
Static Lock Capabilities for Deadlock Freedom

Colin S. Gordon Michael D. Ernst Dan Grossman
University of Washington

{csgordon,mernst,djg}@cs.washington.edu

Abstract
We present a technique — lock capabilities — for statically verify-
ing that multithreaded programs with locks will not deadlock. Most
previous work on deadlock prevention requires a strict total order
on all locks held simultaneously by a thread, but such an invari-
ant often does not hold with fine-grained locking, especially when
data-structure mutations change the order locks are acquired. Lock
capabilities support idioms that use fine-grained locking, such as
mutable binary trees, circular lists, and arrays where each element
has a different lock.

Lock capabilities do not enforce a total order and do not prevent
external references to data-structure nodes. Instead, the technique
reasons about static capabilities, where a thread already holding
locks can attempt to acquire another lock only if its capabilities
allow it. Acquiring one lock may grant a capability to acquire fur-
ther locks; in data-structures where heap shape affects safe locking
orders, the heap structure can induce the capability-granting rela-
tion. Deadlock-freedom follows from ensuring that the capability-
granting relation is acyclic. Where necessary, we restrict aliasing
with a variant of unique references to allow strong updates to the
capability-granting relation, while still allowing other aliases that
are used only to acquire locks while holding no locks.

We formalize our technique as a type-and-effect system, demon-
strate it handles realistic challenging idioms, and use syntactic tech-
niques (type preservation) to show it soundly prevents deadlock.

Categories and Subject Descriptors D.2.4 [Program Verifica-
tion]: Correctness proofs; D.3.3 [Language Constructs and Fea-
tures]: Concurrent programming structures
General Terms Languages, Theory, Verification
Keywords Deadlock, Uniqueness, Concurrency, Capabilities

1. Introduction
Deadlock occurs when there is a cycle of threads, each blocked
waiting for a resource (usually a lock) held by the next thread in
the cycle. Deadlock in concurrent software remains a problem de-
spite years of experience in industry and research. State-of-the-art
static techniques for preventing deadlock work well for some pro-
grams, but sometimes differ greatly from how programmers reason
about avoiding deadlock, and they are ill-suited for certain classes
of important programs. We propose a technique to address those
shortcomings. Our system makes it possible to express locking or-
ders in a more expressive manner, and to verify deadlock freedom

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

TLDI’12, January 28, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1120-5/12/01. . . $10.00

for algorithms not captured by previous work. Our solution also
complements the core approach used in most previous work: the
two approaches can be combined to yield a yet more expressive
system.

1.1 Fine-grained Locking and Deadlock Freedom

A long line of research develops techniques that avoid deadlock for
coarse-grained locking, where a lock guards access to an entire data
structure. The literature on deadlock freedom for fine-grained lock-
ing, where different locks guard different parts of a larger structure,
is less developed. No prior technique for static deadlock freedom
can verify that the following four threads are deadlock free (which
they are) when n2 == n1.left and n3 == n1.right:

T1 : sync n2 {}
T2 : sync n3 {}
T3 : sync n1 {sync n1.left {sync n1.right {}}}
T4 : sync n1 {sync n1.right {sync n1.left {}}}

n1
↙ ↘

n2 n3

Most prior techniques either require a total order on the locks ac-
quired [5, 16] (precluding thread 3 or thread 4), or assume strong
encapsulation for recursive structures [1] (precluding the interior
pointers n2 and n3 of threads 1 and 2). Verifying deadlock freedom
for fine-grained locking becomes even more difficult for mutable
data structures where locks may be reordered over time. Another
complication is early lock releases (releasing a lock before another
held lock that is safe to acquire after the first). Finally, verifying
locking orders based on mutable heap structure must also ensure
the relevant portion of the heap remains acyclic.

There are important examples similar to the above that are
handled by few existing static techniques:

Trees Only a few static approaches [1, 5, 16] can verify deadlock
freedom in binary trees whose structure changes over time, such as
splay trees (shown in Figure 1 and discussed in Section 4.1).

Array Element Locking While array indices impose a total or-
dering on array elements (assuming no duplicate entries), verifying
that elements were locked according to that order requires either a
powerful integer solver or programmer aid in the form of writing
explicit branches to acquire locks differently depending on which
of multiple indices is larger. We address this example in Section
4.2.

Circular Lists Operating system kernels often use a circular list
of running processes. For performance, the list nodes (processes)
are locked individually. Consider atomically transferring a resource
between processes: this requires locking multiple processes simul-
taneously. With a circular list, the traditional approach of requiring
all threads to acquire shared objects in a consistent order falls flat
because there is no sensible logical ordering on process locks short
of resorting to memory addresses. Encapsulation-based techniques
also fail because the process locks must reference each other and
be directly accessible to all kernel subsystems. We address this ex-
ample in Section 4.4.

class Node {
u guarded<this> Node left;
u guarded<this> Node right;

}
...
let final n = ... in
lock (n) {

let final x = n.right in
if (x) {
lock (x) {
if (x.left) {

let final v_name = x.left in
lock (x.left) {
let nonfinal v = dread(x.left) in
let final w_name = v.right in
let nonfinal w = dread(v.right) in
// v.right := x
v.right := dread(n.right);
x.left := dread(w);
n.right := dread(v);

}}}}}

Figure 1. Splay tree rotation in the core language. Assume n refers
to the node from which to rotate. dread is a destructive read,
and variables may be bound as final (i.e. non-assignable) or
nonfinal. The extra final variables (x, v name, w name) provide
names for the type system to track.

1.2 Our Approach

Our technique — lock capabilities — handles the examples above
and more. The core idea is a simple but expressive locking pro-
tocol that can be embedded in a type system or other verification
technique. Assuming a tree-shaped partial order on locks, to a first
order the locking protocol is as follows:

• A thread that holds no locks may acquire any (single) lock.

• A thread may acquire any immediate successor (in the tree
ordering on locks) of a lock it currently holds.

We say that acquiring a lock named x grants the holding thread
a unique capability 〈x〉 as long as the lock is held. We say that
x’s children (immediate successors) in the tree-shaped partial order
are guarded by that capability, and that x grants the capability to
acquire its successors. Intuitively, this approach is sound because
the fact that this capability-granting relation is acyclic ensures
that no threads will deadlock with each other by following the
order, and using locks for exclusive capability ownership ensures
that no threads will deadlock acquiring locks guarded by the same
capability.1

Two features of lock capabilities make them well-suited for fine-
grained locking:

Flexible Acquisition Orders Lock capabilities do not require a
total order on all locks held simultaneously by a single thread. This
is because the thread holding a lock x is the only thread that can
lock more than one lock guarded by x’s capability. (Another thread
could acquire one such lock as its first lock.) This flexibility lets
lock capabilities support examples like fine-grained locking among
set elements with no natural ordering among them (e.g. the circular
list above): suppose that each element is guarded by the same per-
set capability; then threads that must hold multiple elements’ locks
simultaneously are serialized via the per-set lock, but parallelism
with threads that require only one element’s lock is still permitted.

Natural Partition Reordering If part of the capability-granting
relation can be isolated to one thread, then that thread can safely

1 Reordering locks and early lock releases introduce a subtlety when a
thread holds a lock l and an ancestor of l, but not l’s immediate predecessor
in the ordering; the necessary restrictions are described in Section 3.5.

Programs P ::= class e
class ::= class c {field}
field ::= τ f

Paths p ::= x | p. f
Expressions e ::= if e e e | p := e | lock p e

| dread(p) | spawn x e | null | p
| let q x = e in e
| let u root x, final y = new c in e

Final Qualifiers q ::= nonfinal | final
Types τ ::= α c

Base Types α ::= u | guardless | borrowed〈x〉
Unique Types u ::= u root | u guarded〈x〉

r, t,x,y,z ∈ Variables f ∈ Fields c ∈ Classes

Figure 2. Core language syntax.

change the relation. In cases where heap structure should dictate
the locking order, such as in tree-shaped data structures, reorder-
ing follows naturally as long as cycles are not introduced into the
capability-granting relation. This can be enforced by using unique
references to carry the guard information and strong updates to
change a lock’s guard. Traditional unique references prevent shar-
ing a structure across threads, so we introduce the concept of par-
tially-unique references. A u guarded reference to an object is
the only (unique) reference with the guard in its type. Other ref-
erences — guardless references — may alias the u guarded refer-
ence but carry only the class type of their referent, and are therefore
only suitable for acquiring a thread’s first lock. Mutating the struc-
ture through u guarded references naturally expresses the desired
changes in the capability-granting relation. For examples like the
splay tree in Figure 1, mutations with the u guarded references to
nodes also express the changes in the capability-granting relation.
We also discuss a way to define the capability-granting relation that
is unrelated to heap references (Section 4.4).

This paper presents the lock capabilities verification approach
as a static capability type system [20]: if the program type-checks,
then the program will not deadlock. To enforce the key invariants
of our system, we build on a range of prior work, including work
on uniqueness [14] for controlling aliasing, a shallow embedding of
graph rewriting to reason about lock ordering cycles and reachabil-
ity, and work on static race freedom that uses lightweight singleton
types [10] to name locks and their associated static capabilities con-
sistently.

