
Inference of Reference Immutability

Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst

MIT Computer Science and Artificial Intelligence Lab
Cambridge, MA, USA

{jaimeq, tschantz, mernst}@csail.mit.edu

Abstract. Javari is an extension of Java that supports reference im-
mutability constraints. Programmers write readonly type qualifiers and
other constraints, and the Javari typechecker detects mutation errors
(incorrect side effects) or verifies their absence. While case studies have
demonstrated the practicality and value of Javari, a barrier to usability
remains. A Javari program will not typecheck unless all the references
in the APIs of libraries it uses are annotated with Javari type quali-
fiers. Manually converting existing Java libraries to Javari is tedious and
error-prone.
We present an algorithm for inferring reference immutability in Javari.
The flow-insensitive and context-sensitive algorithm is sound and pro-
duces a set of qualifiers that typecheck in Javari. The algorithm is pre-
cise in that it infers the most readonly qualifiers possible; adding any
additional readonly qualifiers will cause the program to not typecheck.
We have implemented the algorithm in a tool, Javarifier, that infers the
Javari type qualifiers over a set of class files.
Javarifier automatically converts Java libraries to Javari. Additionally,
Javarifier eases the task of converting legacy programs to Javari by in-
ferring the mutability of every reference in a program. In case studies,
Javarifier correctly inferred mutability over Java programs of up to 110
KLOC.

1 Introduction

An immutability reference constraint, such as a readonly type qualifier, pre-
vents a reference from being used to modify its referent objects (including their
transitive state). Immutability constraints have many benefits: programmers can
formally express intended properties of their code; explicit, machine-checked doc-
umentation enhances program understanding; static or dynamic checkers can
detect errors or guarantee their absence; and analyses and transformations de-
pending on compiler-verified properties are enabled. In practice, immutability
constraints have been shown to be practical and to find errors in software.

Writing reference immutability annotations to obtain these benefits can be
tedious and error-prone. An even more important motivation for immutability
inference is the need to annotate the signatures of all used libraries. Otherwise,
a sound reference immutability type checker would be forced to assume that
all methods in these libraries modify their arguments. In particular, passing a
readonly reference to any library method would be a type error.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 616–641, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Inference of Reference Immutability 617

Java
class Event {

Date date;

Date getDate() {

return Date;

}

void setDate(Date d) {

this.date = d;

}

}

Javari
class Event {

/*this-mutable*/ Date date;

polyread Date getDate() polyread {

return Date;

}

void setDate(/*mutable*/ Date d) /*mutable*/ {

this.date = d;

}

}

Fig. 1. A Java class (left) and the corresponding Javari class (right) that is automat-
ically produced by Javarifier. Underlines indicate added immutability qualifiers. The
figure shows default qualifiers in comments for clarity (Javarifier adds nothing in such
cases). The qualifiers are explained in Section 2. A qualifier after the parameter list and
before the opening curly brace annotates that method’s receiver, similar to annotations
on other parameters.

We have created an algorithm that soundly calculates reference immutability.
Although our framework can accommodate other notions of reference immutabil-
ity, for concreteness, this paper uses the reference immutability constraints of
Javari [29]. Javari is an extension of Java with reference immutability type qual-
ifiers (see Section 2).

This algorithm computes all the references (including local variables, method
parameters, and static and instance fields) that may have Javari’s readonly,
polyread, or ? readonly keywords added to their declarations. Figure 1 shows an
example Java class and the corresponding inferred Javari class.

Our algorithm targets a realistic and fully-featured implementation of refer-
ence immutability, Javari. The algorithm infers the multiple annotations that are
needed for an expressive language, including readonly, an extension to wildcards
(? readonly), non-generics polymorphism (polyread), and containing-object con-
text this-mutable.1 Javari provides reference immutability guarantees over the
abstract state of an object (see Section 2.1). The algorithm handles the com-
plexities of the Java language, including subtyping, generics, arrays, and unseen
code. The algorithm is sound and precise.

