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ABSTRACT

Current app stores distribute some malware to unsuspecting users,
even though the app approval process may be costly and time-
consuming. High-integrity app stores must provide stronger guar-
antees that their apps are not malicious. We propose a verification
model for use in such app stores to guarantee that the apps are free
of malicious information flows. In our model, the software vendor
and the app store auditor collaborate — each does tasks that are
easy for her/him, reducing overall verification cost. The software
vendor provides a behavioral specification of information flow (at a
finer granularity than used by current app stores) and source code
annotated with information-flow type qualifiers. A flow-sensitive,
context-sensitive information-flow type system checks the informa-
tion flow type qualifiers in the source code and proves that only
information flows in the specification can occur at run time. The
app store auditor uses the vendor-provided source code to manually
verify declassifications.

We have implemented the information-flow type system for An-
droid apps written in Java, and we evaluated both its effectiveness at
detecting information-flow violations and its usability in practice. In
an adversarial Red Team evaluation, we analyzed 72 apps (576,000
LOC) for malware. The 57 Trojans among these had been written
specifically to defeat a malware analysis such as ours. Nonetheless,
our information-flow type system was effective: it detected 96% of
malware whose malicious behavior was related to information flow
and 82% of all malware. In addition to the adversarial evaluation,
we evaluated the practicality of using the collaborative model. The
programmer annotation burden is low: 6 annotations per 100 LOC.
Every sound analysis requires a human to review potential false
alarms, and in our experiments, this took 30 minutes per 1,000 LOC
for an auditor unfamiliar with the app.
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1. INTRODUCTION

App stores make it easy for users to download and run applica-
tions on their personal devices. App stores also provide a tempting
vector for an attacker. An attacker can take advantage of bugdoors
(software defects that permit undesired functionality) or can insert
malicious Trojan behavior into an application and upload the appli-
cation to the app store.

For current app stores, the software vendor typically uploads a
compiled binary application. The app store then analyzes the binary
to detect Trojan behavior or other violations of the app store’s terms
of service. Finally, the app store approves and publishes the app.
Unfortunately, the process offers few guarantees, and every major
app store has approved Trojans [6} |23} 28} |31}|33}49,|52}|59].

We are exploring the practicality of a high-assurance app store
that gives greater understanding of, and confidence in, its apps’ be-
havior in order to reduce the likelihood that a Trojan is approved and
distributed to users. A high-assurance app store would be particu-
larly valuable in certain sensitive settings. For example, corporations
already provide lists of apps approved for use by employees (often
vetted by ad hoc processes). The U.S. Department of Defense is
also actively pursuing the creation of high-assurance app stores.

Four contributing factors in the approval of Trojans by existing
app stores are: (1) Existing analysis tools are poorly automated and
hard to use; much manual, error-prone human effort is required.
(2) The vendor provides only a very coarse description of appli-
cation behavior in the form of permissions it will access: system
resources such as the camera, microphone, network, and address
book. This characterization provides insufficient limitations on the
application’s behavior. (3) The binary executable lacks much se-
mantic information that is available in the source code but has been
lost or obfuscated by the process of compilation. (4) The vendor
has little incentive to make the application easy for the app store to
analyze and understand.



We have developed a new approach to verifying apps that ad-
dresses each of these factors. (1) We have created a powerful,
flow-sensitive, context-sensitive type system that verifies informa-
tion flows. The type system is easy to use and works with Java
and Android. (2) Our type system proves that apps conform to
finer-grained information-flow specifications than current app stores.
These specifications indicate not just which resources may be ac-
cessed but which information flows are legal — how the resources
may be used by the program. (3) Our approach uses source code
rather than binaries, because source code provides more informa-
tion, enables more accurate and powerful analyses, and allows an
auditor to evaluate false positive warnings. While not all application
developers may wish to provide their source code to an app store,
we argue that this requirement is reasonable for app stores in certain
settings, e.g., in the context of corporate, military, government, or
medical applications. (4) We propose a collaborative verification
methodology in which the vendor participates in and contributes to
the verification process, rather than casting the vendor and the app
store in an antagonistic relationship. However, the developer is not
trusted: all information provided by the developer is verified.

We report on initial experience with this system, including an
adversarial Red Team exercise in which 5 corporate teams (funded
externally, not by us) were given access to our source code and
design documents then tasked with creating Trojans that would be
difficult to detect. Our type system detected 82% of the Trojans,
and 96% of the Trojans whose malicious behavior was related to
information flow. (We have identified an enhancement to our system
that would increase the latter number to 100%.) As with any pro-
gram analysis, a human must investigate tool warnings to determine
whether they are false positives. On average, it took an auditor
unfamiliar with the programs 30 minutes per KLOC to analyze
the information flow policy and the tool warnings. The annotation
burden for programmers (application vendors) is also low.

Overall, our goal is to make it difficult to write Trojans and easy
to determine when code is not a Trojan. Our information-flow type-
checker cannot catch all malware, but it raises the bar for malware
authors and thus improve security.

1.1 Verification of source code

An app store can be made more secure by requiring vendors
to provide their applications in source code, and then performing
strong verification on that source code. While today’s commercial
app stores do not require source code, we discuss in Sect. [I.2]the
market forces that enable an app store such as we propose. This app
store would analyze the source code, compile it, and distribute it as a
binary (signed by the app store’s private key) to protect the vendor’s
intellectual property. Availability of source code fundamentally
changes the approval process in favor of verification by providing
more information to both the analysis and the analyst.

Source code verification is relevant for other domains than high-
integrity application stores. One public example of inserting mali-
cious behavior into an open source program is an attempt to insert
a backdoor in the Linux kernel [32]. As another example, Liu et
al. developed proof-of-concept malware as Chrome extensions [37],
which are essentially distributed as source code. The Heartbleed
bug appeared in open-source software. We believe that source code
analysis for security will become increasingly important, so it is
worthy of attention from security researchers.

Our approach is for Java source code, but since the type qualifiers
are persisted to the classfile, it would be possible to re-implement
our type system for bytecode in order to verify compiled apps.
1.2 Collaborative verification model

Most app store approval policies assume an adversarial, or at least
non-cooperative, relationship between the developer and the app

App store J Apl:l{ store App store employee manually verifies:
provides po 101e Acceptable behavior
- Declassifications are justified
policy Type-checker automatically verifies:
Venfior = «—— Type qualifiers are compatible with flow policy
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(modulo declassifications)

Figure 1: The collaborative verification model for information
flow. The flow policy is a high-level specification that expresses
application behavior in terms of user-visible information flows.

store. The developer delivers an app in binary form, and the app
store uses an opaque process to make a decision about whether to
offer the app on the app store.

We propose to augment existing app store approval processes with
a collaborative model (Fig. [I) for verification of information flow.
The application vendor provides more information to the auditor
(an app store employee). This information is easy for the vendor to
provide, but it would be difficult for the auditor to infer. The auditor
is able to make a decision about information flow more quickly and
with greater confidence, which is advantageous to both parties.

As shown in Fig.[I} the auditor receives two artifacts from the ven-
dor. The first vendor-provided artifact is the flow policy, a high-level
specification of the intended information flows in the program from
the user point of view. In our experiments, this averaged 6 lines long.
For example, it might state that location information is permitted to
flow to the network and that camera images may be written to the
local disk. Any information flow not stated in the flow policy is im-
plicitly forbidden. The second vendor-provided artifact is the source
code, annotated with information flow type qualifiers. The annota-
tion burden is low: on average 6 annotations per 100 lines of code.

Both the annotations and the vendor are untrusted. Our implemen-
tation, Information Flow Type-checker (IFT), automatically ensures
that the type qualifiers are both permitted by the flow policy and
are an accurate description of the source code’s behavior (modulo
any auditor-verified declassifications). If not, the app is rejected.
Unannotated apps are also rejected. Thus, the application vendor
must provide accurate type qualifiers and flow policy.