Sections 2 and 3 present a type system to verify deadlock free-
dom statically using lock capabilities. Section 4 illustrates how
lock capabilities enable static verification for several challenging
examples that can be checked by few if any prior systems: splay
tree rotation, locking multiple array elements, and locking multiple
nodes of a circular list. Section 5 describes the proof of soundness
for the lock capabilities type-and-effect system. Finally, Section 6
compares lock capabilities to prior approaches, and Section 7 con-
cludes.

2. Core Language and Operational Semantics
To explain our work and prove it sound, we define a core language
with classes, objects, and fields but — for simplicity — omitting
methods (Section 4.3 describes how to add them). Figure 2 presents
the syntax. Aside from the types, the language is mostly straightfor-
ward, containing conditionals, mutable variables and objects, syn-
chronization on objects (like in Java, every object can serve as a
lock), destructive reads, a spawn operation to create a new thread,
a constant null value, field dereferences, variable binding, and al-
location (with the result bound to two locals — see below). We
focus on structured locking in this paper, rather than unstructured
with explicit lock and unlock statements. This is not a fundamen-

tal restriction, and extension to unstructured locking is discussed in
Section 4.6.

The types include two types of unique references: u guarded〈x〉
references are unique references that associate their referent with
a capability and are stored only in fields, and u root references are
unique references whose referents are not associated with any capa-
bility and are stored only in variables. U guarded references are so
named because they are the only references that carry the guard of
their referent in their type. dread(p) is a destructive read of a path
expression, used to atomically set a reference to null and return its
old value; this is standard when formalizing systems with unique
references. It is possible to convert a u guarded reference to a u root
reference by destructively reading a field, and to convert the other
direction by storing a u root reference into a u guarded field. These
operations break and create associations, respectively, between ob-
jects and guarding capabilities. There are also borrowed references
(temporary aliases of u guarded references), borrowed〈x〉, which
may only be stored in variables; and regular references with no du-
plication restriction (called guardless references here because they
carry no guard information), which may be stored in fields or vari-
ables. Section 3 describes the types in more detail.

The syntax for allocation and thread creation is unusual. Allo-
cation takes the form of a lexical binding that binds two variables
to the newly allocated location, one as a mutable unique reference
and one as a final (cannot be rebound) variable bound to a guardless
reference. The final reference is necessary to name the new object
in the type system as soon as it is allocated, since the type system
immediately adds assertions about the new allocation; this is not un-
common in type systems with simple singleton types [10, 18, 19].
The unique reference must necessarily be mutable so it can remain
useful (be destructively read). The spawn operation specifies a sin-
gle variable to pass (by destructive read) to the new thread’s expres-
sion, allowing transfer of a unique reference to the new thread.

Figure 3 presents the operational semantics, including evalua-
tion contexts and syntax extensions for run-time forms. A program
state consists of a heap H and a set of threads Ts. The heap maps
locations l to objects of the form 〈c,F, t〉 where c is the class tag,
F is a map from field names to values, and t is an optional thread
identifier representing which thread, if any, holds the implicit lock
associated with that object. Each thread has a unique identifier tid,
a map V from variables to values, a list of held locks Ls, and an
expression e being reduced. Each heap location has at most one dis-
tinguished reference (l•) that will be typed as u guarded or u root.
The tags (•) have no runtime effect; they only simplify proving that
uniqueness is preserved. The semantics consist of three transition
functions:

• H,Ts → H ′,Ts′ selects a thread to reduce and reduces it. It also
handles spawning a new thread.

• H,T → H ′,T ′ selects the innermost expression to evaluate.

• H, tid,V,Ls,e → H ′,V ′,Ls′,e′ reduces the expression e of
thread tid in heap H, environment V , and lock set Ls.

Most of the rules are standard, with a couple minor exceptions,
below. We assume an α-renamed program, so no two let expres-
sions bind the same variable.

• E-SPAWN: The rule for spawning a thread performs a destruc-
tive read on a specific variable.

• E-WVAR, E-DVAR, E-VAR: We model mutable variables
rather than performing binding by substitution. This simplifies
the semantics for destructive reads. We use the notation Dup(v)
to preserve uniqueness of tagged value; it ensures there is at
most one l• for any l in the heap’s domain (Dup(l•) = l).

• E-*LOCK: The semantics support recursive lock acquisition (re-
peated acquisition by the holding thread). When an object’s im-
plicit lock is not held, the owner field of its heap value is None.
When the owner field is Some(tid), the thread holding the
lock has identifier tid (E-LOCK). A thread can acquire a lock
it already owns (E-RECLOCK). When releasing the lock, the
rules differentiate a recursively acquired lock (E-RECUNLOCK)
from a normal lock (E-UNLOCK) by checking if the lock l
being released appears in the lockset after removing the most
recently-acquired lock.

• E-NEW: Allocation binds two variables, as mentioned above.
One copy of the value is unique, while the other is not. This
is not the standard notion of a unique reference, but will be
explained in full in Section 3.2.

• E-DVAR, E-DFIELD: The semantics provide destructive reads
that atomically set a variable or field to null and return the origi-
nal value. This is common for semantics with unique references,
as such an operation avoids duplicating a reference.

3. Core Typing Ideas
This section describes the main ideas of the type system. The type
system preserves two primary properties:

• If a thread holds no locks, it may acquire any lock. Otherwise a
thread may acquire only locks for which it holds capabilities.

• The capability-granting relation (the relation determining which
other locks each lock grants a capability to acquire) is acyclic.

The main typing judgement is ϒ;Γ;L
 e : τ;ϒ′. Here ϒ tracks
trees and subtrees in the capability-granting relation, and which
(sub)trees are mutually disjoint. When checking code that modifies
the capability-granting relation, ϒ is consulted to verify that a
modification will not introduce a cycle. Because the relation can
change, ϒ′ is the new capability-granting relation after executing e.
Treatment of ϒ and ϒ′ is detailed in Section 3.6. Γ maps variables to
their types, with a qualifier describing variables as final (i.e., cannot
be rebound) or non-final. L is a list of final variables, each aliased
to a lock held at that program point during execution, making it the
static counterpart to Ls in the operational semantics. L also doubles
as the set of capabilities held at a program point; a static check that
a capability is possessed is a check for membership in L. Informally,
in a dynamic state where the assertions in ϒ hold, Γ provides
accurate types for variables, and the final variables in L correspond
to the runtime locks held, executing the expression e will produce
a value of type τ and change the capability-granting relation so the
assertions in ϒ′ hold (or get stuck trying to dereference null).

The remainder of this section explains the main typing ideas.
Section 3.1 elaborates on the role of capabilities. Section 3.2 ex-
plains our use of unique references, and our extension to partial
uniqueness. Section 3.3 explains the type system’s use of an exter-
nal must-alias analysis. Section 3.4 explains how we ensure that
side effects in one thread cannot invalidate typing information in
another thread. Section 3.5 explains the “orphaned lock” problem
introduced by early lock releases and changes to the capability-
granting relation. Section 3.6 explains how the type system keeps
the capability-granting relation acyclic, and Section 3.7 introduces
the typing rules.

3.1 Static Capabilities

A capability is acquired by acquiring a lock. For example, if a
thread acquires a lock that is must-aliased with the final variable x,
then while that lock is held the thread possesses the capability 〈x〉.
This capability permits acquiring locks guarded by 〈x〉. Note that x
is not guarded by 〈x〉: that would be a cycle. We sometimes refer to

Locations l Heaps H : Location �→ Class∗ (Field Map)∗ (ThreadID Option)
Field Maps F : Field �→ Value Threads T : ThreadID∗Environment∗ (Held Locks)∗Expression

Values v ::= l | l• | null Thread Sets Ts : Thread set
Program States S : Heap∗ (Thread set) Held Locks Ls : Location list

Environment V : Variable �→ Value Expressions e ::= . . . | withlock l e | l | l•
Paths p ::= . . . | l

Evaluation Contexts E ::= [·] | if E e e | E. f | E. f := e | l. f := E | x := E | lock E e | dread(E. f) | let q x = E in e | withlock l E

H,Ts → H ′,Ts′
E-THREAD

H,T → H ′,T ′

H,{T}∪Ts → H ′,{T ′}∪Ts

E-SPAWN
tid′ fresh V ′ = V [x �→ null] Vnew = {x �→V (x)}

H,{(tid,V,Ls,E[spawn x e])}∪Ts → H,{(tid,V ′,Ls,E[null]),(tid′,Vnew, [],e)}∪Ts

H,T → H ′,T ′ E-CONTEXT
H, tid,V,Ls,e → H ′,V ′,Ls′,e′

H,(tid,V,Ls,E[e]) → H ′,(tid,V ′,Ls′,E[e′])

H, tid,V,Ls,e → H ′,V ′,Ls′,e′
E-IF-TRUE

H, tid,V,Ls, if l[•] e1 e2 → H,V,Ls,e1
E-IF-FALSE

H, tid,V,Ls, if null e1 e2 → H,V,Ls,e2

E-WVAR
H, tid,V,Ls,x := v → H,V [x �→ v],Ls,Dup(v)

E-WFIELD
H, tid,V,Ls, l. f := v → H[l. f �→ v],V,Ls,Dup(v)

E-LOCK
H(l) = 〈c,F,None〉

H, tid,V,Ls, lock l e → H[l �→ 〈c,F,Some(tid)〉],V, l :: Ls,withlock l e
E-UNLOCK

l �∈ Ls H(l) = 〈c,F,Some(tid)〉
H, tid,V, l :: Ls,withlock l v → H[l �→ 〈c,F,None〉],V,Ls,v

