
1

�

�

� � �

� �
� �

� �
�

�

Alan Donovan, Adam Kieżun
Matthew Tschantz, Michael Ernst

MIT Computer Science & AI Lab

OOPSLA 2004, Vancouver

2

�

�

Introduction: generic types in Java 1.5

The problem: inferring type arguments

Our approach

� Allocation type inference

� Declaration type inference

Results, Status & Related Work

3

class Cell {
 Object t;
 void set(Object t) { this.t = t; }
 Object get() { return t; }
 void replace(Cell that) {
 this.t = that.t;
 }
}

 Cell x = new Cell();
 x.set(new Float(1.0));
 x.set(new Integer(2));
 Number s = (Number) x.get();

 Cell rawCell = new Cell();
 rawCell.set(Boolean.TRUE);
 Boolean b = (Boolean) rawCell.get();

Client code

Library code

4

class Cell<T extends Object> {
 T t;
 void set(T t) { this.t = t; }
 T get() { return t; }
 <E extends T> void replace(Cell<E> that) {
 this.t = that.t;
 }
}

 Cell x = new Cell();
 x.set(new Float(1.0));
 x.set(new Integer(2));
 Number s = (Number) x.get();

 Cell rawCell = new Cell();
 rawCell.set(Boolean.TRUE);
 Boolean b = (Boolean) rawCell.get();

Type variable

Generic method

Generic class

Bound

Client code

Library code

5

class Cell<T extends Object> {
 T t;
 void set(T t) { this.t = t; }
 T get() { return t; }
 <E extends T> void replace(Cell<E> that) {
 this.t = that.t;
 }
}

 Cell<Number> x = new Cell<Number>();
 x.set(new Float(1.0));
 x.set(new Integer(2));
 Number s = (Number) x.get();

 Cell rawCell = new Cell();
 rawCell.set(Boolean.TRUE);
 Boolean b = (Boolean) rawCell.get();

Parameterized type

Raw type

Type argument

Client code

Library code

Cast still required

Cast eliminated

6

� �
�

�

�

� �

Java 1.5 generics use invariant subtyping:
 Li st <Fl oat > l f = . . . ;
 Li st <I nt eger > l i = . . . ;

 Li st <Number > l n = e ? l f : l i ; // wrong!
 Li st l = e ? l f : l i ; // ok

Without raw types, l f , l i , l o must be typed Li s t <Number >

Therefore an analysis should address raw types

� but: they have subtle type-checking rules

� they complicate an approach based on type constraints

� raw Li s t is not Li st <

�

> for any �

7

�

�

Introduction: generic types in Java 1.5

The problem: inferring type arguments

Our approach

� Allocation type inference

� Declaration type inference

Results, Status & Related Work

8

�

�

�

� � �
�

� �
Generics bring many benefits to Java

� e.g. earlier detection of errors; better documentation
Can we automatically produce “generified” Java code?

There are two parts to the problem:

� parameterisation: adding type parameters

� cl ass Set

�

 c l ass Set <T ext ends Obj ect >

� instantiation: determining type arguments at use-sites

� Set x;

�

 Set <St r i ng> x;

vonDincklage & Diwan address both problems together

We focus only on the instantiation problem. Why?

9

�

�

� �

�

�

The instantiation problem is more important

� there are few generic libraries, but they are widely used

e.g. collections in j ava. ut i l are fundamental

� many applications have little generic code

Instantiation is harder than parameterisation

� parameterisation typically requires local changes
(javac, htmlparser, antlr: 8-20 min each, by hand)

� instantiation requires more widespread analysis

11

�

� � �
� �

A translation algorithm for generic Java should be:

� sound: it must not change program behaviour

� general: it does not treat specially any particular libraries

� practical: it must handle all features of Java, and scale to
realistic programs

Many solutions are possible

� Solutions that eliminate more casts are preferred

12

�

� �

c l ass Cel l <T> {
 voi d set (T t) { . . . }
 . . .
}

Cel l x = new Cel l () ;
x . set (new Fl oat (1. 0)) ;
x . set (new I nt eger (2)) ;

Cel l y = new Cel l () ;
y . set (x) ;

13

�

� �

c l ass Cel l <T> {
 voi d set (T t) { . . . }
 . . .
}

Cel l <Number > x = new Cel l <Number >() ;
x . set (new Fl oat (1. 0)) ;
x . set (new I nt eger (2)) ;

Cel l <Cel l <Number >> y = new Cel l <Cel l <Number >>() ;
y . set (x) ;

14

�

�

Introduction: generic types in Java 1.5

The problem: inferring type arguments

Our approach

� Allocation type inference

� Declaration type inference

Results, Status & Related Work

15

� �

Allocation type inference

� At each generic allocation site, “what's in the container?”

� For soundness, must analyze all uses of the object

� new Cel l ()

�

 new Cel l <Number >()

Declaration type inference

� Propagates allocation site types throughout all
declarations in the program to achieve a consistent typing

� Analyzes client code only; libraries remain unchanged

� Eliminates redundant casts

� Cel l x;
�

 Cel l <Number > x;

16

� � � � �

Three parts:

1) Pointer analysis
what does each expression point to?