The auditor has two tasks, corresponding to the two vendor-
provided artifacts. The first task is to evaluate the app’s flow policy.
This is a manual step, in which the auditor compares the flow policy
to the app’s documentation and to any app store or enterprise poli-
cies. The app store analyst must approve that the requested flows
are reasonable given the app’s purpose; apps with unreasonable flow
policies are rejected as potential Trojans. The second task is to ver-
ify each declassification, using some other verification methodology
(e.g., [B). Sect.[3.3.2)further describes the auditing process.

Not every app store will desire to differentiate itself through
increased security, and not every vendor will desire to participate
in high-assurance app stores. But market forces will enable such
stores to exist where there are appropriate economic incentives —
that is, whenever some organizations or individuals are willing to
pay more for increased security. Increased security is especially
important in sensitive contexts such as government, corporate, and
medical applications. Even if some vendors will never participate in
a high-assurance app store, we believe there is value in researchers
investigating and improving the practicality of such stores.

It makes economic sense for the vendor to annotate their code
and possibly to be paid a premium: based on our experience, the
effort is much less for the author of the code than for an auditor
who would have to reverse-engineer the code before writing down
the information about the information flows. The effort is small



compared to overall development time and is comparable to writing
types in a Java program. If the type qualifiers are written as the code
is first developed, they may even save time by preventing errors or
directing the author to a better design.

Some vendors may be concerned with confidentiality of their
source code. Large organizations already require their vendors to
provide and/or escrow source code. For Android apps, it is easy to
decompile a Java program from .class or .dex format, so even an app
in binary format does not protect the vendor’s algorithms, protocols,
and other secrets. These facts may reduce vendors’ reluctance to
provide source code.

The U.S. Department of Defense is also interested in high-assur-
ance app stores, for example through DARPA’s “Transformative
Apps” and “Automated Program Analysis for Cybersecurity,” along
with related software verification programs such as “High-Assurance
Cyber Military Systems” and “Crowd-Sourced Formal Verifica-
tion”. Our collaborative verification model is novel and differs from
DARPA’s existing programs.

1.3 Threat model

While there are many different types of malicious activities, we
focus on Trojans whose undesired behavior involves information
flow from sensitive sources to sensitive sinks. This approach is sur-
prisingly general: we have found that our approach can be adapted to
other threats, such as detecting when data is not properly encrypted,
by treating encryption as another type of resource or permission.

More specifically, IFT uses a flow policy as a specification or
formal model of behavior. If IFT issues no warnings, then the app
does not permit information flows beyond those in the flow policy
— that is, each output value is affected only by inputs specified in
the flow policy. IFT issues a warning at every declassification, and
manual checking is required for each one. IFT does not perform
labor-intensive full functional verification, only information-flow
verification, which we show can be done at low cost.

Our threat model includes the exfiltration of personal or sensitive
information and contacting premium services. However, it does not
cover phishing, denial of service, or side channels such as battery
drain or timing. It does not address arbitrary malware (such as
Slammer, Code Red, etc.). We treat the operating system, our type
checker, and annotations on unverified libraries as trusted compo-
nents — if they have vulnerabilities or errors, then an app could be
compromised even if it passes our type system. App developers and
app source code (including type qualifiers) are not trusted.

There have been previous studies of the kinds of malware present
in the wild [[17}64]. Felt et al. [17] classify malware into 7 distinct
categories based on behavior. Our system can catch malware from
the 4 most prevalent and important ones: stealing user information
(60%), premium calls or SMSs (53%), sending SMS advertising
spam (18%), and exfiltrating user credentials (9%). The other 3
categories are: novelty and amusement (13%), search engine opti-
mization (2%), ransom (2%).

Our approach is intended to be augmented by complementary
research and app store activities that focus on other threats. Our
approach raises the bar for attackers rather than providing a silver
bullet. Sect.[2.9]discusses limitations of our system in greater detail.

1.4 Contributions

The idea of verifying information flow is not new, nor is using a
type system. Rather, our contributions are a new design that makes
this approach practical for the first time, and realistic experiments
that show its effectiveness. In particular, the contributions are:

We have proposed a collaborative verification model that reduces
cost and uncertainty, and increases security, when investigating
the information flow of apps submitted to an app store. Our work

explores a promising point in the trade-oftf between human and
machine effort.

We have extended information-flow verification to a real, unmod-
ified language (Java) and platform (Android). Our design is easy
to use yet supports polymorphism, reflection, intents, defaulting,
library annotations, and other mechanisms that increase expressive-
ness and reduce human effort.

We have designed a mechanism for expressing information flow
policies, and we have refined the existing Android permission sys-
tem to make it less porous.

We have implemented our design in a publicly-available system
(http://types.cs.washington.edu/sparta/), and we have ex-
perimentally evaluated our work. Our system effectively detected
realistic malware targeted against it, built by skilled Red Teams. The
effort to use our system was low for both programmers and auditors:
our system is powerful, yet it requires less annotation overhead than
previous systems and is simpler to use and understand.

2. INFORMATION FLOW TYPE-CHECKER

This section describes our implementation, called Information
Flow Type-checker (IFT), and the type system it enforces. IFT
guarantees that if a program is well typed, no information flows
exist in the program beyond those expressed in the flow policy that
expresses the high-level specification. IFT is sound and conserva-
tive: if IFT approves a program, then the program has no undesired
information flows, but if IFT issues a warning, then the program
might or might not actually have undesired information flows at run
time. The guarantee is modulo human examination of a small num-
ber of declassifications, including ones about implicit information
flow through conditionals.

As shown in Fig.[T] a programmer using IFT provides two kinds
of information about the information flows in the program. First,
the programmer provides a flow policy file, which describes the
types of information flows that are permitted in the program (see
Sect.[2.3). For example, a simple app for recording audio to the file
system would have a flow policy containing only RECORD_AUDIO
—FILESYSTEM. It would be suspicious if this app’s flow policy
contained RECORD_AUDIO—INTERNET, because that flow allows
audio to be leaked to an attacker’s server.

Second, the programmer writes Java type annotations to express
information-flow type qualifiers. Each qualified type includes a
set of sensitive sources from which the data may have originated
and a set of sinks to which the data may be sent. For example, the
programmer of the audio recording app would annotate the type
of the recorded data with @Source (RECORD_AUDIO) @Sink (FILESYSTEM).
IFT uses type-checking over an information flow type system to
verify that the annotated code is consistent with the flow policy.

2.1 Types: sources and sinks

The type qualifier ésource on a variable’s type indicates what
sensitive sources might affect the variable’s value. The type qualifier
@sink indicates where (information computed from) the value might
be output. These qualifiers can be used on any occurrence of a type,
including in type parameters, object instantiation, and cast types.

As an example, consider the following declaration:

@Source (LOCATION) @Sink (INTERNET) double loc;

The type of variable loc is @Source (LOCATION) @Sink (INTERNET) double.
The type qualifier esource (LocaTION) indicates that the value of 1oc
might have been derived from location information. The type qual-
ifier esink (INTERNET) indicates that 1oc might be output to the net-
work.

The arguments to @Source and @sink are permissions drawn from
our enriched permission system (Sect.[2.2). The argument may be a
set of permissions to indicate that a value might combine information
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]
’ @Source ({INTERNET, LOCATION}) ‘ ’ @Sink (INTERNET) ‘ ’@Sink(FILESYSTEM)‘
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Figure 2: Partial qualifier hierarchy for source and sink type
qualifiers @source and @sink.

from multiple sources or flow to multiple locations. The special
constant aNY denotes the set of all sources or the set of all sinks; the
empty set denotes the absence of sources or sinks.

2.1.1 Subtyping

Adding type qualifiers to the Java type system only requires
extending the subsumption rule in a standard way; other Java typing
rules remain unchanged. A type qualifier hierarchy indicates which
assignments, method calls, and overridings are legal, according to
standard object-oriented typing rules. Fig. [2] shows parts of the
@source and @sink qualifier hierarchies.

@Source (B) is a subtype of esource (A4) iff B is a subset of A [[10].
For example, @Source (INTERNET) is a subtype of ¢source ({INTERNET,
rocarion}). This rule reflects the fact that the @source qualifier
places an upper bound on the set of sensitive sources that were
actually used to compute the value. If the type of x is qualified
by @Source ({INTERNET, LOCATION}), then the value in x might have
been derived from both INTERNET and LocATION data, or only from
INTERNET, or only from LocaTION, or from no sensitive source at all.