E-RECLOCK
H(l) = 〈c,F,Some(tid)〉

H, tid,V,Ls, lock l e → H,V, l :: Ls,withlock l e
E-RECUNLOCK

l ∈ Ls H(l) = 〈c,F,Some(tid)〉
H, tid,V, l :: Ls,withlock l v → H,V,Ls,v

E-NEW
class c{τ1 f1 . . .τn fn} ∈ P F = { f1 �→ null, . . . , fn �→ null} l �∈ Dom(H)

H, tid,V,Ls, let u root x, final y = new c in e → H[l �→ 〈c,F,None〉],V [x �→ l•,y �→ l],Ls,e
E-VAR

H, tid,V,Ls,x → H,V,Ls,Dup(V (x))

E-FIELD
H, tid,V,Ls, l. f → H,V,Ls,Dup(H(l)(f))

E-DVAR
H, tid,V,Ls,dread(x) → H,V [x �→ null],Ls,V (x)

E-DFIELD
H, tid,V,Ls,dread(l. f) → H[l. f �→ null],V,Ls,H(l)(f)

E-LET
H, tid,V,Ls, let q x = v in e → H,V [x �→ v],Ls,e

We use a shorthand H[l. f �→ v] ≡ H[l �→ 〈c,F [f �→ v], tid〉 where H(l) = 〈c,F, tid〉. For generating aliases of unique values, we use the function Dup(v) = if (v = l•) then l else v.

Figure 3. Operational Semantics

a set of locks guarded by the same capability as being in the same
lock group. Capabilities exist only in the type system; capabilities
and lock groups have no runtime representation.

To give the type system stable names to refer to held locks, the
type system enforces that all locks taken are must-aliased to final
variables. This is common practice in other systems with variants
of singleton types, including some race-freedom work [10, 18, 19].

L is a static representation of the list Ls of dynamically held
locks (from the semantics in Figure 3). Replacing each final vari-
able x ∈ L with the location it maps to in the dynamic local envi-
ronment V (x) produces exactly Ls when typing the next redex to be
reduced. Ignoring order, (∃x ∈ L.V (x) = l)⇔ l ∈ Ls. The type rules
for lock acquisition extend L in the same way the evaluation rules
extend Ls. In the core language presented here, L exactly represents
the dynamic lock set, because there are no methods or loops. How-
ever, neither the type judgements nor the soundness proof relies on
this fact.

We must ensure that a lock statement acquires a lock guarded by
the capability of a held lock (or that no locks are held). Checking
that an expression being locked is in the lock group of a capability
the thread possesses appears in the type rules as a check for mem-
bership in L. If the expression p types as a path to a lock guarded
by 〈x〉, then if x ∈ L it is statically safe to lock p. In the type system
(Fig. 6), this membership check corresponds to the hypothesis y∈ L
where the target lock’s type is borrowed〈y〉 c in rule T-LOCK-N.

3.2 Uniqueness, Partial Uniqueness, and Borrowing

Our system statically enforces that at most one lock grants the
capability to acquire each lock. To ensure this while still permitting
updates to the capability-granting relation, we use a special form

of unique references. Syntactically, u guarded〈x〉 c is a unique
reference to an object of class c guarded by the capability 〈x〉. In our
core language’s source syntax, a field’s type may only refer to the
capability 〈this〉 because this is the only capability name in scope
in that context; Section 4.4 describes an extension for using other
objects’ capabilities. u root c is a unique reference to an object of
class c, but has no guard, and is therefore a root in the capability-
granting relation.

As in many systems with unique types, we use destructive reads
to preserve uniqueness. We also use writes and destructive reads
on u guarded references (as in u guarded〈x〉 c) to perform strong
updates to the guard portion (〈x〉) of an object’s type: destructively
reading a u guarded field removes the referent from its previous
parent’s lock group, and storing a u root reference into a u guarded
field moves the referent into its new parent’s lock group. Object
fields may not be u root references, and local variables may not be
u guarded references (allowing both qualifiers in both places is not
conceptually difficult, but preventing it here simplifies tracking the
capability-granting relation — see Section 3.6). For example:

// assume x is final, with u guarded field f
let nonfinal y = dread(x.f) in
// y is u root, x.f holds null
x.f := dread(y)
// x.f contents again u guarded<x>, y holds null

U guarded references are necessary only for controlling the
capability-granting relation. Most references are normal, and their
types do not need to carry the referent’s guard. We call these
guardless references (with type guardless c). Note that we allow
guardless references to objects for which there is also one unique

reference. This is sound because with a guardless reference only
reads, writes, and acquiring a first lock are permitted. In a typical
program, most references would be guardless.

“Borrowing” refers to allowing the use of a unique reference
without consuming it: making a temporary local copy without being
required to destroy the original. Borrowing lets the type system use
an object’s lock group (i.e., to check that a thread possesses the
capability for a lock being newly acquired) without requiring the
program to modify the original unique reference. Systems without
borrowing end up with the awkward idiom of explicitly threading
unique references through computations just to restore the unique
reference back into its original location.

When a regular read is performed on a unique field, it is treated
as a borrowing read. A metafunction on types, Alias(τ), com-
putes the result type of a borrowing (aliasing) read on a field or
variable of type τ. See the definition in Figure 5. A regular non-
destructive read on a u guarded field with type u guarded〈x〉 c has
type Alias(u guarded〈x〉 c) = borrowed〈x〉 c. This type represents
a non-unique reference to an object with the same class as the
u guarded reference, carrying the same lock group information. A
regular read on a u root variable simply returns a guardless ref-
erence (Alias(u root c) = guardless c) because there is no guard
to borrow. Note that the use of Alias(τ) roughly corresponds to
uses of Dup(v) in the operational semantics (Figure 3), because
borrowing occurs when a unique value may be aliased and Dup(v)
preserves uniqueness of tagging by producing an untagged copy of
a tagged value when an aliasing read duplicates a reference. The
discrepancies are places where Alias(τ) can be omitted because
there is enough information to predict its result. For example, the
type system has separate rules for writes to guardless fields and
u guarded fields. In the former case, the write’s result will always
be guardless. Alias(guardless c) = guardless c so we simplify the
result type.

A unique reference’s lock group information is always valid
(u root references hold valid guard information; they imply the ref-
erent has no guard), but a borrowed reference has accurate lock
group information only if the corresponding unique reference ex-
ists. A borrowed reference could end up with stale lock group in-
formation if the u guarded reference it is borrowed from is destruc-
tively read (or overwritten) since that would change the capability
guarding the referent. The lock group information of a borrowed
reference r with type borrowed〈x〉 c is valid only if there is a static
must-alias p of the reference r at the current program point that
holds a unique reference in the same lock group as the borrowed
type. To check that the borrowed reference p’s lock group infor-
mation matches the lock group x of the corresponding u guarded
reference, we use the metafunction ValidCap(Γ,L, p,x) (for “valid
capability”) when reading variables or acquiring locks, to prevent
use of stale lock group information. If a borrowed reference is no
longer valid, that reference can no longer be used. Note that unlike
the traditional uses of borrowing which are concerned with avoid-
ing persistent duplication of a unique reference, we use borrowing
to temporarily use the guard portion of a type, and avoid persis-
tently duplicating that typing assumption. As an example:

// assume x is final, with u guarded field f
let nonfinal y = x.f in // y:borrowed<x>
// y==x.f so y’s guard is valid
let nonfinal a = dread(x.f) in // a:u root
// y!=x.f, so y’s guard is now invalid and
// uses of y will not type check
let nonfinal b = a in
// b:guardless, since a:u root

3.3 Aliasing Information

We need must-aliasing information for three reasons, each dis-
cussed in detail in another section:

1. We need aliasing information to check validity of a borrowed
reference’s lock group information (Section 3.2).

2. We need aliasing information to retain expressiveness in the
face of path mutation. We need it to associate objects accessed
through paths with static lock names (Section 3.1).

3. One of the core principles for soundness of our approach is that
there is no cycle in the capability-granting relation. Aliasing
information allows the type system to reason about the safety
of field updates that implicitly affect the capability-granting
relation, such as an update performed through one variable (as
in x. f := e) when information about the capability granting
relation is tracked in terms of some syntactically unrelated local
root y where y.g is aliased to x (Section 3.6).

We assume a sound must-alias analysis is available, defined out-
side our system. An alternative would be for the type system to
track aliasing directly or to adapt a system like alias types [18, 19].
Formalizing such must-aliasing in the type system would add sig-
nificant complexity to our formalization that is not directly relevant
to the core ideas of lock capabilities. Using an external analysis sim-
plifies the presentation and demonstrates that the system is sound
for any sound must-alias analysis, rather than just a particular anal-
ysis encoded in type rules.

The query MustAlias(·, p) returns a set of paths that are aliases
of p at the current program point (·). We assume, as is common
in the pointer analysis literature, that each runtime expression is
implicitly labeled with the source expression location θ it came
from, and that the operational semantics propagate these labels
appropriately. Passing · to the alias analysis is equivalent to looking
up the label for the program point immediately after evaluation of
the expression being checked: MustAlias(·, p)≡MustAlias(θ, pθ).
The must-alias analysis is queried throughout the type judgements,
both explicitly, and via some of the macros in Figure 5.