Javarifier is a scalable tool that implements this algorithm. Javarifier’s input
is a Java (or partially annotated Javari) program in classfile format, because
programmers may wish to convert library code whose source is unavailable. The
Javarifier toolset can insert the inferred qualifiers in source or class files, or
present them to a user for inspection. If the user wants to refine the results, the
user can insert any number of annotations in the program and run Javarifier in
the presence of these annotations (see Section 3.3). All of the tools use the JSR

1 As a pre-pass, the algorithm heuristically recommends fields to exclude from the abstract
state of a class via the assignable or mutable field annotations; the user may accept some
or all of the recommendations. Page limits prohibit an explanation of these heuristics [28,
22], though they are implemented in the Javarifier tool.



618 J. Quinonez, M.S. Tschantz, and M.D. Ernst

Type qualifiers
readonly The reference cannot be used to modify its referent
/*mutable*/ The reference may be used to modify its referent
polyread Polymorphism (for parameters and return types) over mutability
? readonly The type has a readonly upper bound and a mutable lower bound

Field annotations
/*this-mutable*/ The field inherits its mutability from

the reference through which it is reached
assignable The field may be reassigned through a readonly reference
mutable The field may be mutated through a readonly reference

Fig. 2. Javari keywords: type qualifiers and field annotations. Default keywords that
are not written in a program are shown in comments.

308 [10] extension to Java annotations, which is backward-compatible and which
is planned for inclusion in Java 7.2

The rest of this paper is organized as follows. Section 2 provides an overview
of the Javari language for reference immutability. Sections 3–5 describe the algo-
rithm: sound inference of reference immutability for ordinary readonly references
(Section 3), arrays and generic types (Section 4), and polyread polymorphic
references (Section 5). Section 6 reports experience using Javarifier. Section 7
discusses related work. Finally, Section 8 concludes.

2 The Javari Language: Java with Reference Immutability

Javari extends Java’s type system to allow programmers to specify and statically
enforce reference immutability constraints. This section briefly explains Javari’s
keywords, as listed in figure 2. The language is fully defined elsewhere [29, 28].

For every Java type T, Javari also has the type readonly T, with T being a
subtype of readonly T. A reference declared to have a readonly type cannot be
used to mutate the object it references:

readonly Date d = new Date();
d.setHours(9); // compile-time error

Mutation is any modification to an object’s abstract state (see Section 2.1).
References that are not readonly can be used to modify their referent and are
said to be mutable. By Java’s subtyping rules, a mutable reference can be used
anywhere a readonly reference is expected, but a readonly reference cannot be
treated as a mutable reference.

Javari handles generic type parameters in a natural way to account for the
fact that every type now specifies its mutability. Below are four declarations of
type List. The mutability of the parameterized type List does not affect the
mutability of the type argument.

2 To avoid explaining JSR 308, this paper uses keywords rather than annotations for the
Javari type qualifiers.



Inference of Reference Immutability 619

/*mutable*/ List</*mutable*/ Date> ld1; // List: may add/remove; Date: may mutate
/*mutable*/ List<readonly Date> ld2; // List: may add/remove
readonly List</*mutable*/ Date> ld3; // Date: may mutate
readonly List<readonly Date> ld4; // (no side effects allowed)

As in Java, subtyping is invariant in terms of type arguments. Javari ex-
presses the common supertype of List</*mutable*/ Date> and List<readonly

Date> as List<? readonly Date>. The ? readonly wildcard keyword is an exten-
sion to Java’s wildcard mechanism. It specifies that readonly Date is the type
argument’s upper bound and /*mutable*/ Date is its lower bound. Elements
are read from this type of list as readonly, but must be written to it as mutable.
This type would be written as List<? extends readonly Date super /*mutable*/

Date>, except Java does not allow the declaration of both a lower and an upper
bound on a wildcard.

The mutability wildcard is useful for the same reasons Java wildcards are.
For example, a method that prints all the Dates in an input List can have a
List<? readonly Date> parameter. If the parameter were declared as List<readonly
Date>, a List<mutable Date> argument could not be passed in.

Javari keywords, including ? readonly, apply to arrays analogously to param-
eterized types: each level of an array has its own mutability, and Javari arrays
are invariant with respect to mutability.

The polyread keyword (see Figure 3) expresses parametric polymorphism
over mutability. (polyread was previously named “romaybe” [29, 28].) The type
checker conceptually duplicates any method containing a polyread keyword. In
the first version of the method, all instances of polyread are replaced by readonly.
In the second version, all instances of polyread are removed, so the references
are mutable. Clients may use either version. polyread may occur on fields of
method-local classes, and Javarifier inferred such annotations in our case studies.
polyread is critical for precision; in the JDK, polyread is needed 70% as often
as readonly [19]. polyread is not expressible in terms of Java generics; neither of
polyread and ? readonly subsumes the other [28].