The opposite rule applies for sinks: @sink(B) is a subtype of
@sink (A) iff A is a subset of B. For example, the type €sink ({ INTERNET,
FILESYSTEM}) indicates that the value is permitted to flow to both
INTERNET and FILESYSTEM. This is a subtype of @Sink (INTERNET), as
the latter type provides fewer routes through which the information
may be leaked.

Based on these rules, the top type qualifiers of these hierarchies
are @source (ANY) and @Sink ({}), and the bottom type qualifiers are
@Source ({}) and @Sink (ANY).

2.1.2  Polymorphism

Information flow type qualifiers interact seamlessly with paramet-
ric polymorphism (Java generics). For example, a programmer can
declare

List<@Source (CONTACTS) @Sink (WRITE_SMS) String> myList;

to indicate that the elements of myList are strings that are obtained
from contacts and that may flow to WRITE_SMs.

IFT also supports qualifier polymorphism, in which the type qual-
ifiers can change independently of the underlying Java type. This
allows a programmer to write a generic method that can operate on
values of any information flow type and return a result of a different
Java type with the same sources/sinks as the input. It also enables
qualifier polymorphism even for non-generic Java methods.

For example, the method ¢rolysource int f(@PolySource int x)
can be passed an int with any sources, and the result has exactly
the same sources as the input. This qualifier polymorphism can
be viewed as the declaration and two uses of a type qualifier vari-
able. The implicit type qualifier variable is automatically instan-
tiated by IFT at the point of use. Given variable netarg of type
@Source (INTERNET) int, in an invocation f (netarg) the type qualifier
variable is instantiated to @source (INTERNET) and the return type of
this method invocation is therefore @Source (INTERNET) int.

Polymorphism allows IFT to be context-sensitive.

Table 1: Additional sources and sinks used by IFT, beyond the
built-in 145 Android permissions.

Sources Sinks Both source and sink
ACCELEROMETER CONDITIONAL CAMERA_SETTINGS
BUNDLE DISPLAY CONTENT_PROVIDER
LITERAL SPEAKER DATABASE

MEDIA WRITE_CLIPBOARD FILESYSTEM
PHONE_NUMBER WRITE_EMAIL PARCEL

RANDOM ‘WRITE_LOGS PROCESS_BUILDER
READ_CLIPBOARD SECURE_HASH
READ_EMAIL SHARED_PREFERENCES
READ_TIME SQLITE_DATABASE
USER_INPUT SYSTEM_PROPERTIES

2.2 Comparison to Android permissions

IFT’s permission model differs from the Android permission
model in three ways. (1) IFT’s permissions are statically guaran-
teed at compile time, whereas Android permissions are enforced
at run time, potentially resulting in an exception during execution.
If an app inherits a permission from another app with the same
sharedUserId, IFT requires that permission to be listed in the flow
policy. (2) IFT’s permission flows are finer-grained than standard
Android manifest permissions. Android permits any flow between
any pair of permissions in the manifest — that is, an Android pro-
gram may use any resource mentioned in the manifest in an arbitrary
way. (3) IFT refines Android’s permissions, as discussed in this
section.

2.2.1 Sinks and sources for additional resources

IFT adds additional sources and sinks to the Android permissions.
For example, IFT requires a permission to retrieve data from the
accelerometer, which can indicate the user’s physical activity, and
to write to the logs, which a colluding app could potentially read.
Table [1] lists the additional sources and sinks. We selected and
refined these by examining the Android API and Android programs,
and it is easy to add additional ones. Our system does not add much
complexity — it only adds 26 (18%) to the 145 Android permissions.

Some researchers feel that the Android permission model is al-
ready too complicated for users to understand [[16], but our per-
spective is that of a full-time auditor who is trained to analyze
applications. The flow policy is examined once per application by
that skilled engineer, not on every download by a user, so the total
human burden is less (Sect. [3.3.2] provides empirical measurements).
The more detailed flow policy yields more insight than standard
Android permissions, because the flow policy makes clear how each
resource is used, not just that it is used.

We now discuss two permissions, LITERAL and CONDITIONAL,
whose meaning may not be obvious.

Literal. The LITERAL source is used for programmer-written
constants (in the source code, Android manifest, or resource files)
such as "Hello world!", and for any variable whose value is com-
puted using only those constants. This enables IFT to distinguish
information derived from the program source code from other in-
puts. Program literals are not trusted, since the app vendor may be
malicious. The flow policy shows how they are used in the program.

Conditional. The CONDITIONAL sink is used for conditional
expressions — every value used in a conditional expression flows to
that sink. This enables IFT to raise a warning at locations where the
control flow of the program branches on sensitive information. The
auditor reviews those warnings to detect implicit information flows,
as explained in greater detail in Sect.



2.2.2 Restricting existing permissions

The standard Android permissions might be too coarse-grained to
express the developer’s intention. For example, Android’s INTERNET
permission represents all reachable hosts on the Internet. IFT allows
this permission to be parameterized with a domain name, as in IN-
TERNET(“*.google.com”). Other permissions can be parameterized in a
similar style, and the meaning of the optional parameter varies based
on the permission it refines. For example, a parameter to FILESYS-
TEM represents a file or directory name or wildcard, whereas the
parameter to SEND_SMS represents the phone number that receives
the SMS. Other permissions that can be parameterized include
CONTACTS, *_EXTERNAL_FILESYSTEM, NFC, *_SMS, and USE_SIP.
Several of the additional sources and sinks (Table[I) can also be
parameterized, such as USER_INPUT to distinguish sensitive from
non-sensitive user input.

IFT performs intraprocedural constant value propagation to en-
able precise analysis of parameterized permissions.

2.3 Flow policy

A flow policy is a list of all the information flows that are permit-
ted to occur in an application. A flow policy file expresses a flow
policy, as a list of flowsource — flowsink pairs. Just as the Android
manifest lists all the permissions that an app uses, the flow policy
file lists the flows among permissions and other sensitive locations.

Consider the “Block SMS” application of Table 5} which blocks
SMS messages from a blacklist of blocked numbers and saves them
to a file for the user to review later. Its flow policy must contain
READ_SMS—FILESYSTEM to indicate that information obtained us-
ing the READ_SMS permission is permitted to flow to the file system.

The flow policy specifies what types are legal. Every flow in
a program is explicit in the types of the program’s expressions.
For example, if there is no expression whose type has the type
qualifiers @source (CAMERA) @Sink (INTERNET), then the program never
sends data from the camera to the Internet (modulo conditionals
and transitive flows). The expression’s type might be written by a
programmer or might be automatically inferred by IFT.

IFT guarantees that there is no information flow except what is
explicitly permitted by the flow policy. If the type of a variable or
expression indicates a flow that is not permitted by the flow policy,
then IFT issues a warning even if the program otherwise would
type-check. For example, the following declaration type-checks, but
IFT would still produce an error unless the flow policy permits the
CAMERA—INTERNET flow:

@Source (CAMERA) @Sink (INTERNET) Video video = getVideo();

Transitive flows. Transitive flows through on-device source-sink
pairs must be explicitly written in the flow policy. This is because
apps can use on-device sinks to whitewash sensitive information.
For example, if a flow policy permits USER_INPUT—FILESYSTEM
and FILESYSTEM—INTERNET, then an application might write user
input to a file and then send the contents of that file to a malicious
server. Therefore, the transitive flow USER_INPUT—INTERNET must
be explicitly stated in the flow policy.

Parameterized permissions (Sect. [2.2.2) reduce the number of
transitive flows. For example, if user input is only written to
files in the notes directory (USER_INPUT—FILESYSTEM(*“notes/*"))
and only files in the cat-photos directory are sent to the Internet
(FILESYSTEM(‘“cat-photos/*”")—INTERNET), then the transitive flow
USER_INPUT—FILESYSTEM is not required.