3.4 Heap Partitioning Between Threads

Because individual threads are type checked separately, a reduction
in one thread must not invalidate typing information or must-alias
results in another thread.

The simplest sound way to ensure that one thread will not
perform a field update that invalidates another thread’s assumptions
is to enforce data race freedom. For simplicity, we maintain an even
stronger property: that threads may make assumptions only about
disjoint portions of the heap at run time. We maintain a simple
invariant, that a thread uses the types or aliasing information for
an object’s fields only when the thread has locked that object. Race
freedom is reflected in our type system by two invariants:

• Disjoint Lock Sets: This is a standard invariant for any system
dealing with concurrency, which basically means that no lock is
held simultaneously by more than one thread (which is the very
purpose of mutual exclusion locks).

• Race Free Field Access: Thread typing may use field informa-
tion and query must-alias information only for fields of objects
that are in the current thread’s lock set. This is enforced with
uses of RaceFreePath(Γ,L, p) in the typing rules.

Once we can ensure the invariants above, ensuring that a write to
the heap does not invalidate other threads’ assumptions is straight-
forward. To ensure that no lock group information is invalidated by
destructive reads changing the lock group of u guarded references,
we also maintain the invariant that for each dynamic location, at
most one thread’s typing context associates it with a lock group.

... // initially a->b->c
synchronized(n) { // a
synchronized(n.next) { // b

synchronized(n.next.next) { // c
Node tmp = n.next;
n.next = tmp.next;
tmp.next = n.next.next;
n.next.next = tmp;

} // a->c->b, only a and b held
synchronized(n.next) {
// Potential Deadlock!

}
}

}

Figure 4. Java code demonstrating an “orphaned lock” (lock b)
in the context of a singly-linked list. The diagram on the right
shows the heap (and capability-granting) structure after the first
lock release. The nodes with dark borders are locked at that point by
the thread running the code above. A second thread could deadlock
with this code if it acquires lock c, then tries to lock c.next at the
same time as the code above tries to re-acquire a.next.

Note that while we enforce data race freedom, it is not strictly
necessary. Allowing data races on guardless reference fields does
not risk deadlock; a thread may only lock a guardless reference
when it holds no other locks, and the use of must-aliasing informa-
tion can be adjusted to allow interference on those fields. Unsyn-
chronized reads of u guarded references can be made sound if any
unsynchronized read produces a guardless reference (synchronized
reads may still return borrowed references). What truly must be
race free is the use of the guard information encoded in u guarded
fields. Our enforcement of u guarded data race freedom is only to
simplify presentation.

3.5 Orphaned Locks

Without changes to the capability-granting relation, any set of locks
a thread holds at one time will span some contiguous subtree of
the capability-granting relation (because we use structured lock-
ing without an explicit unlock). In such cases, ensuring that the
granting relation remains acyclic is sufficient for safety, as will be
discussed in Section 3.6. However, with changes in the capability-
granting relation through destructive reads and stores of unique
references, a thread can hold locks in multiple disconnected sub-
trees of the capability-granting relation. Once some set of locks are
released after rearranging contiguous subtrees, it is possible for a
thread to hold a non-contiguous set of locks in a single subtree.

If a thread holds two locks, one a capability-grant descendant
of the other, but not all locks in between, it is not safe for the
thread to acquire intermediate locks it does not hold, even though
it holds the capability required. Figure 4 shows that treating this
scenario naı̈vely could permit deadlock. If a grants the capability to
acquire c, which is not locked by thread A but (transitively) grants
the capability to acquire b, and thread A holds the lock a and its
capability-granting descendant b, then acquiring c could deadlock.
A second thread B could acquire the lock c as its first lock, use c’s
capability to attempt to acquire b, and block waiting for thread A.
Then A would block waiting for B when attempting to acquire c.

An orphaned lock is a held lock (other than the first one ac-
quired) for which the thread no longer holds the capability that
would allow it to be acquired. In our core language, this manifests
at the type level by being unable to locate the u guarded reference
to a held lock other than the first acquired (in Figure 4, b is or-
phaned because the thread lacks access to the u guarded reference
for b). Fortunately, a solution is simple: while any lock other than
the first one acquired is orphaned, do not permit any further lock ac-
quisitions. This restriction is imposed in the type system by the type
rule for acquiring locks after the first. In Figure 4, this means that

after the lock b becomes orphaned, until the lock b is released, the
type system will not permit further lock acquisition by this thread.

More precise tracking of where the orphaned lock was would
enable acquisition of other safe locks, but we have not found it
necessary for our core language with structured locking. If lock
capabilities were adapted for a language with explicit lock and un-
lock statements, such precise tracking to permit the use of safe ca-
pabilities (like b’s in Figure 4) would be highly desirable. Such
an extension would allow idioms such as hand-over-hand locking,
or even following two separate hand-over-hand paths through the
capability-granting relation. Note that in such a system, the or-
phaned lock problem would arise even without reordering because
a thread could explicitly release a parent before a child.

3.6 Tree Reachability Assertions

Soundly preventing deadlock requires that the capability-granting
relation remains acyclic. Because each lock can be guarded by at
most one capability, the relation is not only acyclic but forms a
forest. With this insight, we can create a set of simple rules based on
rewriting a forest to verify that forestness is preserved by updates
to the capability-granting relation.

ϒ is a local view of a part of the global capability-granting
relation, which in the formal system is embedded in the heap’s
u guarded reference edges. Extensions with capability-grants unre-
lated to heap structure are considered in Sections 4.4 and 4.5. The
type system treats destructive reads of u guarded references as edge
removals. Similarly, storing a u guarded reference is equivalent to
adding an edge. More detail on ϒ appears in a technical report [13].

ϒ has three types of assertions about capability-granting trees:

• x||y means the referent of x is not reachable (in the capability-
granting relation) from the referent of y and vice versa. This
assertion is introduced by destructive reads and allocations.
Note that we consider x||y ≡ y||x, so x||y ∈ {y||x}.

• root(y) means that there is no incoming edge (in the capability-
granting relation) to y’s referent. This is the result of either
destructively reading a u guarded reference, or allocating a new
object. No two roots in ϒ may alias each other.

• subtree(x) is a weaker substitute for root(x) when it is unknown
whether there is a u guarded reference to x in the heap, as
is often the case when a thread acquires its first lock via a
guardless reference. It acts as an anchor to keep ϒ well-formed.
For every x||y ∈ ϒ, either subtree(x) ∈ ϒ or root(x) ∈ ϒ, and
similarly for y. There is at most one subtree assertion in ϒ, and
it is permitted to alias a root variable depending on the strength
of the must-alias analysis.

The typing rules use a judgement ϒ;Γ;L
 x � p to determine
that x is the (subtree) root of the capability-granting tree containing
p (Figure 5). This judgement is used in several typing rules to select
a root relative to which to add disjointness assumptions. Because a
root may alias a subtree, it is unsafe to add disjointness assertions
for some root relative to all other roots and subtrees. Doing so could
duplicate a disjointness assertion, allowing code to assume and
violate the same assertion twice, and create a cycle of u guarded
references. So when checking allocation the type system picks a
single root or subtree, and adds disjointness assertions relative only
to that root and things known to be disjoint from it.

3.7 Formal Type Rules

This section presents the typing rules for our core language. To
clarify the presentation, hypotheses related to different issues are
shaded differently. There are shadings corresponding to:

• Trees and acyclicity of the capability-granting relation

Alias(τ) =

⎧⎨
⎩

borrowed〈x〉 c if τ = u guarded〈x〉 c
guardless c if τ = u root c
τ otherwise

FinalAlias(Γ, p,x) ≡ x ∈ MustAlias(·, p)∧Γ(x) = final τx

LockedFinalAlias(Γ,L, p,x) ≡ FinalAlias(Γ, p,x)∧ x ∈ L
RaceFreePath(Γ,L, p) =⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

true if p = l
true if p = x

true if

⎛
⎝ p = p′. f ∧

RaceFreePath(Γ,L, p′) ∧
∃x.LockedFinalAlias(Γ,L, p′,x)

⎞
⎠

false otherwise
FieldAccess(ϒ,Γ,L, p, f) = τ if

ϒ;Γ;L
 p : τ1;ϒ ∧ RaceFreePath(Γ,L, p) ∧
LockedFinalAlias(Γ,L, p,x) ∧ P
 τ2 f ∈ Fields(Class(τ1)) ∧
τ = τ2[x/this]

ValidCap(Γ,L, p,x) = ∃p′.
(

p′ ∈ MustAlias(·, p) ∧
Γ;L
 p′ : u guarded〈x〉 c

)

NewSubtrees(L,ϒ,x) =
if (L �= []∨ (∃t.root(t) ∈ ϒ∧ t ∈ MustAlias(·,x)))
then /0
else {subtree(x)}

ϒ;Γ;L
 x � p

ROOT-ROOT
root(x) ∈ ϒ

ϒ;Γ;L
 x � x

ROOT-SUBTREE
subtree(x) ∈ ϒ
ϒ;Γ;L
 x � x

ROOT-ALIAS
ϒ;Γ;L
 x � p′ p′ ∈ MustAlias(·, p)

ϒ;Γ;L
 x � p

ROOT-FIELD
ϒ;Γ;L
 x � p Γ;L
 p. f : u guarded〈y〉 c

ϒ;Γ;L
 x � p. f

Γ;L
 p : τ
T-VAR-STORAGE

Γ(x) = q τ
Γ;L
 x : τ

T-FIELD-STORAGE

Γ;L
 p : τ1
P
 τ2 f ∈ Fields(Class(τ1)) LockedFinalAlias(Γ,L, p,x)

Γ;L
 p. f : τ2[x/this]

T-PROGRAM
ClassesOnce(class)

FieldsOnce(class) ∀c ∈ class.class
 c /0; /0; /0
 e : τ;ϒ′

 class e

T-CLASS
∀τ f ∈ Fields(c).class
 τ f

class
 c

T-VALIDGUARDLESSFIELD
c ∈ class

class
 guardless c f

T-VALIDU GUARDEDFIELD
c ∈ class

class
 u guarded〈this〉 c f

Figure 5. Supporting judgements and program typing

• Safe lock acquisition — acquiring only locks for which the
thread holds the capability, and not acquiring locks while hold-
ing orphaned locks.