2) S-unification
 points-to sets + declared types =

lower bounds on type arguments at allocations
3) Resolution

lower bounds
�

 Java 1.5 types

17

�

�

�

�

�

�
�

�

Approximates every expression by the set of allocation sites it
points to (“points-to set”)

 Cel l x = new Cel l
1
() ; points-to(x) = { Cel l

1 }

 x. set (new Fl oat (1. 0)) ; points-to(t1) = { Fl oat }

 x. set (new I nt eger (2)) ; points-to(t2) = { I nt eger }

 Cel l y = new Cel l
2
() ; points-to(y) = { Cel l

2 }

 y. set (x) ; points-to(t3) = { Cel l
1 }

ti are the actual parameters to each call to set ()

Cel l
1
, Cel l

2
, I nt eger and Fl oat are special types

denoting the type of each allocation site

18

�

�

�

�
�

�

� �

�

Flow-insensitive, context-sensitive algorithm

� based on Agesen's Cartesian Product Algorithm (CPA)

� context-sensitive (for generic methods)

� fine-grained object naming (for generic classes)

� field-sensitive (for fields of generic classes)

Examines bytecodes for libraries if source unavailable (sound)

19

�

�

� � �

To determine constraints on type arguments, combine results
of pointer analysis with declared types of methods/fields

Example: in call x. set (new Fl oat (1. 0)) :

� x points to { Cel l
1
 }

� actual parameter t1 points to { Fl oat }

� formal parameter is of declared type T

� so TCel l 1
 ≥ Fl oat

For more complex types, structural recursion is required

e.g. in a call to r epl ace(Cel l <E> v)

20

�

� � � �

“unification generating subtype constraints”

Cel l x = new Cel l
1
() ;

x . set (new Fl oat (1. 0)) ; TCel l 1
 ≥ Fl oat

x . set (new I nt eger (2)) ; TCel l 1
 ≥ I nt eger

Cel l y = new Cel l
2
() ;

y . set (x) ; TCel l 2
 ≥ Cel l

1

21

� �

� �

We must convert our richer type system to that of Java 1.5

For each type argument, s-unification discovers a set of lower
bound types:

� TCel l 1
 ≥ { Fl oat , I nt eger }

� TCel l 2
 {≥ Cel l

1
 }

Resolution determines the most specific Java 1.5 type that can
be given to each type argument

� process dependencies in topological order

� cycles broken by introducing raw types (very rare)

� union types replaced by least-upper-bound

� e.g. { Fl oat , I nt eger }

�

 Number

22

� � �

� � �

� �

Cel l x = new Cel l <Number >() ;
x . set (new Fl oat (1. 0)) ;
x . set (new I nt eger (2)) ;
Cel l y = new Cel l <Cel l <Number >>() ;
y . set (x) ;

Now we have a parameterised type for every allocation site

Next: determine a consistent Java 1.5 typing of the whole
program...

23

�

�

Introduction: generic types in Java 1.5

The problem: inferring type arguments

Our approach

� Allocation type inference

� Declaration type inference

Results, Status & Related Work

24

�

�

� � �

Goal: propagate parameterized types of allocation-sites to
obtain a consistent Java 1.5 program

� Input: types for each allocation site in the program

� Output: consistent new types for:

� declarations: fields, locals, params

� operators: casts, instanceof

Approach: find a solution to the system of type constraints
arising from statements of the program

� Type constraints embody the type rules of the language

� Any solution yields a valid program; we want the most
specific solution (least types)

25

�

�

� �

�

�

General form of type constraints:

� x := y

�

 [[y]] ≤ [[x]] [[x]] means “type of x”

There are three sources of type constraints:

� Flow of values: assignments, method call and return, etc

� Semantics preservation: preserve method overriding
relations, etc

� Boundary constraints: preserve types for library code

Conditional constraints handle raw types:

given: Cel l <

�

1> c ; c. set (“ f oo”)

St r i ng ≤ �

1 is conditional upon c ≠ raw

26

�

�

� �

�

�
Declarations are elaborated with unknowns �

i standing for
type arguments

Cel l <

�

1> x = new Cel l <Number >() ;

x. set (new Fl oat (1. 0)) ;
x. set (new I nt eger (2)) ;
Cel l <

�

2> y = new Cel l <Cel l <Number >>() ;

y. set (x) ;

[[x]]

Cel l <Number >

 Cel l Cel l <

�

1>

�

1

Labelled edges denote

conditional constraints

27

�

�

� �

�

�
Declarations are elaborated with unknowns �

i standing for
type arguments

Cel l <

�

1> x = new Cel l <Number >() ;

x. set (new Fl oat (1. 0)) ;
x. set (new I nt eger (2)) ;
Cel l <

�

2> y = new Cel l <Cel l <Number >>() ;

y. set (x) ;

[[x]]

Cel l <Number >

 Cel l Cel l <

�

1>

�

1

 Fl oat

�

1

�

1

Labelled edges denote

conditional constraints

28

�

�

� �

�

�
Declarations are elaborated with unknowns �

i standing for
type arguments

Cel l <

�

1> x = new Cel l <Number >() ;

x. set (new Fl oat (1. 0)) ;
x. set (new I nt eger (2)) ;
Cel l <

�

2> y = new Cel l <Cel l <Number >>() ;

y. set (x) ;