On-device source-sink pairs involving resources that may be ac-
cessed by other apps could be used by colluding apps to leak infor-
mation. To prevent this, the flow policies of all apps on a device or
in an app store are checked against each other for inter-app transitive
flows. If a transitive flow is found that violates a flow policy of an

app, then one or more apps may need to be excluded or rewritten.
In practice, app stores will specify standard policies for flows in-
cluding these source-sink pairs, so that developers can avoid writing
conflicting apps.

An off-device sink, such as a website or the recipient of an SMS,
might leak data to some sink not allowed by the flow policy. Off-
device sinks must be either trusted or verified by other means.

2.4 Inference and defaults

A complete type consists of a esource qualifier, a ¢sink qualifier,
and a Java type. To reduce programmer effort and code clutter, most
of the qualifiers are inferred or defaulted rather than written as type
annotations. A programmer need not write type annotations within
method bodies, because such types are inferred by IFT. For method
signatures and fields, a programmer generally writes either ¢source
or @sink, but not both. We now explain the inference and defaulting
features. For experimental measurements, see Sect.

2.4.1 Type inference and flow-sensitivity

A programmer does not write information flow types within
method bodies. Rather, local variable types are inferred.

IFT implements this inference via flow-sensitive type refinement.
Each local variable declaration (also casts and resource variables)
defaults to the top type qualifiers, @source (ANY) @Sink({}). At every
properly-typed assignment statement, the type of the left-hand side
is flow-sensitively refined to that of the right-hand side, which must
be a subtype of the left-hand side’s declared type. The refined type
applies until the next side effect that might invalidate it.

Consider the following simple method:
void process(@Source (INTERNET) int netint,

@Source (LOCATION) int locint) {

int x; // % is defaulted to @Source (ANY) @Sink({}) int

x = netint; // x 1s refined to @Source (INTERNET) int

x = locint; // x is refined to @Source (LOCATION) int
}

Flow-sensitive type refinement spares the programmer from writing
type qualifiers on local variable x, and the system automatically
determines the most precise type in each context.

IFT limits type inference to method bodies to ensure that each
method can be type-checked in isolation, with a guarantee that the
entire program is type-safe if each method has been type-checked.
It would be possible to perform a whole-program type inference,
but such an approach would be heavier-weight, would need to be
cognizant of cooperating or communicating applications, could
cause a change in one part of a program to cause new type-checking
errors elsewhere, and would provide fewer documentation benefits.

2.4.2  Determining sources from sinks and vice versa

If a type is annotated with only a source or only a sink, the other
qualifier is filled in with the most general value that is consistent
with the flow policy. If the programmer writes ¢source (@), IFT
defaults this to @source (o) @Sink (w) where  is the set of sinks that
all sources in o can flow to. Similarly, ¢sink (®) is defaulted to
@Source (o) @Sink (@) where o is the set of sources allowed to flow
to all sinks in ®. Defaults are not applied if the programmer writes
both a source and a sink qualifier.

Suppose the flow policy contains the following:

CAMERA -> DISPLAY,DATABASE
LOCATION -> DATABASE

Then these pairs are equivalent:

@Source ({LOCATION}) = @Source ({LOCATION}) @Sink (DATABASE)
@Sink (DATABASE) = @Source ({CAMERA,LOCATION}) @Sink (DATABASE)

This mechanism is useful because oftentimes a programmer
thinks about a computation in terms of only its sources or only



Table 2: Default information flow qualifiers for unannotated types.

Location Default information flow qualifier

Method parameters & receivers — €Sink (CONDITIONAL)

Return types @Source (LITERAL)
Fields @Source (LITERAL)
null @Source ({}) @Sink (ANY)
Other literals @Source (LITERAL)
Type arguments @Source (LITERAL)
Upper bounds @Source (ANY) @Sink({})
Local & resource variables @Source (ANY) @Sink ({})

its sinks. The programmer should not have to consider the rest of the
program that provides context indicating the other end of the flow.

An example of a method that uses only a e¢source qualifier is the
File constructor: a newly-created readable file should be annotated
with @Source (FILESYSTEM), but there is no possible eésink qualifier
that would be correct for all programs. Instead, the esink qualifier is
omitted, and our defaulting mechanism provides the correct value
based on the application’s flow policy.

This defaulting mechanism is essential for annotating libraries.
We wrote manual annotations for 10,470 methods of the Android
standard library. Only 7 of the API methods annotated so far use
both a @source and a esink qualifier. For example,

Camera.setPreviewDisplay (
@Source (CAMERA) @Sink (DISPLAY) SurfaceHolder holder)

The parameter holder both receives photos from the camera and
displays them.

This mechanism can be viewed as another application of type
polymorphism: defaulting of types depends on the flow policy and
the same source code can be reused in different scenarios by using a
different flow policy.

2.4.3  Defaults for unannotated types

Table [2] shows the default qualifiers for completely unannotated
types. When the default is only a source or only a sink, the other
qualifier is inferred from the flow policy as explained in Sect.2.4.2}

Most unannotated types (including field types, return types, generic
type arguments, and non-null literals) are given the qualifier esource (
L1rERAL). This is so that a simple computation involving only con-
stants does not require annotations.

As is standard, the nu1l literal is given the bottom type qualifiers
@Source ({}) @Sink(ANY), enabling an assignment to any variable.

2.5 Declassifications

Every sound static analysis is conservative: that is, there exists
source code that never misbehaves at run time, but the static analysis
cannot prove that fact and issues a warning about possible misbe-
havior. Every downcast in a Java program is an example of such
conservatism in the Java type system. In the context of informa-
tion flow analyses, an example would be a database: in general, a
database query can return arbitrary sensitive data, but application
invariants might guarantee that a particular query always returns
non-sensitive data. IFT would warn about use of any database query
result in a context that could leak the result, but in the example the
warning would be a false positive.

In order to suppress a warning that is a false positive, the developer
declassifies data that was typed too conservatively using a downcast.
The developer is required by the app store to write a justification for
each declassification. The app store auditor manually verifies both
the justification and the declassification. Thus, the auditor validates
the developer’s claim that the code is well-behaved for some reason
that is beyond the precision of the type checker.

In 11 Android apps (9437 LOC), IFT suffered 26 false positives,
or fewer than 3 per 1,000 LOC (see Sect.[3.3.1).

2.6 Indirect control flow

Indirect control flow, for example in reflection, intents, or ex-
ception handling, is challenging for a static analysis. IFT soundly
handles these constructs through additional analyses and conserva-
tive assumptions.

IFT analyzes Java reflection to determine the target method of a
reflective call. This enables a downstream analysis, such as IFT’s
information-flow type-checking, to treat the reflective code as a
direct method call, which has a much more precise annotated signa-
ture than does Method.invoke. IFT’s analysis resolves the reflective
call to a single concrete method in 96% of cases in our experiments,
including malicious examples where reflection is used intentionally
as a form of code obfuscation. The library’s conservative annota-
tions for Method.invoke ensure that any unresolved reflective call is
treated soundly.

Intents are an Android mechanism for interprocess communica-
tion, and they can also create processes (Android activities). To
handle intents, we extended IFT with map types (similar to record
types) that represent the mappings of data in an intent payload. Each
app implements intent-receiving methods, and their type signatures
act as interface specifications and permit modular checking. As long
as new apps are consistent with annotations on previously-checked
apps that they may communicate with, the old apps need not be
re-checked.

IFT soundly handles other indirect control flows, such as excep-
tion handling. For example, types in catch clauses are enforced to
be supertypes of any exception they may catch.

2.7 Implicit information flow

Implicit information flow through conditionals can leak private
information. For example, consider the following code and a flow
policy containing LITERAL—INTERNET:

@Source (USER_INPUT) long creditCard = getCC();

final long MAX_CC_NUM = 9999999999999999;

for (long i = 0 ; i < MAX_CC_NUM ; i++) {

if (1 == creditCard)
sendTolnternet (1) ;

}
This code leaks the credit card number to the Internet using the flow
LITERAL—INTERNET and the fact that i is only sent to the Internet
when i == creditcard evaluates to true.