• Unshaded — basic treatment of unique references (borrowing,
destructive reads, writes), and standard features such as alloca-
tion and binding, and flow-sensitive propagation of ϒ.

On a first reading, the reader may benefit from ignoring tree hy-
potheses, and simply assuming the capability-granting relation is
kept acyclic. The complete system, including all shaded hypothe-
ses, ensures deadlock freedom and incidentally prevents simultane-
ous access to fields (as discussed in Section 3.4).

Figure 5 presents supporting judgements and auxiliary functions
used in the main rules. This figure defines program typing, the
relation ϒ;Γ;L
 x � p to decide capability-granting roots, the
storage typing relation Γ;L
 p : τ to decide the type of value stored
in a path (rather than typing the evaluation of reading that path’s

value), and functions for typing borrowing read results, checking
that paths are race free, valid capability checks, and a macro to
make field accessing rules more readable. Figure 6 gives the source
typing rules. The rules for typing run-time expressions appear in
Section 5.

We now present details for selected rules from Figure 6.

• T-VAR is straightforward, accounting for borrowing via the
Alias(τ) metafunction (Figure 5), but also a variable typed as
borrowed can be read only if the borrowed reference is valid
(must-aliased to a u guarded reference with the same guard).

• T-WVAR is mostly standard, except for borrowing the type of
the value stored.

• T-DVAR is a mostly standard destructive read. Because a de-
structive read destroys the old value, the return type of a de-
structive read is a unique reference, not a borrowed reference.

• T-FIELD is the most basic field typing, which performs a nor-
mal (borrowing) read of a field. FieldAccess(· · ·) (Figure 5)
returns the type of field contents stored at the end of a path,
also checking that the path is race-free, and that there is a final
alias to the last object accessed by reducing the path expression,
which provides a name for translating a u guarded〈this〉 c field
declaration for the current context. It ensures that evaluating the
path will not change the capability-granting relation.

• T-WFIELD-U GUARDED, after checking the field access, checks
for a final variable y aliased to the expression being stored
(MustAlias is defined only for paths and destructive reads of
paths). y is used in the last three hypotheses to check whether
adding a capability grant from x to y will preserve capability-
granting acyclicity (see Section 3.6). All assertions about y are
removed from the resulting set of tree assertions, since it would
no longer be a root, and any disjointness assertions about it ei-
ther no longer hold or are redundant with disjointness assertions
about the tree it is being added to.

• T-DFIELD handles destructive reads of u guarded references. It
is similar to T-FIELD, but also checks that the reference being
removed is aliased to a final variable t that can be used for tree
assertions in the resulting ϒ′, which is enriched with assertions
that anything disjoint from the original tree r is also disjoint
from the tree rooted at t. This rule produces a u root, rather
than u guarded, reference because the referent is no longer in
any lock group.

• T-NEW binds final and unique variables to the newly-allocated
object. The body of the statement is checked in an environment
extended with a final variable y and non-final u guarded refer-
ence x (which are initially aliased), and with tree assertions that
nothing is reachable from the newly-allocated object. Only as-
sertions relative to one known root are added, because it is pos-
sible to have a root and subtree in ϒ aliased to each other, and
adding disjointness assertions for both is unsound (as discussed
in Section 3.6 and in more detail in our technical report [13]).

• T-SPAWN is unusual largely because our core language binds
variables in a local environment rather than by substitution. The
corresponding evaluation rule destructively reads the variable
x in the local context (to preserve uniqueness if x is unique,
still safe otherwise), and carries the old dynamic binding over
to the new thread as a guardless reference. No tree assertions
are removed, because the static must alias analysis may be
too weak to find the correct final variable to remove from ϒ.
Consequently the spawned thread cannot violate disjointness
assumptions the parent thread may have about the passed value.

ϒ := {root(Variable) | subtree(Variable) | Variable||Variable} set Γ : Variable �→ Final Qualifier∗Type L : Variable list

ϒ;Γ;L
 e : τ;ϒ′ T-IF
ϒ;Γ;L
 e1 : τ1;ϒ1 ϒ1;Γ;L
 e2 : τ;ϒ2 ϒ1;Γ;L
 e3 : τ;ϒ3

ϒ;Γ;L
 if e1 e2 e3 : τ;ϒ2 ∩ϒ3
T-NULL

ϒ;Γ;L
 null : guardless c;ϒ

T-VAR
Γ(x) = q τ τ′ = Alias(τ) ∀y∀c.τ′ = borrowed〈y〉 c ⇒ ValidCap(Γ,L,x,y)

ϒ;Γ;L
 x : τ′;ϒ
T-WVAR

Γ(x) = nonfinal τ ϒ;Γ;L
 e : τ;ϒ′

ϒ;Γ;L
 x := e : Alias(τ);ϒ′

T-DVAR
Γ(x) = nonfinal u root c FinalAlias(Γ,x,y) root(y) ∈ ϒ

ϒ;Γ;L
 dread(x) : Γ(x);ϒ
T-FIELD

τ f = FieldAccess(ϒ,Γ,L, p, f) τ = Alias(τ f)
ϒ;Γ;L
 p. f : τ;ϒ

T-WFIELD-U GUARDED

u guarded〈x〉 c = FieldAccess(ϒ,Γ,L, p, f)

ϒ;Γ;L
 e : u root c;ϒ′ y ∈ MustAlias(·,e) root(y) ∈ ϒ′ ϒ′;Γ;L
 r � p r||y ∈ ϒ′

ϒ;Γ;L
 p. f := e : borrowed〈x〉 c;ϒ′ /y

T-WFIELD-GUARDLESS
guardless c = FieldAccess(ϒ,Γ,L, p, f) ϒ;Γ;L
 e : guardless c;ϒ′

ϒ;Γ;L
 p. f := e : guardless c;ϒ′ T-SUB-TYPE
ϒ;Γ;L
 e : borrowed〈x〉 c;ϒ′

ϒ;Γ;L
 e : guardless c;ϒ′

T-DFIELD
u guarded〈x〉 c = FieldAccess(ϒ,Γ,L, p, f) FinalAlias(Γ, p. f , t) t �∈ ϒ ϒ;Γ;L
 r � p ϒ′ = ϒ ∪{root(t)}∪{t||z | ∀z.r||z ∈ ϒ′}

ϒ;Γ;L
 dread(p. f) : u root c;ϒ′

T-NEW
root(z) ∈ ϒ∨ subtree(z) ∈ ϒ ϒbody = ϒ ∪{root(y)}∪{y||z}∪{y||t | ∀t.t||z ∈ ϒ} ϒbody;Γ[x �→ u root c] [y �→ final guardless c] ;L
 e : τ;ϒ′

ϒ;Γ;L
 let u root x, final y = new c in e : τ;ϒ′ /y

T-LET
ϒ;Γ;L
 e1 : τ1;ϒ′ ϒ′;Γ[x �→ q τ1];L
 e2 : τ;ϒ′′

ϒ;Γ;L
 let q x = e1 in e2 : τ;ϒ′′/x
T-SPAWN

Γ(x) = nonfinal α c /0 ;{x �→ final guardless c}; /0
 e : τ;ϒ′

ϒ;Γ;L
 spawn x e : guardless c;ϒ

T-LOCK-FIRST

ϒ;Γ; []
 p : τ1;ϒ RaceFreePath(Γ, [], p)
FinalAlias(Γ, p,x) ϒt = NewSubtrees([],ϒ,x) ¬∃z.subtree(z) ∈ ϒ ϒ ∪ϒt ;Γ; [x]
 e : τ;ϒ′ ∀y∀c.τ �= borrowed〈y〉 c

ϒ;Γ; []
 lock p e : τ;ϒ′ /{z|z ∈ ϒt}

T-LOCK-N

ϒ;Γ;L
 p : τ1;ϒ τ1 = borrowed〈y〉 c RaceFreePath(Γ,L, p) FinalAlias(Γ, p,x) ValidCap(Γ,L, p,y) ϒ;Γ;x :: L
 e : τ;ϒ′

y ∈ L ∀z ∈ L : L = L′@[z]∨∃p′.RaceFreePath(Γ,L, p′)∧FinalAlias(Γ, p′,z)∧Γ;L
 p′ : u guarded〈a〉 c ∀w∀c.τ = borrowed〈w〉 c ⇒ w ∈ L

ϒ;Γ;L
 lock p e : τ;ϒ′

Figure 6. Source typing. MustAlias() is an external must-alias analysis, explained in Section 3.3.

