Test factoring can indicate errors earlier

• “Introduce Mock” is an important test

factoring for complicated systems

• We propose:

– Dynamic analysis for building mock objects

– Static analysis for increasing the change

language

• Mail: saff@mit.edu

25/24

26/24

A small catalog of test factorings

• Separate Sequential Test:

– [graphic]

• Unroll Loop:

– [graphic]

• Introduce Mock:

– [graphic]

27/24

• Frequent automatic testing in

continuous testing.

Frequent testing is good:

• Frequent manual testing in

agile methodologies

• A testing framework should minimize

the cost of frequent testing

– Suite completes rapidly

– First failing test completes rapidly

28/24

Getting faster to the first failing test

• Default:

• Test selection:

• Test prioritization:

• Test factoring:

B1 B2 A1 A2 A3

A1 A2 A3

B2A1A2 A3B1

B1’B2’A1’A2’ A2 A3’ B2A1 B1 …

29/24

Dynamic, change-independent

test factoring

• Dynamic: instrument and run the original

test

• Change-independent: factoring happens

before any changes are made.

– Requires a hypothesized change language

• Binkley ’97: Static, change-dependent test

factoring

30/24

Automatic test factoring:

change-dependence

• Change-dependent test factoring:

– After tested code is changed, generate new

tests with same result as old tests for that

change.

• Change-independent test factoring:

– Before tested code is changed, generate new

tests that have the same result as old tests for

some set of changes.

Better

31/24

Automatic test factoring: static vs.

dynamic analysis

• Static analysis (Binkley ’97)

– Analyze code to determine mock object behavior

– Well-suited for change-dependent factoring

– May fail

• without source

• when dependent on file system or user interaction

– Guaranteed change language may be restrictive

• Dynamic analysis (this work)

– Instrument and run the original test, gather logs

– May run original test after factored test fails