2.1 Abstract State

By default, the abstract state of an object is its transitively reachable state,
which is the state of the object and all state reachable from it by following ref-
erences. Javari’s deep reference immutability is achieved by giving each field the
default annotation of this-mutable, which means the field inherits its mutability
from the reference (this) through which it is accessed. Since it is the default,
this-mutable is never written in a program.

The assignable and mutable keywords enable a programmer to exclude spe-
cific fields from an object’s abstract state. The assignable keyword specifies that
the field may always be reassigned, even through a readonly reference; Java’s
final keyword plays a related role, specifying that a field may not be reassigned
at all through any reference once it has been set. The mutable keyword specifies
that a field has mutable type (its own fields may be reassigned or mutated) even



620 J. Quinonez, M.S. Tschantz, and M.D. Ernst

class Bicycle {

private Seat seat;

polyread Seat getSeat() polyread { return seat; }

}

static void lowerSeat(/*mutable*/ Bicycle b) {

/*mutable*/ Seat s = b.getSeat();

s.height = 0;

}

static void printSeat(readonly Bicycle b) {

readonly Seat s = b.getSeat();

System.out.println(s);

}

Fig. 3. The polyread keyword expresses polymorphism over mutability without poly-
morphism over the Java type. lowerSeat uses the mutable version of getSeat and takes
a mutable Bicycle parameter. printSeat uses the readonly version of getSeat and
can take a readonly Bicycle parameter. Without polyread, all the underlined annota-
tions would be /*mutable*/. In particular, printSeat would take a mutable Bicycle

parameter, and this imprecision could propagate through the rest of the program.

when referenced through a readonly reference. A mutable field’s abstract value
is not a part of the abstract state of the object (but the field’s identity may be).
Assignability and mutability of fields are orthogonal notions. Both are necessary
to express code idioms such as caches, logging, and benevolent side effects, where
not every field is part of the object’s abstract state. For example, in the following
class, the value of the log field is excluded from the abstract state of the object:

public class NetworkRouter {
mutable List<String> log;

// The readonly keyword indicates that the method does not modify its receiver

public void selectRoute(String destination) readonly {
log.add("selecting route to: " + destination);

}
}

The (implicit, default) mutable type qualifier denotes that a reference may
be used to modify its referent. The (explicit) mutable field annotation denotes
that the field may always be used to modify its referent — it is excluded from
the abstract state of the object.

3 Inferring Reference Immutability

Javarifier uses a flow-insensitive and context-sensitive algorithm to infer refer-
ence immutability. The algorithm determines which references may be declared



Inference of Reference Immutability 621

Q ::= class {f M} class def
M ::= m(x){s;} method def
s ::= x = x statements
| x = x.m(x)
| return x

| x = x.f
| x.f = x

Fig. 4. Grammar for core language used during constraint generation. x is shorthand
for the (possibly empty) sequence x1 . . . xn. The special variable thism is the receiver
of method m; it is treated as a normal variable, except that any program that attempts
to reassign thism is malformed.

with readonly or other Javari keywords; other references are left as the default
(this-mutable for fields, mutable for everything else). The algorithm is sound:
Javarifier’s recommendations type check under Javari’s rules. Furthermore, the
algorithm is precise: declaring any references in addition to Javarifier’s recom-
mendations as readonly— without other modifications to the code — will result
in the program not type checking.

Section 3.1 describes the core inference algorithm. The algorithm extends
to handle subtyping (Section 3.2); unseen code and pre-existing constraints in-
cluding assignable and mutable fields (Section 3.3); arrays (Section 4.1); Java
generics (Section 4.2); and mutability polymorphism (Section 5).

3.1 Core Algorithm

Given as input a program, Javarifier generates, then solves, a set of mutabil-
ity constraints. A mutability constraint states when a given reference must be
declared mutable. The core algorithm uses two types of constraints: unguarded
and guarded. (Section 5 introduces a third variety of constraints, double-guarded
constraints.) An unguarded constraint such as “x” states that a reference is un-
conditionally mutable. x is a constraint variable that refers to a Java reference
or other entity in the code. A guarded constraint such as “y→ x” states that if
y is mutable, then x is mutable; again, x and y are constraint variables.