• T-LOCK-FIRST types a thread’s first lock acquisition: type the
path being locked, find a final alias for the lock, and type
the body in the extended environment. This rule may add a
subtree assertion if ϒ does not contain a root assertion for the
target lock (else no modifications to the tree would be possible
in the body). The last hypothesis requires that the resulting
type is well-formed with respect to the current lock set (does
not borrow from a field of an unlocked object). The set of
variables removed from ϒ′ in the conclusion has cardinality 0
or 1 depending on whether ϒt added a subtree assertion.

• T-LOCK-N is similar to T-LOCK-FIRST. However, this rule
also enforces that locks acquired after the first must be safe. It
uses ValidCap(Γ,L, p,y) to check that the borrowed reference
being locked is valid, and checks that the thread holds the capa-
bility to acquire the target lock through y ∈ L. Finally, it checks
an approximation of the “orphaned lock” criteria (Section 3.5)
to ensure the thread does not lock the ancestor of an orphaned
lock: each lock must be the first lock acquired, or must be acces-
sible at u guarded type through some race-free path (implying
that its parent is still locked, so it is not orphaned).

4. Examples and Extensions
This section explains how lock capabilities can be used to verify our
motivating examples. We also discuss extensions to the core system

that may be necessary to capture those examples precisely. The
accompanying technical report [13] includes additional examples.

4.1 Tree Rotations

Figure 1 implements the clockwise rotation operation in a splay
tree. Splay trees are self-balancing binary search trees with the ad-
ditional property that recently-accessed elements are faster to look
up: a lookup performs a series of rotations to lift the found element
to the root of the tree. A fine-grained locking implementation of
a splay tree would actually need to hold locks all the way from
the root of the tree to the located element. Thus it is a poor can-
didate for fine-grained synchronization because external pointers
to interior nodes are not practically useful. However, we show it
here because it has been used to demonstrate the flexibility of other
deadlock freedom systems [5], because it is a challenging bench-
mark for expressiveness, and because it reflects similar issues to
those seen in more practical examples, such as other binary trees or
reordering the elements in a linked list.

For each lock acquisition after the first, the type system ensures
that the target lock is guarded by the capability of an already-held
lock. In the innermost critical section, the type system keeps track
of the fact that the capability-granting trees rooted at n, x, v name,
and w name (the latter two being final guardless references) are mu-
tually disjoint after the destructive reads, and can therefore check

that the capability-granting changes implied by storing the unique
references back in the heap preserve the relation’s acyclicity.

Figure 1’s code shows how flexible the use of u guarded refer-
ences for strong updates is: nowhere does the code need to state
what the new guard on any lock is. Instead the changes to guards
are implicit in the heap changes that induce the new capability
grants. It also shows the value of leveraging must-alias informa-
tion in the type system. This example cannot be expressed in a sys-
tem that does not support must-aliasing, because there is no way
to express the node reordering operations in a way that does not
change the meaning of some path expression rooted at n before
it must be used. Without must-aliasing information it is impossi-
ble to track the capability-granting tree structures. This example
does not demonstrate flexibility of locking multiple locks with the
same guard, but shows that we can verify an example that only
two non-standard extensions to the standard static deadlock free-
dom approach can verify [5, 16]. While there is syntactic overhead
from requiring that any reference locked or unique reference moved
must alias a final variable, elaboration of a source language to an
intermediate language with these properties is straightforward.

4.2 Arrays

Treated as a structure with integer-named fields containing u guarded
references, the array elements behave as the children in the simple
binary tree example. Locking one array element is always safe,
but acquiring multiple elements would require holding the lock on
the array itself. Concretely, a final reference arr to an array of
type u guarded Object[] (an array of u guarded references, in
a core language extended with arrays) might through dereference
(as in arr[i]) produce elements of type borrowed<arr> Object,
which could be locked in any number in any order while a lock is
held on the array arr itself.

This does trade some potential parallelism for verifiability, be-
cause rather than ensuring proper ordering on the array elements
this solution makes it safe to not use ordering by protecting the
ability to lock elements with the array’s lock; in cases where lock-
ing multiple elements of the array is relatively rare dynamically,
this would be acceptable. The dominant static deadlock freedom ap-
proach offers no solution for locking multiple array elements. The
only prior solution we are aware of for statically proving deadlock
freedom when locking multiple array elements is a technique that
synthesizes additional synchronization to avoid deadlock [21]. For
arrays, that technique can synthesize locking equivalent to our solu-
tion, though their iterative process can also over-synchronize (see
Section 6.3). Another possible approach is to lock cell referents in
order of increasing index. Unfortunately, the relative ordering of
dynamically-computed array indices is undecidable.

4.3 Method Calls

Extending our core language with method calls is relatively straight-
forward. For reasons of space, we only sketch this extension. Our
mechanism is inspired by Haller and Odersky’s capability-based
invalidation mechanism for borrowed references [14]. The key to
using borrowed and unique references as arguments to methods
is ensuring that no two borrowed arguments are aliases of each
other. In our core language, there is the additional matter of the tree
assertions a method might require upon entry and provide upon
return, and assumptions about held locks — all things typically
documented informally in code today.

In the core system without methods or loops presented here, L
happens to exactly describe the locks held dynamically. However
our type system naturally supports polymorphism over ϒ and L.
The initial and final disjointness assertions only need to be partial;
the implementation may lose information before returning. In par-
ticular, extra disjointness assertions in the initial ϒ are safe, and

class CircularList {
fixed<this> CircularListNode<this> head;

}
class CircularListNode<ghost CircularList list> {
fixed<list> CircularListNode<list> prev;
fixed<list> CircularListNode<list> next;
u guarded<this> Object data;
public fixed<l> CircularListNode<l> find(guardless Object target)
with <l>, <this>

{
if (this.data == target) { this }
else { let final fnext = this.next in

lock (this.next) { this.next.findBefore(target, this) }
}}
private fixed<l> CircularListNode findBefore(
guardless Object target, fixed<l> CircularListNode<l> start)
with <l>, <this>

{
if (this == start) { null }
else {

if (this.data == target) { this }
else { let final fnext = this.next in
lock (this.next) { this.next.findBefore(target, start) }

}}}}

Figure 7. A circular list, using fixed-guard references and external
capabilities.

a form of frame rule for ϒ can be proven. For methods requiring
certain locks to be held on entry, the method is still safe if addi-
tional locks (additional capabilities) are held, with the exception
that methods acquiring an arbitrary guardless reference would still
require no locks to be held at the call site.

4.4 External Capabilities for Circular Lists

Another example where the flexible acquisition order plays a cen-
tral role is the circular lists commonly seen in operating system ker-
nels as the process or thread lists. The processes themselves form
a circular doubly-linked list. The locking discipline is as follows:
locking one node of the list is allowed, while multiple nodes may
be locked only if a lock over the whole list is held. There is no con-
sistent acyclic order on the list nodes, short of resorting to memory
addresses for sorting. No prior technique for static deadlock free-
dom verification can verify this example.

Capturing this sort of discipline in our core language requires
a small extension for objects’ field types to refer to external capa-
bilities. We can use the same class parameterization as in RCC/-
JAVA [10] to refer to external locks (another use of final variables
for lightweight singleton types), simply using the additional lock
names in scope for field types with other locks as guards, rather
than field types whose access is protected by another lock. We also
require fixed references, which are the sort of reference one would
expect in a system without lock reordering: non-unique mutable
reference types extended with capability information, not subject to
strong updates. This allows the list nodes to be guarded by the main
list lock without a direct field reference, and allows that guard in-
formation to be shared among multiple references to each (doubly-
linked) list node.

An example is shown in Figure 7. It shows an in-order traversal
of the circular list to locate some element. Because the exposed
find method requires the capability 〈l〉, only one thread at a time
may execute this code on a given circular list. But other threads
may simultaneously access individual list nodes by locking through
guardless references to list nodes.

This extension would of course require small changes to field
typing, and a way to convert unique references into permanently-
fixed references. And because these fixed references define perma-
nent capability-granting relationships unrelated to heap structure,
several invariants would need slight adjustments.

4.5 Lock Capabilities with Lock Levels

It is possible to combine lock capabilities with the dominant ap-
proach for static deadlock freedom to afford the flexibility of each
where necessary. Previous work on statically ensuring deadlock
freedom has focused on lock levels [5, 9, 16]: a static partitioning
of the heap accompanied by a partial ordering on those partitions.
A static checker verifies that while a thread holds a lock in a cer-
tain level then any additional locks acquired must reside in a level
below the held lock. If thread A is blocked waiting for a lock l held
by thread B, any locks A already holds are in partitions ordered be-
fore the partition of l. Since B holds lock l and it may only acquire
locks in partitions ordered after l’s partition, it cannot block on a
lock held by thread A (or another thread transitively blocked on a
lock held by A).

This approach suffices for programs using coarse-grained lock-
ing such as that between multiple subsystems of a program and,
with some extensions, for certain narrow classes of programs using
fine-grained locking. But in general lock levels have poor support
for most fine-grained locking techniques, for programs that change
lock ordering dynamically, and for programs that acquire multiple
locks that are related but have no sensible ordering among them. By
contrast, lock capabilities are well suited to reasoning about local
lock orderings within a set of closely-related locks.