The classic approach of Denning and Denning [11] to detect im-
plicit information flow is to taint all computations in the dynamic
scope of a conditional statement with all the sources from the con-
ditional’s predicate. This includes all statements in the body of
the conditional and all statements in any method directly or indi-
rectly called by the body. Over-tainting of computations within
the dynamic scope of conditionals leads to many false positive
alarms. These alarms occur far from the conditional statement or
other statement(s) that caused them. In order to determine whether
an implicit information flow truly occurs, the auditor has to work
backward from the location of an alarm to the conditional statement
or statements that caused it.

In our approach, the auditor reviews every conditional statement
that uses a sensitive source in its predicate. The auditor first decides
whether the knowledge about the boolean result of the predicate
is sensitive information. For example, checking whether a credit
card number has 16 digits does not reveal anything sensitive — in
this case, the auditor need not review the body of the conditional.
However, if the auditor decides that the conditional predicate is
sensitive, he/she must rule out any implicit information flow that
violates the flow policy. In order to determine whether an implicit



information flow truly occurs, the auditor works from the body of the
conditional forward to all statements in dynamic scope that might
implicitly leak information.

In both the classic approach and our approach, the auditor has
to carefully review the dynamic scope of the conditional body to
rule out false positives. However, unlike the classic approach, in
our approach, the reviewer is aware of the context of the conditional
and can make a more informed decision about whether an implicit
information flow might occur at runtime.

The auditors in our experiments (Sect.[3.3.2) felt that our approach
was easier for them than the classic one. They preferred to think
about an entire conditional expression at once rather than statement-
by-statement. Oftentimes, examining a conditional expression en-
abled the auditors to rule out bad behavior without needing to exam-
ine any statement in its dynamic scope; this was particularly true for
simple conditionals such as tests against null.

2.8 Implementation

IFT is implemented as a pluggable type system built on top of the
Checker Framework [|12]] and uses standard Java type annotations.
The implementation of IFT consists of 3,731 lines of Java, plus an-
notations for 10,470 library methods. IFT’s source code is available
at http://types.cs.washington.edu/sparta/. Version 0.9.6
was used for the experiments presented in this paper.

2.9 Limitations

IFT is focused on Trojans that cause an undesired information
flow, as indicated by the threat model of Sect. IFT should be
used in conjunction with complementary techniques that address
other security properties. This section discusses further limitations.

As with any static analysis, IFT’s soundness guarantee only ex-
tends to code that is analyzed at compile time. Use of native code
and un-analyzed Android activities requires a different analysis or
trusted annotations that describe the information flows induced by
those components. IFT currently forbids dynamic code loading,
because IFT type-checks source code. Dynamic class loading could
be soundly allowed if the loaded classes type-check and their public
signatures are the same as were assumed at compile time. To achieve
this would require load-time type-checking of compiled (.class or
.dex) files. Re-implementing the IFT type rules for binaries would
be an engineering challenge, but not a conceptual one.

Our cooperative verification model means that the vendor knows
one of the techniques that the app store will use to verify an app. This
knowledge might permit a malicious developer to design Trojans that
are beyond the capabilities of IFT or that exploit IFT’s limitations.

As with many security mechanisms, human judgment can be a
weak link. A malicious developer could write a misleading expla-
nation for an information flow in the flow policy or for a declassifi-
cation, in an effort to convince the auditor to approve malware. Our
work does not address how to establish an app store’s policies.

Despite these limitations, use of IFT increases the difficulty of
hiding Trojans in source code. The requirement that code be ac-
cepted by IFT may also make the Trojan more likely to be detected
using other tools or manual verification.

2.10 Future work

We plan to enrich flow policies in three ways, while retaining
the simple and high-level flavor of these specifications. (1) We will
refine permissions, such as splitting the WRITE_CONTACTS permis-
sion so that separate policies can be specified for email addresses,
phone numbers, and notes fields. (2) The flow policy will indicate
not just the endpoints of the information flow, but an entire path.
For example, it might be valid to send personal information to the
Internet only if it has passed through an encryption module first. (3)

The flow policy will indicate conditional information flows, such
as permitting information flow from the microphone to the network
only when the user presses the “transmit” button.

3. EMPIRICAL STUDIES

This section describes three different evaluations of IFT. Sect.[3.]
describes the effectiveness of IFT in an adversarial Red Team evalu-
ation. Sect.[3.2]evaluates the effectiveness and efficiency of IFT in a
control team study. Sect. [3.3]presents a study of IFT’s usability for
vendors during the development of apps and for app store auditors
while reviewing those apps.

3.1 Red Team evaluation

The sponsor of our research (DARPA) wished to evaluate IFT. To
this end, they hired five development companies (in the following
referred to as Red Teams) to create Android applications with and
without Trojans. We had neither control over the Red Teams nor
any knowledge of the malware they were creating. While they
were creating the malware, the Red Teams had access to a current
version of IFT, including source code, documentation, and our own
analysis of IFT’s vulnerabilities. A total of 20 people worked on
the Red Teams. On average they had more than 2 years of Android
experience. Other than two interns, they hold BS or MS degrees
and work full-time as computer security analysts. Most have been
exposed to information flow theory, with the maximum experience
being 6 years working with information flow.

The Red Teams created both malware and non-malware apps.
The malware had to be written in Java. The Red Teams started out
by surveying real-world mobile malware. They tried to produce
diverse malware, including malware that is representative of that
found in the wild, novel malware that they devised, and malware
specifically targeting the limitations of IFT. They had two goals: to
evaluate how well IFT might work in practice, and to see how IFT
could be defeated.

Overall, the Red Teams created 72 Java applications. Our sponsor
provided us with the apps in five batches over an eight-month period.
For each batch, we were given a few hours or days to analyze the
applications with IFT. The Red Teams were given our results for the
first three batches, and they used this information to create malware
that was harder for IFT to find.

We received the applications in source code form. IFT does not
run the applications. The applications were not obfuscated, but
they were also not well-documented, and the Red Teams had no
motivation to make them understandable. The user documentation
was only a few sentences stating the general purpose of the app,
but usually omitting significant details about the functionality —
considerably less than a typical app has in an app store. The Red
Teams also had no incentive to provide code documentation or fol-
low a specific design — code comments and design documentation
were absent, and the apps contained neither flow policies nor the
information flow annotations used by IFT.

3.1.1 Summary of results

Of the 72 apps, 57 are malicious (see Table ] for details):
e 47 contain malicious information flow that is at odds with the
application’s description. IFT detected 96% of this malware.
o 19 use an information flow between Android permissions;
see Sect.
o 17 use an information flow involving our new sources or
sinks; see Sect.[3.1.3]
o 11 use an information flow involving parameterized sources
or sinks; see Sect.[3.1.4]

e 10 are not detected by IFT because the malware is not related
to information flow; see Sect.[3.1.3]
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3.1.2  Unjustified information flows

For 19 apps, the Android permissions in the manifest can be
justified based on the purpose of the app; however, the apps leak
information from one Android permission to another. For example,
the app 2D Game has a malicious flow, READ_EXTERNAL_STORAGE
—INTERNET. The app accesses the external storage to load photos
in the game, so READ_EXTERNAL_STORAGE is justified. The app
description states that the app sends high scores to a leaderboard
on a server, so INTERNET is justified. The description says nothing
about uploading the photos directly to the server, nor would a user
expect the game to do so. Therefore, READ_EXTERNAL_STORAGE
—INTERNET is a malicious flow.

An unjustified Android permission would be grounds for rejection
from a high-assurance app store; however, some permissions can
be easily justified. For example, one of the Red Teams used an
automatic update functionality as a reason to justify the INTERNET
permission. In our experiments, we did not reject any app based
on requested permissions since none of them were at odds with the
app’s purpose or description.

3.1.3 Information flows using new sources/sinks

For 17 apps, the malicious information flow is apparent only via
use of the additional permissions listed in Table [I] For example,
RSS Reader has a malicious flow of RANDOM— VIBRATE. RANDOM
is not an Android permission and the description of the app gives no
reason to use a random number. The app is supposed to vibrate the
phone when one of the user’s feeds is updated, so VIBRATE is listed
in the manifest file as expected. However, the app’s user would not
expect the app to cause random vibrations, so RANDOM—VIBRATE
is malicious.