[[x]]

Cel l <Number >

 Cel l Cel l <

�

1>

�

1

I nt eger Fl oat

�

1

�

1

�

1

Labelled edges denote

conditional constraints

29

�

�

� �

�

�
Declarations are elaborated with unknowns �

i standing for
type arguments

Cel l <

�

1> x = new Cel l <Number >() ;

x. set (new Fl oat (1. 0)) ;
x. set (new I nt eger (2)) ;
Cel l <

�

2> y = new Cel l <Cel l <Number >>() ;

y. set (x) ;

[[x]] [[y]]

Cel l <Number > Cel l <Cel l <Number >>

 Cel l Cel l <

�

1> Cel l <

�

2> Cel l

�

1

I nt eger Fl oat

�

1

�

1

�

2

�

1

Labelled edges denote

conditional constraints

30

�

�

� �

�

�
Declarations are elaborated with unknowns �

i standing for
type arguments

Cel l <

�

1> x = new Cel l <Number >() ;

x. set (new Fl oat (1. 0)) ;
x. set (new I nt eger (2)) ;
Cel l <

�

2> y = new Cel l <Cel l <Number >>() ;

y. set (x) ;

[[x]] [[y]]

Cel l <Number > Cel l <Cel l <Number >>

�

2 Cel l Cel l <

�

1> Cel l <

�

2> Cel l

�

1

I nt eger Fl oat

�

1

�

1

�

2

�

2

�

1

Labelled edges denote

conditional constraints

31

� �

� �

�

�

Initially, conditional edges are excluded

For each unknown �, try to reify it

� i.e. include �'s conditional edges and choose a type for �

(chosen type is lub of types that reach it)

� then try to reify the remaining unknowns

� if this leads to a contradiction, backtrack and discard �

(declaration in which � appears becomes raw)

Result:

�

1 = Number and �

2 = Cel l <Number >

so: [[x]] = Cel l <Number >, [[y]] = Cel l <Cel l <Number >>

32

�

� �

� �

�

�

Consider: Cel l <

�

3> r = expr ? p : q;

When we try to reify �

3, we get a contradiction, so �

3 is killed
and [[r]] becomes raw Cel l .

[[p]] [[q]]

[[r]]

�

3

! Float= �

3
Integer=

�

3 !

Cel l <I nt eger > Cel l <Fl oat >

Cel l <
�

3>

33

�

�

Introduction: generic types in Java 1.5

The problem: inferring type arguments

Our approach

� Allocation type inference

� Declaration type inference
Results, Status & Related Work

34

� � �

The analyses are implemented as a practical tool, Jiggetai

� it performs type analysis followed by source translation

� it addresses all features of the Java language
 (but: only limited support for class-loading, reflection)

Our tool operates in “batch” mode

� Future: could be used as an interactive application

35

�
� �

� �

�

�

Program Lines Casts G.Casts Elim %
antlr 26349 161 50 49 98
htmlparser 13062 488 33 26 78
javacup 4433 595 472 466 99
jlex 4737 71 57 56 98
junit 5727 54 26 16 62
telnetd 3976 46 38 37 97
vpoker 4703 40 31 24 77

Lines = number of non-comment, non-blank lines of code

G.Casts = number of generic casts in original program

Elim = number of casts eliminated by the tool

All benchmarks ran within 8 mins/200MB on a 800Mhz PIII

36

� � �

� �

�

�

Four causes were responsible for most missed casts

� e.g. the “filter” idiom:
 Li s t s t r i ngs = new Ar r ayLi st () ; // <Obj ect > !
 voi d f i l t er St r i ngs(Obj ect o) {
 i f (o i nst anceof St r i ng)
 st r i ngs. add(o) ;
 }

� Tool could be extended to handle these cases

�

 ~100%
Mostly, usage-patterns of generics are very simple

� infrequent “nesting” (e.g. Set <Li st <St r i ng>>)

� programmers avoid complex constructs if they are
unaided by the type-checker

37

�

�

Duggan [OOPSLA 1999]

� a small Java-like language

� simultaneous parameterisation & instantiation
von Dincklage & Diwan [OOPSLA 2004]

� Java 1.5 (without raw types)

� no guarantee of soundness

� simultaneous parameterisation & instantiation
Tip, Fuhrer, Dolby & Kieżun [IBM TR/23238, 2004]

� Java 1.5 (without raw types)

� specialised for JDK classes, but can be extended

� instantiation; parameterisation only of methods

Demo: 3.30pm
Courtyard

Demo Rm 1

38

�

�
�

Automatic inference of type arguments to generic classes is both
feasible and practical

Our approach...

� ensures soundness in the presence of raw types

� is applicable to any libraries, not just the JDK

� readily scales to medium-size inputs (26 KLoC NCNB)

� gives good results on real-world programs

But: Java 1.5 type system is complex!

� raw types and unchecked operations make analysis hard

� solved lots of corner cases to build a practical tool