Constraint Generation The first phase of the algorithm generates constraints
for each statement in a program. Unguarded constraints are generated when a
reference is used to modify an object. Guarded constraints are generated by
assignments and field dereferences.

We present constraint generation using a simple three-address core language
(Figure 4). Control-flow constructs are not modeled, because the flow-insensi-
tive algorithm is unaffected by such constructs. Java types are not modeled
because the core algorithm does not use them. Constructors are modeled as
regular methods returning a mutable reference to thism. Static members are
omitted because they do not illustrate any interesting properties. Without loss



622 J. Quinonez, M.S. Tschantz, and M.D. Ernst

x = y : {x→ y} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {thism → y, p→ y, x→ retm}
(Invk)

retVal(m) = retm

return x : {retm → x}
(Ret)

x = y.f : {x→ f, x→ y} (Ref)

x.f = y : {x, f→ y} (Set)

Fig. 5. Constraint generation rules for the statements of Figure 4. Auxiliary functions
this(m) and params(m) return the receiver reference (thism) and parameters of method
m, respectively. retVal(m) returns retm, the constraint variable that represents the
reference to m’s return value. type(x) returns the static type of x.

of generality, all references and methods have globally-unique names. (While
this paper’s formalism is simplified, the Javarifier implementation handles the
full Java language.)

Each statement from Figure 4 has a constraint generation rule (Figure 5):

Assign The assignment of variable y to x causes the guarded constraint x→ y

to be generated because, if x is a mutable reference, y must also be mutable
for the assignment to be valid.

Invk The constraints are extensions of the Assign rule when method invocation
is viewed as pseudo-assignments or framed in terms of operational semantics:
the receiver, y, is assigned to thism, each actual argument is assigned to the
method’s corresponding formal parameter, and the return value, retm, is
assigned to x.

Ret The return statement return x adds the constraint retm → x because, if
the return type of the method is found to be mutable, all references returned
by the method must be mutable.

Ref The assignment of y.f to x generates two constraints. The first, x → f, is
required because, if x is mutable, then the field f cannot be readonly. The
second, x→ y, is required because, if x is mutable, then y must be mutable
to yield a mutable reference to field f. (The core algorithm assumes all fields
are this-mutable. Fields that have been manually annotated as mutable can
override this behavior, as discussed in Section 3.3.)

Set The assignment of y to x.f causes the unguarded constraint x to be gener-
ated because x has just been used to mutate the object to which it refers.
The constraint f → y is added because if f, which is this-mutable, is ever
read as mutable from a mutable reference, then a mutable reference must be
assigned to it. If f is never mutated, the algorithm infers that it is readonly,
in which case y is not constrained to be mutable.



Inference of Reference Immutability 623

class C {

C f; field declaration
C empty(P p)

{

C x = p; Assign: {x→p}
C y = x.f; Ref: {y → f, y→x}
C z = x.empty(y); Invk: {thisempty→x,

p→y, z→retempty}
this.f = y; Set: {thisempty, f→y}
return y; Ret: {retempty→y}

}

void empty(C p)

{ no constraints to generate
}

}

Simplified program constraints:
{thisempty, x, p}

class C {

readonly C f;

readonly C empty(P p)

/*mutable*/ {

/*mutable*/ C x = p;

readonly C y = x.f;

readonly C z = x.empty(y);

this.f = y;

return y;

}

void empty(readonly C p)

readonly {

}

}

Fig. 6. Example of constraint generation and solving. The left part of the figure shows
the original code. The center shows, for each line of code, the constraint generation rule
used, the constraints generated, and the simplified program constraints — the references
that may not be declared readonly. All the other references (y, z, retempty, and f) can
be declared readonly, as shown in the Javarifier output on the right side of the figure.

The constraint set for a program is the union of the constraints generated
for each line of the program. Figure 6 shows constraints for a sample program.

Constraint Solving The second phase of the algorithm solves the constraints
by simplifying the constraint set. If any unguarded constraint satisfies (i.e.,
matches) the guard of a guarded constraint, then the guarded constraint is
“fired” by removing it from the constraint set and adding its consequent to
the constraint set as an unguarded constraint. Once no more constraints can be
fired, constraint simplification terminates. This approach can be implemented
with linear time complexity in the number of constraints (see Section 5.3 and
[22]), and the Javarifier tool does so. If the guarded constraints are viewed as
graph edges, then the core algorithm can be viewed as graph reachability starting
at the unguarded constraints.