The CONDITIONAL sink detected triggers for malicious behavior
in 2 apps. Countdown Timer and System Monitoring 3 triggered
non-information-flow related malware after receiving SMSes with
certain characters.

Other apps used time of day, random numbers, or location to
trigger information-flow malware. We found these triggers while
reviewing the conditional statements.

3.1.4 Flows using parameterized permissions

For 11 apps, the malicious information flow is apparent only via
use of parameterized permissions (Sect. 2.:2.2). For example, in
GPS 3, the location data should only flow to maps.google.com, but
it also flows to maps.google-cc.com. To express this, the flow policy
lists LOCATION—INTERNET(“maps.google.com”) but not LOCATION—
INTERNET(“maps.google-cc.com”). Another app, Geocaching, should
only send data from specific geocaching NFC tags to the server,
but it collects all NFC tags in range and sends them to the server,
NFC(“*”)—INTERNET.

For two apps (PGP Encryption 2 and Password Saver) the leaked
information is allowed to flow to the sensitive sink, but only if it is
encrypted first. IFT cannot yet express this property, but Sect.
describes how to extend IFT to catch this sort of vulnerability.

3.1.5 Malware not related to information flow

The malware in 10 out of the 57 malicious applications is not
related to information flow — these apps do not exhibit an unjustified
information flow and implement types of attacks that are out of the
scope of IFT. For example, Backup transposes digits in a phone
number during backup. This is a functional correctness error, which
IFT does not address. In a high-assurance app store, IFT would be
used with complementary tools designed to find malware not related
to information flow. The auditor’s confidence that an app has no
information-flow malware would let the auditor spend more time
looking for other malware, such as denial of service.

3.1.6  Bugdoors

In 8 apps, IFT found a bugdoor (undesired, exploitable functional-
ity) that the Red Team was unaware of. Even though the Red Team
had written and/or modified the app before presenting it to us for
analysis, they had not noticed these. GPS 1 passes the device ID as
a way-point ID to the remote server. This allows the remote server
to correlate location to specific devices and to other information
collected using the device ID. Password Saver saves unencrypted
passwords in shared preferences, where they are accessible to other
applications on the device.

Furthermore, 6 apps exfiltrated sensitive data to the log, which
Android does not require a permission to write. It does, how-
ever, require a permission in our finer-grained permission model
(see Sect. 2.2). Consequently, IFT reported an information flow
violation.

3.2 Control team study

For the third and fifth batches of applications, our sponsor hired
a control team to evaluate the applications and search for malware.
The control team consisted of 4 PhD students with, on average, 11
years of Java experience and .5 years of Android experience — very
similar to our team. The control team used both static and dynamic
analysis tools, including Androguard, Eclipse, and emulators.

For the third batch of apps, the control team took an average of
9.5 hours per application to declare it malicious or benign, and their
answer was right 60% of the time. Our team, using IFT plus simple
tools that search for suspicious code, spent 42 minutes on average
per application and correctly classified 80% of the applications.

For the fifth batch of apps, the control team took an average of 2.3
hours per application and correctly classified 63% of the apps. Our
team spent 1.25 hours per app on average and correctly classified
75% of the apps.

3.3 Usability study

The collaborative verification model and IFT provide guarantees,
but can they be used in the real world? This section presents three
studies addressing this question. Sect. [3.3.1] measures the time to
add information-flow type annotations to apps. Sect.[3.3.2) measures
how quickly and accurately the app store auditors can approve or
reject apps. Sect. [3.3.3|evaluates how hard it is for information-flow
type system novices to learn to use IFT.

3.3.1 Annotation burden

In order to estimate the cost of adding information flow anno-
tations, five members of our team annotated 11 arbitrarily chosen
applications. 1 app was a malicious app written by the Red Teams
and 10 apps were benign apps written by third-party developers or
the Red Teams. Each annotator was given an unannotated applica-
tion and a flow policy file. The annotators annotated the application
until IFT issued no more warnings; if they found malware, they used
a declassification and continued the task. The annotators had never
seen the applications before, so the vast majority of their time was
spent reverse-engineering the application.

Table 3] shows the results. On average, the annotators annotated
6 lines of code per minute, which was primarily the effort to un-
derstand the code. This compares favorably with industry-standard
averages of about 20 lines of delivered code per day [7} 40,54} 29].
(On average, the annotators annotated 20 lines of code in 3.3 min-
utes.) Recall that in the proposed collaborative verification model,
the app’s developer would annotate the code, which would be faster.

The annotated code contained on average 6 annotations per 100
lines of code. This is less than 1/4 of the annotation burden for
Jif, another information-flow system for Java [2} 9} [63]. In our
case studies, the annotator wrote an annotation in 4% of the places



Table 3: Results from the annotation burden experiment.

App Name LOC Time De- Annotations
(min.) class. src.+sink=total ratio

CameraTest 92 20 .22 1 6+ 5=11 A2 6%
Shares Pictures’ 141 10 .07 0 12+ 0=12 .09 4%
BusinessCard 183 10 .05 I 9+ 0= 9 .05 3%
Calculator 3 520 40 .08 0 7+ 0= 7 .01 1%
Dynalogin 625 300 .48 0 66+ 0=066 .11 6%
TeaTimer 1098 295 .27 7 51+ 3=54 .05 3%
FourTrack 1108 120 .11 0 27+18=45 .04 3%
RingyDingy 1322 180 .14 2 41+26=67 05 4%
VoiceNotify 1360 185 14 11 68+44=112 .08 4%
Sky 1441 240 17 5 33+35=68 .05 3%
Pedometer 1547 165 .11 0 71+58=129 .08 5%
Total 9437 1565 .17 26 391+189=580 .06 4%

Boldfaced numbers (time, annotations) are per line of code. “Declass.” is declassifica-
tions. Annotation ratio compares the number of annotations written to how many could
have been written — the number of uses of types in the app’s source code. Through-
out this paper, lines of code (generated using David A. Wheeler’s “SLOCCount”) omit
whitespace and comment lines. Malicious applications.

Table 4: Results from the collaborative app store experiment.

App Name Review Reviewed Accepted?
time (min.) Declass.  Cond.

CameraTest 26 28 1 0 0% Accept
Shares Pictures’ 5 .04 0 0 0% Reject
BusinessCard 11 .06 1 1 14% Accept
Calculator 3 11 .02 0 3 5% Accept
Dynalogin 10 .02 0 10 37% Accept
TeaTimer 50 .05 7 20 22% Accept
FourTrack 61 .06 0 11 14% Accept
RingyDingy 20 .02 2 11 9% Accept
VoiceNotify 35 .03 11 73 47% Accept
Sky 25 .02 5 19 15% Accept
Pedometer 15 .01 0 65 57% Accept
Total 269 .03 27 213 27%

Boldfaced times are per line of code. All declassifications were reviewed. The Re-
viewed Cond. column gives the number and percentage of conditions with a sensitive
source, all of which were reviewed. "Malicious applications.

an annotation could have been written; the other locations were
defaulted or inferred.

The number of annotations per application is not correlated with
the number of lines of code nor the number of possible annotations.
Rather, the number of annotations is dependent on how, and how
much, information flows through the code. When information flow
is contained within procedures, type inference reduces the number
of annotations required (Sect.[2.4.1).

3.3.2  Auditing burden

Another cost in the use of a static tool is the need to examine
warnings to determine which ones are false positives. This cost
falls on the developer who writes declassifications to suppress false
positives, then again on the auditor who must review the declassi-
fications. We wished to determine the cost of approving an app,
which in addition to reviewing declassifications requires auditing
the flow policy and reviewing implicit information flow.

Two graduate students acted as app store auditors. Neither one
had previously used IFT or a similar framework. The auditors had
never before seen the applications that they reviewed, and they did
not know whether the apps were malware. The review was split into
two phases: a review of the app description and flow policy, then a
review of the declassifications and conditionals in the source code.
This is exactly the same workflow as an app store auditor. Table[d]
summarizes the results.