A lock capability system can be run within each partition of a
lock level system. Thus a thread may acquire a target lock when it
holds no locks; when it holds locks only in levels ordered before
the level of the target lock; or when it holds a lock that grants a
capability to acquire the target lock, and it holds no locks in levels
ordered after that of the granting lock. This allows, for example,
use of two fine-grained data structures in different levels. We have
not proven safety for this embedding, but expect no subtleties.

4.6 Unstructured Locking

As mentioned in Section 3.5, extending lock capabilities to support
unstructured locking primitives (i.e., explicit lock and unlock state-
ments) would require a few changes. First and foremost, the static
lock set would need to be flow-sensitive. Second, to take advantage
of the flexibility offered by unstructured locking, the criteria for or-
phaned locks would need to be refined to only prevent acquiring
locks that may (transitively) grant the capability to acquire some
lock the thread already holds (which is the actual unsafe behavior).
In Figure 4, this would mean permitting the thread to use b’s capa-
bility to acquire locks after releasing the lock on c, but not permit
the use of a’s, while the system presented here would prevent both
until the lock on c is released.

Extending to unstructured locking would permit such idioms
as hand-over-hand locking through data structures, or even parallel
instances of hand-over-hand locking, for example to acquire locks
guarded by each of multiple processes in the circular list example.
With unstructured locking, the capability-granting structure of the
circular list example suggests a verifiably deadlock-free and fairly
parallel solution to the well-known Dining Philosophers Problem,
detailed in a technical report [13].

5. Soundness
We have proven that our type system ensures deadlock freedom.
The full proof is available in the accompanying technical re-
port [13]. This section sketches the proof.

The argument relies on two proofs: type preservation and a
separate deadlock-freedom preservation proof that accounts for
changes in the capability-granting relation. We define deadlock
formally as a cycle of threads each waiting for the next to release
a lock. Proving that the absence of such cycles is preserved is
equivalent to proving progress up to null dereference. It is possible

Σ : Location �→ Class φ : Value �→ Variable

Σ;φ;ϒ;Γ;L
 e : τ;ϒ′ cont.

T-ANY-LOCATION
Σ(l) = c

Σ;φ;ϒ;Γ;L
 l : guardless c;ϒ

T-UNIQUE-NULL
FinalAlias(Γ,null,y) root(y) ∈ ϒ

Σ;φ;ϒ;Γ;L
 null : u root c;ϒ

T-UNIQUE-LOC
Σ(l) = c FinalAlias(Γ, l,y) root(y) ∈ ϒ

Σ;φ;ϒ;Γ;L
 l• : u root c;ϒ

T-BORROWED-VALUE
φ(v) = x p ∈ MustAlias(·,v) Γ;L
 p : u guarded〈x〉 c

Σ;φ;ϒ;Γ;L
 v : borrowed〈x〉 c;ϒ

T-WITHLOCK
Σ;φ;ϒ;Γ;L
 l : τ1;ϒ1 FinalAlias(Γ, l,x)

ϒt = NewSubtrees(L,ϒ,x) ∀z.subtree(z) ∈ ϒt ⇒ subtree(z) ∈ ϒ1

Σ;φ;ϒ1;Γ;x :: L
 e : τ2;ϒ2 τ2 = borrowed〈y〉 c ⇒ y ∈ L

Σ;φ;ϒ;Γ;L
 withlock l e : τ2;ϒ2 /{z|z ∈ ϒt}

Figure 8. Typing for runtime expression forms.

for a thread in our system to become permanently “stuck” because
it tries to dereference null, or because it blocks waiting for a thread
that diverges while holding a lock. Our system is not designed to
prevent such errors. It ensures that, modulo null pointers, there is
always at least one thread that is not blocked and there are no cycles
of threads blocked on each other.

Type preservation is tedious, but mostly straightforward to
prove given the run-time type rules and appropriate invariants.
The typing rules for run-time expressions extend each rule with
a heap typing Σ giving the class for each heap location, and a
group typing φ specifying the lock group for each location. Σ is
global, while there is a separate φ for each thread, giving the lock
group for those locations whose unique reference the thread con-
trols. The domains of the φs are disjoint, isolating the lock group
information necessary for strong updates. Additional invariants in-
clude various well-formedness constraints on type contexts, that
the capability-granting relation is a forest, that no two threads with
root assumptions also have subtree assertions for locks capability-
reachable from each other’s roots (used to prove that after adding a
capability-granting edge, other threads’ ϒ contexts are still valid),
and that φ for each thread contains all possible names (final vari-
ables) for the lock group of each lock whose unique reference the
thread controls. These invariants are all part of the typing for run-
time states, available in the technical report [13].

The additional typing rules for runtime-only expression are
shown in Figure 8. For brevity, we only detail T-WITHLOCK. Most
of the rule is similar to the static locking rules, typing the lock,
typing the body expression in an extended lock set, and ensuring
the resulting type does not borrow from the released lock. The main
difference is in the treatment of subtrees (the shaded hypotheses).
These ensure that any necessary subtree assertion is already present
in the input ϒ, necessary for type preservation.

Proof of deadlock freedom relies on what is essentially an-
other preservation proof over an extended semantics. Intuitively,
in a system without changes in the capability-granting relation,
the deadlock freedom argument is straightforward: because the
capability-granting relation is acyclic, the relation of which threads
are blocked on which others must also be acyclic because there
must always be a thread at the “bottom” of any capability tree
which can continue to execute without blocking. Crucial to that sim-
plicity is that any blocked thread would have a path in the graph
represented by the capability-granting relation from its first lock
acquired to the blocking lock, since the thread must have followed

some contiguous path of capability granting edges (by locking) to
gain the capability to acquire the blocking lock, and we are (tem-
porarily) assuming no capability-granting changes.

With changes to the capability-granting relation, the argument
is more complex. After acquiring several locks, a thread can split a
capability tree. Thus the argument for acyclic locking order among
threads is less direct. An important observation is that at the time
each new lock is acquired, there is a capability-granting edge from
some held lock to the new lock. A dynamic log of each thread’s
capability uses should be able to show that in a directed graph of
those capability uses, no dependency path exists from one thread’s
locks, to another thread’s locks, and back to the first thread’s locks.

We extend program state with such a log, a capability-use graph
representing the use of capabilities by each thread, and prove that
the absence of these problematic paths in the graph is preserved.
Such a path must exist in the capability-use graph for a deadlocked
program state. Graph vertices are locks that are held (l ∈ Ls) or
would be acquired by a thread’s next reduction step (l for a thread

whose expression is some E[lock l e]). An edge a
i→ b is present if

the lock a granted the capability to acquire b at the time thread i ac-
quired b or blocked trying. Intuitively each path through the graph
represents a dynamically possible dependency chain of threads
blocking on locks, for the program being executed. In this graph,
there is a path from the first lock acquired by a thread to its most
recent acquisition, even with changes to the capability-granting re-
lation. A deadlock manifests in this graph as a path between locks
held by the same thread that traverses edges from at least one other
thread: either a cycle among threads or a path that leaves the edges
of a thread and returns without a cycle. The cycle case is prevented
by acyclicity of the capability-granting relation, and the straight
line path is prevented by the “orphaned lock” premise of T-LOCK-
N. Preserving the absence of such a path in the capability-use graph
preserves deadlock freedom.

We believe this proof approach can be extended to support
unstructured locking, reader-writer locks,2 and embedding within
lock levels (as in Section 4.5), with only minor changes. The only
assumptions the proof approach makes about what the type system
enforces are that the capability-granting relation is acyclic, and that
the type system prevents the use of capabilities that may reach
orphaned locks.

6. Related Work
Our system builds on work in several areas, including prior ap-
proaches to static deadlock detection and work on linear and unique
types. For space reasons, we focus on static deadlock freedom and
strong updates. For an extended discussion of related work on these
topics as well as on deadlock freedom for message passing sys-
tems [15, 17], hybrid static/dynamic deadlock freedom [4, 11, 12],
static data race freedom [10], capability systems [20], and static
aliasing analyses [7], see the accompanying technical report [13].

6.1 Lock Levels

As mentioned in Section 4.5, lock levels [5, 9, 16] is the most preva-
lent static deadlock freedom approach. Lock levels are adequate for
coarse-grained lock ordering, such as between layered subsystems
of a program. However, they are ill-suited for dynamic data struc-
tures using fine-grained locking. The lock levels approach typically
places two serious limitations on code:

2 We have not proven the extension sound, but believe splitting capabilities
for read and write acquisitions is straightforward: multiple threads can
safely possess the same read-acquire-capability because read-locks are not
exclusive. The first write-lock must either occur when no locks are held, or
be a lock held for reading. Standard locks should be treated as write locks.

The total ordering restriction, that there must exist a total
ordering among any locks held concurrently by a single thread,
is problematic in any structure where there is no natural ordering
on locks acquired, such as the circular list example; or where
the natural order may be difficult to decide, such as for array-
order locking. Some desired locking behavior is difficult to express
with lock levels; locking multiple children of a tree node can be
expressed with a parameterized lock level system that fixes for a
node node in level n, node.left in level n + 1 and node.right
in level n+2. But even that solution is brittle; node.left.left is
unordered with respect to node.right. This restriction is present
in all systems using lock levels.

Systems with the total ordering restriction do not have orphaned
lock issues; problematic cases are precluded by requiring that a
newly acquired lock be ordered after all locks held.