The unguarded constraints in the simplified constraint set must be declared
mutable (or this-mutable in the case of instance fields). All other references
may safely be declared readonly, since the algorithm propagated unguarded
constraints to every reference that those constraints could reach. Thus, the algo-
rithm excludes the maximum number of constraint variables from the unguarded
constraint set when there are no field annotations. (Section 3.3 discusses how
the assignable and mutable field annotations change the constraint generation
rules, but they do not change the constraint solving step.) For a fixed set of initial
field annotations, constraint solving therefore results in the maximum number of
readonly references in the program. (Section 4.1 expands this argument to the
other Javari qualifiers.) Constraint solving cannot fail, because the algorithm al-
ways terminates (see Section 5.3 and [22]) and in the worst case, every reference
is mutable when the algorithm terminates.



624 J. Quinonez, M.S. Tschantz, and M.D. Ernst

Figure 6 shows the result of applying the algorithm to an example program.

3.2 Subtyping

Java and Javari allow subtyping polymorphism, which enables multiple imple-
mentations of a method to be specified through overriding3. Javari requires that
overriding methods have covariant return mutability types and contravariant
parameter mutability types (including the receiver, the implicit this parame-
ter). To enforce these constraints, the algorithm adds the appropriate guarded
constraints for every return and parameter of an overriding method. If a param-
eter is mutable in an overriding method, it must be mutable in the overridden
method. If the return type is mutable in an overridden method, it must be mu-
table in the overriding method. For simplicity, a previous formalism [28] forced
the mutabilities of overriding methods to be identical to the overridden method,
but that is not required for correctness, and Javarifier does not do so.

3.3 Pre-existing Annotations and Unanalyzed Code

This section extends the inference algorithm to incorporate pre-existing anno-
tations. These are useful for un-analyzable code such as native methods; for
missing code, such as clients of a library, which might have arbitrary effects; and
to permit users to override inferred annotations, such as when a reference is not
currently used for mutation, but its specification permits it to be. Furthermore,
user-provided annotations enable the algorithm to recognize which fields should
be excluded from the abstract state of a class [28, 22].

This section first discusses pre-existing annotations that specify that a refer-
ence is either readonly or mutable. Then, it discusses annotations that exclude
a field from the abstract state of the object.

Mutability Annotations A readonly annotation causes the algorithm, upon
finishing, to check whether the reference may be declared readonly. If not, the al-
gorithm issues an error. (Alternately, the algorithm can recommend code changes
that permit the reference to be declared readonly [28, 22].)

A mutable type qualifier (not field annotation) or a this-mutable field anno-
tation causes the algorithm to add an unguarded constraint that the reference
is not readonly.

The algorithm has two modes. In closed-world, or whole-program, mode, the
algorithm may change the type qualifiers of returned/escaped references, such as
public method return types and types of public fields. This yields more precise
results — that is, more readonly references. In open-world mode, the algorithm
marks as mutable (i.e., adds an unguarded constraint for) every non-private field
and non-private method return value. The open-world assumption is required

3 We use the term overriding both for overriding a concrete method, and for implementing an
abstract method or a method from an interface. For brevity and to highlight their identical
treatment, we refer to both abstract methods and interface methods as abstract methods.



Inference of Reference Immutability 625

¬assignable(f)

x.f = y : {x, f→ y}
(Set-N)

assignable(f)

x.f = y : {f→ y}
(Set-A)

mutable(f)

{f}
(Mutable)

¬mutable(f)

x = y.f : {x→ f, x→ y}
(Ref-N)

mutable(f)

x = y.f : {}
(Ref-M)

Fig. 7. Modified constraint generation rules for assignable and mutable fields. The Set
and Ref rules of Figure 5 are replaced by those of this figure. Mutable is new.

when analyzing partial programs or library classes with unknown clients, because
an unseen client may mutate a field or return value.