The first part of the review ensures that the description of the
app matches the flow policy. An auditor begins by reading the app

description and writing a flow policy; then the auditor compares that
to the submitted flow policy. If there is any difference, the developer
must modify the description or flow policy. The flow policy review
took 35% of total auditing time.

The second part of the review ensures that all declassifications
and implicit information flows are valid. The auditor first reviewed
the developer-written justification for each declassification. Only
CameraTest had one rejected justification, which the developer rec-
tified in a re-submission. The other justifications were accepted
by the auditors. Then, the auditors investigated possible implicit
information flow via conditionals (Sect.[2.7). Out of a total of 789
conditional statements, only 27% contained data from a sensitive
source, so the auditors only reviewed those to rule out implicit in-
formation flows. For some of these conditionals, the auditor did
not need to review the conditional body, because the conditional
expression did not reveal anything about the content of the source.
For example, 41 of the 271 conditionals with sensitive data (15%)
were comparisons against null.

After the experiment, auditors mentioned that there were many
unexpected flows, which ended up being necessary. Also, they
wanted clear guidelines to accept or reject flow policies. We believe
that both concerns will be resolved as auditors and app stores get
more experience; this was their first time to audit apps.

We have not evaluated the effort of analyzing an update to an
existing app, but this should be low. An update can re-use most
or all of the previous flow policy specification, annotations, and
justifications for declassifications.

3.3.3 Learnability

IFT integrates smoothly with Java and re-uses type system con-
cepts familiar to programmers. Nonetheless, learning about informa-
tion flow, or learning how to use IFT, may prove a barrier to some
programmers. The programmers in the study of Sect.[3.3.1 were
already familiar with Android and IFT. We wished to determine
how difficult it is to come up to speed on IFT.

We conducted a study involving 32 third-year undergraduate
students enrolled in an introductory compilers class. 60% of the
students had no previous experience with Android. They received a
two-hour presentation, then worked in pairs to annotate an app of
1000-1500 LOC. The apps came from the f-droid.org|catalog;
we used F-Droid because we do not have access to the source code
of most apps in the Google Play Store.

The students’ task was to learn Android, information flow theory,
and IFT, then to reverse-engineer and to annotate the app such that
IFT issues no warnings. On average the task required 15 hours.
The students reported that the first annotations were the most time-
consuming because they were still learning to understand IFT; after
that the task was easier.

This learnability study was extremely preliminary, but it does
suggest that a developer with little experience can quickly come up
to speed on IFT.

3.4 Lessons learned
This section states a few lessons we learned during our experiments.

Generality of our analysis. Our information-flow based ap-
proach turned out to be surprisingly general. IFT revealed malicious
data flow of the payload as well as the injected triggers. We found,
for instance, malware in applications that give wrong results based
on a certain time of day or a random value. Perhaps more impor-
tantly, we were able to easily extend our system as we discovered
new properties that we wished IFT to handle — we did so over
the course of our own usage and also between batches of malware
analysis in the experiments.
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In response to Red Team apps, we added new permissions (like
RANDOM and READ_TIME), inference, intents, reflection, parameter-
ized permissions, and more.

Effectiveness of CONDITIONAL. Initially, the Red Teams used
location data, time of the day, or random numbers to trigger mal-
ware. They stopped because IFT warnings made it quite easy to
detect those triggers. None of the Red Teams’ apps used implicit
information flow maliciously — we do not know if this was because
it was too hard for them or if they did not consider this attack vector.

3.5 Threats to validity

IFT’s success in the experiments shows promise for our approach.
Nonetheless, we highlight a few of the most important threats to
validity in this section.

Characteristics of malware. The malware we analyzed was
created by five different Red Teams, each consisting of multiple
engineers working full-time on the task of creating malware. The
teams had previously surveyed real malware, and they created mal-
ware representative both of commercial malware that makes a profit
and of advanced persistent threats who aim to steal information.
Nonetheless, we have no assurance that this malware was represen-
tative of malware in the wild, either in terms of types of malware or
its quality. It is also possible that IFT became tuned to the sort of
malware created by those five Red Teams.

Skill of the analysts. The same instrument may be more or less
effective depending on who is using it. It is possible that our team
was particularly skilled or lucky in classifying the apps that it an-
alyzed — or that another team would have done a better job. An
analyst needs time to come up to speed on IFT; we have found that
a few weeks is sufficient for an undergraduate working part time,
as confirmed by experiments (Sect.[3.3.3). Training only needs to
occur once, and our team’s unfamiliarity with the apps was a bigger
impediment.

Collaborative app verification model. Our model assumes that
application vendors are willing to annotate their source code. We
believe this is true for high-assurance app stores, but our approach
may not be applicable to ordinary app stores.

4. RELATED WORK

4.1 Information flow

Information flow tracking has been investigated for several lan-
guages and paradigms [|18} 48|36, |25, 60]. These approaches are
largely complementary to our work as they are theoretical or do
not employ type systems to achieve static guarantees of informa-
tion flow properties. Besides statically verifying properties, several
approaches for enforcing information flow properties have been pro-
posed, such as refactoring [53]], dynamic analysis [39]], or encoding
as safety properties [56| |44]]. Milanova and Huang [41]] recently
presented a system that combines information flow with reference
immutability to improve precision. Yet, the system has not been
applied in a security context. Engelhardt et al. [15]] discuss handling
intransitive information-flow policies; IFT makes transitive flows
explicit. Sun et al. [55]] discusses modular inference for information
flow; IFT does inference within method bodies.

In the domain of information flow tracking for Java programs, the
closest related work is Jif (Java information flow) [43}142,|51]. Jif
uses an incompatible extension of the Java programming language
and its own compiler to express and check information flow prop-
erties of a program. In contrast, IFT uses standard Java annotations
and the code can be compiled with the standard Java compiler. Fur-
thermore, IFT achieves its effects with a simpler, easier-to-use type
system. While Jif focuses on the expressiveness and flexibility of the

type system and trust model, IFT aims at practicality and scalability
to be applicable on large real-world Android applications. IFT has
better support for defaults, inference, reflection, intents, libraries,
separate compilation, and many other language features. Jif has not
been evaluated in an adversarial challenge exercise comparable to
our experiments using IFT.

In the context of implicit information flow, the classic approach is
to taint all computations within the dynamic scope of a conditional
statement. Suggested by Denning and Denning [11]] and formu-
lated as a type system by Volpano et al. [58], this approach causes
over-tainting and suffers from taint explosion. Kang et al. [30] inves-
tigated the problem of under-tainting in benign applications. They
found that under-tainting usually occurs at only a few locations and
proposed an analysis to identify and taint such additional targets.
However, malicious applications are out of scope.

WebSSARI [27] focuses on web applications written in PHP and
aims at preventing vulnerabilities such as Cross-Site Scripting or
SQL Injection. In this context, static analysis is applied to reveal ex-
isting weaknesses and to insert run-time checks. In contrast, IFT stat-
ically verifies information flow properties for Android applications.

4.2 Android malware

Many Android apps are overprivileged, i.e., they are granted more
permissions than they use [4}16,/57]. These studies also provided
a mapping of API calls to required permissions. IFT utilizes those
existing mappings and enhances the Android permission system by
adding finer-grained sources and sinks for sensitive APIs. Chin et
al. [8]] described a weakness of Android Intents: implicitly sent
intents can be intercepted by malicious applications. IFT analyzes
communication through intents to detect such attacks.

The Google Play Store runs Bouncer to detect and reject malicious
applications. Unfortunately, Bouncer can be circumvented [47,
31]], which motivates our work. Ongtang et al. [45] suggest an
application-centric security model to strengthen Android’s security.

Woodpecker [21]] uses static analysis to detect capability leaks.
CombDroid [8]] uses static analysis to locate Intent-related vulnera-
bilities. Several systems have been proposed to detect the leakage
of personal data (e.g., [[19}38]]). In this context, PiOS [[13]] detects
privacy leaks in iOS applications by constructing a control flow
graph from compiled code and performing data flow analysis. Flow-
Droid [3] is a static taint analysis tool for Android apps that that
has not been used to find malware. FlowDroid propagates sources
and sinks found using SuSi [50]], which uses machine learning to
classify and categorize Android library methods as source and sinks.
Unlike those existing approaches, IFT uses a finer-grained model
for sources and sinks, operates on the source code, and is not limited
to explicit information flow. RiskRanker [22] and DroidRanger [65]
combine multiple analyses in an attempt to detect likely malware.