The fixed ordering restrictions, which prevent changing the
safe acquisition orders of locks, cause problems in algorithms that
change orders dynamically, as is the case for many tree structures.
It is conceptually the result of two sub-restrictions. There is no
known way to lift the partition ordering restriction in lock level
systems: the inability to reorder partitions. Lifting the partition
membership restriction, the inability to move locks among par-
titions, requires control of aliasing. To the best of our knowledge,
the partition membership restriction is present in all but two pieces
of lock levels work: SAFEJAVA [5], which uses ad hoc extensions
and an unspecified flow-sensitive analysis for tracking heap shape;
and CHALICE [16], which uses fractional permissions [6] to control
access to a ghost variable that defines an object’s lock level.

Leino et al. describe CHALICE, a system using a novel variation
on lock levels to avoid deadlock [16]. It avoids some reordering
problems in systems with fixed spacing of lock levels by using a
dense lattice of unnamed lock levels (any two ordered lock levels
have levels between them), and using relative clauses for threads
with full permission for a lock’s level ghost variable to reorder
a lock relative to other locks. CHALICE also uses fractional per-
missions [6] to control sharing and modification of not only data,
but also the ghost field defining an object’s level. It still enforces
the total ordering restriction, and because lock acquisition requires
partial access to the level field CHALICE cannot support objects
that are both reorderable (which requires full permission) and ac-
quirable by arbitrary threads (requires sharing small permissions to
each thread), such as the children from the four thread example in
Section 1. CHALICE can verify programs that, for example, reverse
the order of a linked list’s nodes while still permitting acquisition
in list order. CHALICE allows some controlled sharing of relative
ordering information using fractional permissions; lock capabilities
could be adapted for this sharing, either by treating a lock’s guard
as a ghost field with fractional permissions [6] or using a counting
permission type system [3] to track propagation.

6.2 Other Deadlock Freedom Approaches

Attiya et al. [1] describe core results about the range of locking
protocols for data structures whose representations are completely
inaccessible outside a module — and are therefore strongly en-
capsulated — that can be verified as deadlock-free and atomic us-
ing only sequential reasoning. Their results include the DYNAMIC
TREE LOCKING protocol, which is similar to our locking proto-
col but different in several important ways. First, their technique
is applicable only to strongly encapsulated data structure imple-
mentations; implementations can acquire only a single lock visible
outside the module. Second, they assume total uniqueness of refer-
ences to module-private locks: no aliasing at all. Third, they con-
sider heap structure to be the only direction of lock ordering. Any
of these three is enough to prevent verifying the circular list ex-
ample in the OS context, where process locks must be aliased and

exposed to all subsystems, and the locking order is not controlled
by heap shape. The soundness of their approach depends on the as-
sumption that module-private locks are acquired only when totally
unreachable by other threads, rather than allowing some aliasing
without exposing a capability grant that may change.

While Attiya et al. briefly describe experience with a verifier,
their protocol is described axiomatically in terms of dynamic thread
behavior, while we provide a concrete type system enforcing cor-
rect behavior. Additionally, because their work also ensures that
module operations are atomic, they do not permit reacquisition of
locks released during the same transaction, which avoids orphaned
lock issues, but also prevents treatment of condition variables. Our
type system could be paired with an atomicity analysis, and our
treatment of orphaned locks naturally supports reasoning about re-
lease and reacquisition of one lock while others are held, which is
needed for any extensions to handle condition variables.

Attiya et al.’s work grew out of work from the database commu-
nity [8] on locking protocols for locking in databases of directed
graphs. This work focused on serializability in a database under the
assumption that locking protocols would be dynamically enforced
by a central concurrency management system.

Wang et al. [22] use a translation of programs to and from petri
nets to synthesize additional locking that avoids deadlock. Their
synthesized synchronization often resembles locking arrangements
checkable by lock capabilities. For example, they synthesize solu-
tions equivalent to our array locking solution [21]. Because their
process is iterative, multiple layers of locks may be synthesized,
leading to results that could be unpredictable, though in their ex-
periments overhead was low. Lock capabilities require explicit de-
cision to use similar constructs, and the fact that the similar locking
they synthesize tends to be cheap suggests use of lock capabilities
will not impose undue runtime overhead. Their approach is also
highly sensitive to aliasing; in the worst case they generate locks
that guard all locks of a certain type, which would be prohibitive
for code using multiple recursive data structures.

6.3 Other Type Systems

Gerakios et al. [11, 12] describe a type and effect system that en-
forces correct use of a locking primitive that, before acquiring a
target lock, checks that all future locks that will be acquired be-
fore the target is released are also available. When checking sub-
effecting for functions, their approach is highly conservative, and
likely to cause problems with separate compilation by requiring
strong over-approximations of locks-to-be-acquired at each pro-
gram point. They also present benchmark numbers, but do not dis-
cuss using their implementation (which uses a locking primitive at
least linear in the number of future lock acquisitions before release)
on benchmarks that acquire more than two locks, such as tree traver-
sals. For more complete discussion, see our technical report [13].

Bierhoff and Aldrich describe a set of access permissions for
use in combining typestate (which require a form of strong up-
dates) with aliasing [2], where each access permission implies
different permissions for changing an object’s typestate. Our
u guarded and guardless references roughly correspond to their
full and pure permissions. The fixed qualifier we propose in Sec-
tion 4.4 roughly corresponds to their share permissions. Bierhoff
and Aldrich’s system is somewhat more general than the guardless
uniqueness we describe: because they use fractional permissions to
track the degree of splitting, in cases where aliasing remains con-
trolled, it is possible to convert in both directions between full/pure
(u guarded/guardless) references and share/pure (fixed/guardless)
references by combining all references back into a single unique
reference, then splitting again into the other reference types. Adapt-
ing their rich conversion logic could help us verify DAG-shaped
capability-granting relations.

7. Conclusion
We have described a capability-based approach to deadlock free-
dom that is more flexible than existing locking protocols, and a type
system for a core language that enforces this locking protocol. We
support dynamic changes in acquisition order, and in some cases ab-
sence of a relative ordering between locks that may be held concur-
rently. We have also described subtle soundness issues the system
avoids, and contrasted our work with related work on lock levels
and deadlock freedom in strongly encapsulated modules. Our sys-
tem forms the basis for a deadlock freedom verification approach
that is suitable for many complex locking protocols.

Acknowledgments
This work was supported by NSF Grant CNS-0855252. We also
thank members of the UW PLSE group and the anonymous referees
for helpful comments on improving this work.

References
[1] H. Attiya, G. Ramalingam, and N. Rinetzky. Sequential Verification

of Serializability. In POPL, 2010.
[2] K. Bierhoff and J. Aldrich. Modular Typestate Checking of Aliased

Objects. In OOPSLA, 2007.
[3] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission

Accounting in Separation Logic. In POPL, 2005.
[4] G. Boudol. A Deadlock-Free Semantics for Shared Memory Concur-

rency. In ICTAC, 2009.
[5] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe

Programming: Preventing Data Races and Deadlocks. In OOPSLA,
2002.

[6] J. Boyland. Checking Interference with Fractional Permissions. In
SAS, 2003.

[7] M. Bravenboer and Y. Smaragdakis. Strictly Declarative Specification
of Sophisticated Points-to Analyses. In OOPSLA, 2009.

[8] V. K. Chaudhri and V. Hadzilacos. Safe Locking Policies for Dynamic
Databases. In PODS, 1995.

[9] C. Flanagan and M. Abadi. Types for Safe Locking. In ESOP, 1999.
[10] C. Flanagan and S. N. Freund. Type-Based Race Detection for Java.

In PLDI, 2000.
[11] P. Gerakios, N. Papaspyrou, and K. Sagonas. A Type System for

Unstructured Locking that Guarantees Deadlock Freedom without
Imposing a Lock Ordering. In PLACES, 2010.

[12] P. Gerakios, N. Papaspyrou, and K. Sagonas. A Type and Effect
System for Deadlock Avoidance in Low-level Languages. In TLDI,
2011.

[13] C. S. Gordon, M. D. Ernst, and D. Grossman. Static Lock Capabil-
ities for Deadlock Freedom. Technical Report UW-CSE-11-10-01,
Computer Science and Engineering, University of Washington, Seat-
tle, WA, USA, 2011.

[14] P. Haller and M. Odersky. Capabilities for Uniqueness and Borrowing.
In ECOOP, 2010.

[15] N. Kobayashi. A New Type System for Deadlock-Free Processes. In
CONCUR, 2006.

[16] K. R. Leino and P. Müller. A Basis for Verifying Multi-threaded
Programs. In ESOP, 2009.

[17] K. R. Leino, P. Müller, and J. Smans. Deadlock-free Channels and
Locks. In ESOP, 2010.

[18] F. Smith, D. Walker, and J. G. Morrisett. Alias Types. In ESOP, 2000.
[19] D. Walker and G. Morrisett. Alias Types for Recursive Data Struc-

tures. In TIC, 2000.
[20] D. Walker, K. Crary, and G. Morrisett. Typed Memory Management

via Static Capabilities. ACM TOPLAS, 22, 2000.
[21] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara:

Dynamic Deadlock Avoidance for Multithreaded Programs. In OSDI,
2008.

[22] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke. The
Theory of Deadlock Avoidance via Discrete Control. In POPL, 2009.