Assignable and Mutable Fields Javarifier handles fields annotated as mutable
or assignable by extending the constraint generation rules to check the assigna-
bility and mutability of fields before adding constraints. The auxiliary function
assignable(f) returns true if and only if f is declared to be assignable; like-
wise for mutable(f). The changes to the constraint generation rules are shown in
Figure 7 and are described below.

To handle assignable fields, the Set rule is divided into two rules, Set-
A and Set-N, that depend on the assignability of the field. If the field is not
assignable, Set-N proceeds as normal. If the field is assignable, Set-A does
not add the unguarded constraint that the reference used to reach the field must
be mutable: an assignable field may be assigned through either a readonly or a
mutable reference.

Constraint generation rule Mutable adds an unguarded constraint for each
mutable field.

The Ref rule is divided into two rules depending on the mutability of the
field. If the field is not mutable, then Ref-N proceeds as normal. If the field
is mutable, then Ref-M does not add any constraints because, when compared
to the original Ref rule, (1) the consequence of the first constraint, x → f,
has already been added to the constraint set via the Mutable rule, and (2)
the second constraint, x → y, is eliminated because a mutable field is mutable
regardless of how it is reached.

4 Arrays and Generics

This section discusses how to infer immutability for arrays and generic classes.
(Javarifier also handles generic methods [28], but the details are omitted here
for brevity.) The key difficulty is inferring the ? readonly type, which requires



626 J. Quinonez, M.S. Tschantz, and M.D. Ernst

s ::= ...
| x[x] = x

| x = x[x]

T, S ::= A | C types
A, B ::= T[] array types
C, D class names

T, S ::= C<T> | X types
C, D class names
X, Y type variables

Fig. 8. Core language grammar (Figure 4) extended for arrays (left). Constraint gen-
eration type meta-variables extended for arrays (center) and parametric types (right).

inferring two types (an upper and a lower bound) for each array/generic class.
If the bounds are different, then the resulting Javari type is ? readonly.

4.1 Arrays

This section extends the algorithm to handle arrays. First, we extend the core
language grammar to allow storing to and reading from arrays (Figure 8).

A non-array reference has a single immutability annotation; therefore, a single
constraint variable per reference suffices. Arrays need more constraint variables,
for two reasons. First, an array reference’s type may have multiple immutability
annotations: the element type can be annotated in addition to the array itself.
Second, Javari array elements have two-sided bounded types (Section 2). For
example, the type (? readonly Date)[] has elements with upper bound readonly

Date and lower bound mutable Date, and (readonly Date)[] has elements with
identical upper bound and lower bound readonly Date.

Javarifier constrains each part of a type using a separate constraint variable.
An array has parts for the top-level array type and for the upper and lower
bounds of the element type. If the elements are themselves arrays, then there
are parts for the upper and lower bounds of elements of the elements, and so
on. For example, the type Date[][] has seven type parts: Date[][], the top-
level type; Date[]/, the upper bound of the element type, and Date[]., the lower
bound of the element type; and four Date types corresponding to the upper/lower
bound of the upper/lower bound.4

We subscript upper bounds with / and lower bounds with .. This matches the
conventional ordering: in the declaration List<? extends readonly Date super

/*mutable*/ Date>, the upper bound is on the left and the lower bound is on
the right. We assume that within a program, textually different instances of the
same type are distinguishable. The type meta-variables are shown in Figure 8.
As usual, T and S range over types, and C and D over class names. We add A and
B to range over array types.

The type constraint generation rules use the auxiliary function type, which
returns the declared type of a reference, similar to the less intuitively named Γ
type environment used in other work.

4 An alternate approach of treating arrays as objects with fields of the same type as the array
element type would not allow inferring different mutabilities on the different levels of the
array. This alternate approach would not be able to infer the ? readonly qualifier.



Inference of Reference Immutability 627

S[]→ T[] T ⊂: S

T[] <: S[]

D→ C

C <: D

T/ <: S/ S. <: T.