Beyond detection, dynamic enforcement tools have been pro-
posed to monitor the execution of an application at run time and
intervene, if necessary, to ensure safe behavior [14} (62| 26, |61].
These techniques are non-portable or suffer high overheads. An-
other disadvantage of a dynamic analysis is that it may cause an app
to fail at run time. By contrast, a static analysis such as IFT gives
a guarantee ahead of time, with no run-time overhead, no special
runtime environment, and no risk of failures in the field.

4.3 Collaborative model

A similar collaborative verification model has been proposed in
prior work on the verification of browser extensions. For exam-
ple, Guha et al. [24]] describe a model in which browser extension
developers specify a policy; as in our approach, the program’s ad-
herence to the policy is statically verified, and the reasonableness
of the policy is manually verified by an auditor. IFT applies the



collaborate verification approach to Android, with a significantly
simpler policy language, easing the auditor’s burden of verifying
the reasonableness of the policy.

Similarly, Lerner et al. [34}|35]] extend JavaScript with a type sys-
tem to statically verify that extensions do not violate the browser’s
private browsing mode; their approach requires developers to write
annotations only where code might violate private browsing ex-
pectations. It also requires a skilled auditor to manually verify
declassifications. IFT poses a lower annotation and audit burden
and supports a broader range of information flow guarantees.

Our collaborative verification model requires a trained auditor to
ensure an app’s description matches the app’s flow policy. Other
work has used crowd-sourcing [[1], natural language processing [46],
or clustering [20] to verify that an app’s description matches an app’s
functionality. The functionality is modeled by private information
accessed, permissions requested, or APIs used. These techniques
could be modified to compare a flow policy to an app’s description,
thereby reducing the auditors effort.

5. CONCLUSIONS

We have described a collaborate verification model for high assur-
ance app stores, in which app developers provide annotated source
code whose information flow properties are verified by the app
store’s auditors. In this model, the application developer and the au-
ditor each do tasks that are easy for them, reducing the overall cost.

We designed IFT, a flow-sensitive, context-sensitive type system
that enables collaborative verification of information flow proper-
ties in Android applications. Its design focuses on usability and
practicality, and it supports a rich programming model.

We evaluated IFT by analyzing 72 new applications (57 of them
malicious), which were written by 5 different corporate Red Teams
who were not under our control. IFT detected 96% of the information-
flow-related malware (Sect.[2.10|describes an extension to IFT that
would increase this to 100%) and 82% of all malware. Other ex-
periments show that IFT is easy to use for both programmers and
auditors, making a collaborative verification model practical for a
high-assurance app store.

Our system is freely available at http://types.cs.washington.

edu/sparta/, including source code, library API annotations, user
manual, and example annotated applications.
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APPENDIX
A. SUMMARY OF MALICIOUS APPS

Table 5: Applications analyzed by IFT. All listed applications are malicious and were written by 5 independent corporate Red Teams.

Description LOC Information Flow Violation IFT
Information flow violations involving only Android permissions (Sect.
1 Adventure Game 17,896  READ_EXTERNAL_STORAGE—WRITE_EXTERNAL_STORAGE v
2 Note Taker 3,251 CAPTURE_AUDIO_OUTPUT—INTERNET v
3 SMS Pager 1,834 READ_SMS—INTERNET v
4 Battery Indicator 4214  READ_EXTERNAL_STORAGE—INTERNET v
5 Block SMS 2,087  RECEIVE_SMS—INTERNET v
6 Fortune 2,998 READ_PHONE_STATE—INTERNET v
7 WiFi Finder 852 ACCESS_FINE_LOCATION—INTERNET v
8 Replacement launcher 1,069 READ_PHONE_STATE—WRITE_EXTERNAL_STORAGE v
9 2D Game 33,017 READ_EXTERNAL_STORAGE—INTERNET v
10  Displays source code 242  READ_PHONE_STATE—INTERNET v
11 System Monitoring 2 9,530  ACCESS_FINE_LOCATION—WRITE_EXTERNAL_STORAGE v
12 SMS Encryption 27,764  READ_SMS—SEND_SMS v
13 Bible 19,775 INTERNET—WRITE_EXTERNAL_STORAGE v
14 GPS 1 720 READ_PHONE_STATE—INTERNET v
15  GPS Logger 6,907  ACCESS_FINE_LOCATION—INTERNET v
16 Shares Pictures 135 READ_EXTERNAL_STORAGE—INTERNET v
17 Cat Pictures 639 READ_EXTERNAL_STORAGE—INTERNET v
18 SMS Messenger 1,210 READ_SMS—WRITE_SMS v
19 Running Log 1,333  READ_PHONE_STATE—NFC v
Information flow violations involving IFT’s additional permissions (Sect.
20  Countdown Timer 1,065  RECEIVE_SMS—CONDITIONAL v
21 Cookbook 2,542 LITERAL—WRITE_CONTACTS v
22 SMS Notification 9,678 READ_SMS—WRITE_LOGS v
23 Calculator 2 640 USER_INPUT—FILESYSTEM v
24  SMS Backup 293  READ_EXTERNAL_STORAGE—WRITE_LOG v
25 Password Protects Apps 11,743 RANDOM—MODIFY_PHONE_STATE v
26 System Monitoring 1 9,402 LITERAL—WRITE_SETTINGS v
27  Calculator 1 510  RANDOM—DISPLAY v
28 RSS Reader 3,503 RANDOM—>VIBRATE v
29 Text to Morse code 263  USER_INPUT—FILESYSTEM v
30  Shares Location 248  ACCESS_FINE_LOCATION—PROCESS_BUILDER v
31  Calculator 4 482  RANDOM—DISPLAY v
32 Device Admin 1 1,474 ACCESS_FINE_LOCATION—INTENT v
33 Device Admin 2 1,700 FILESYSTEM—INTERNET v
34  DropBox Uploader 5,902  DISPLAY—INTERNET v
35  System Monitoring 3 3,334 RECEIVE_SMS—CONDITIONAL v
36  Phone silencer 1,415  LITERAL—MODIFY_PHONE_STATE v
Information flow violations involving parameterized permissions (Sect. m)
37 Screen Saver 1 147 LITERAL("")—WRITE_EXTERNAL_STORAGE v
38 GPS 3 1,512 LOCATION—INTERNET("maps.google-cc.com") v
39  Geocaching 27,892  NFC("*")—INTERNET v
40  Instant Messenger 1,253  LITERAL("OXFFFF")—INTERNET v
41  App Backup 2,010  LITERAL—WRITE_EXTERNAL_STORAGE("*") v
42 Mapping 5,587  LOCATION—INTERNET("mapxplore.com") v
43 SIP VoIP Phone 1,480 USER_INPUT —USE_SIP("2233520413 @sip2sip.info") v
44 Word Game 1,191 LITERAL —SEND_SMS("12025551212") v
45 PGP Encryption 1 9,904  USER_INPUT("EditText.passPhrase")—EMAIL v
46 PGP Encryption 2 9,945  USER_INPUT("EditText.message")—EMAIL *
47 Password Saver 508 USER_INPUT("EditText.createPassword")— SHARED_PREFERENCES *
Malware not related to information flow (Sect. m}
48  Podcast Player 1,711  none — Battery DoS
49  Screen Saver 2 419  none — Battery DoS
50  To Do List 5,123  none — Battery DoS
51 Sudoku 1,505  none — Battery DoS
52 Expense reports 2,293  none — Performance DoS
53  Automatic SMS replies 33,296  none — Performance DoS
54  Screen Saver 3 457  none — Performance DoS
55  Backup 2,554  none — Data corruption
56  SMS Reminders 2917 none — Data corruption
57  Game3 1,211 none — Clickjacking

v~ The malicious flows or permissions in these apps were found using IFT.
% These malicious flows will be caught by IFT after future work is complete. See Sect.
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