T ⊂: S

Fig. 9. Simplified subtyping (<:) rules for mutability in Javari. These simplified rules
only check the mutabilities of the types, because we assume the program being con-
verted type checks under Java. An array element’s type, T, is said to be contained by
another array element’s type, S, written T ⊂: S, if the set of types denoted by T is
a subset of the types denoted by S. Each rule states an equivalence between subtyp-
ing and guarded constraints on types, so each rule can be replicated with predicates
and consequents swapped. Java arrays are covariant. Javari arrays are invariant in re-
spect to mutability (see Section 2); therefore, we use the contains relationship as Java’s
parametric types do.

x = y : {type(y) <: type(x)} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {type(y) <: type(thism), type(y) <: type(p), type(retm) <: type(x)}
(Invk)

retVal(m) = retm

return x : {type(x) <: type(retm)}
(Ret)

x = y.f : {type(f) <: type(x), type(x)→ type(y)} (Ref)

x.f = y : {type(x), type(y) <: type(f)} (Set)

x = y[z] : {type(y[z]) <: type(x)} (Array-Ref)

x[z] = y : {type(x), type(y) <: type(x[z])} (Array-Set)

Fig. 10. Constraint generation rules extended for arrays. These rules replace the con-
straint generation rules of Figure 5, where the type() function was not needed.

Constraint Generation The constraint generation rules are extended to en-
force subtyping constraints. For the assignment x = y, where x and y are arrays,
the extension must enforce that y is a subtype of x. Simplified subtyping rules
for Javari are given in Figure 9.

The constraint generation rules now use types as constraint variables and
enforce the subtyping relationship across assignments including the implicit
pseudo-assignments that occur during method invocation. The extended rules
are shown in Figure 10.

Type Well-formedness Constraints In addition to the constraints generated
for each line of code, the algorithm adds constraints to the constraint set to
ensure that every array type is well-formed. Array well-formedness constraints



628 J. Quinonez, M.S. Tschantz, and M.D. Ernst

enforce that an array element’s lower bound is a subtype of the element’s upper
bound.

Constraint Solving Before the constraint set can be simplified as before, sub-
typing (<:) and containment (⊂:) constraints must be reduced to guarded (→)
constraints. To do so, the algorithm replaces each subtyping or containment
constraint by guarded constraints and/or simplified subtyping or contains con-
straints (see Figure 9). This step is repeated until only guarded and unguarded
constraints remain in the constraint set. For example, the statement x = y,
where x and y have the types T[] and S[], respectively, would generate and
reduce constraints as follows:

x = y : {type(y) <: type(x)}
: {S[] <: T[]}
: {T[]→ S[], S ⊂: T}
: {T[]→ S[], S/ <: T/, T. <: S.}
: {T[]→ S[], T/ → S/, S. → T.}

In the final result, the first guarded constraint enforces that y must be a mutable
array if x is a mutable array, while the second and third constraints constrain
the bounds on the arrays’ element types. T/ → S/ requires the upper bound of
y’s elements to be mutable if the upper bound of x’s elements is mutable. This
rule is due to covariant subtyping between upper bounds. S. → T. requires the
lower bound of x’s elements to be mutable if the lower bound of y’s elements is
mutable. This rule is due to contravariant subtyping between lower bounds.

After reducing all subtyping and containment constraints, the remaining
guarded and unguarded constraint set is simplified as before. A subtype or con-
tainment constraint on an array type only leads to one guarded constraint for the
top-level type and two guarded constraints for the lower and upper bounds. Com-
pared to the non-array algorithm, the total number of constraints only increases
by a constant factor that depends on the maximum array nesting. Therefore,
the constraint simplification algorithm remains linear-time.

Applying Results Finally, the results must be mapped back to the initial
Java program. Top-level types are annotated the same way they were before.
However, for element types, the constraints on the type upper bound and type
lower bound must map back to a single Javari type. Figure 11 illustrates this
mapping.

As in Section 3.1, given a fixed set of field annotations, the algorithm excludes
the maximum number of constraint variables from the unguarded constraint set.
After the mapping of mutabilities on constraint variables to Javari types, no
reference that is ? readonly could be readonly because a mutable lower bound
implies the reference cannot be readonly (since only mutable references can be
assigned to it). Therefore, the algorithm infers the maximum number of ref-
erences that do not need to be mutable, and each of these references is either
readonly or ? readonly.



Inference of Reference Immutability 629

Upper bound (/) Lower bound (.) Javari type
mutable mutable mutable
readonly readonly readonly
readonly mutable ? readonly

Fig. 11. The inferred mutability of the upper and lower bounds on array element types
are mapped to a single Javari type. The case that the upper bound is mutable and the
lower bound is readonly cannot occur due to the well-formedness constraints.

asType∆(C<T>, C) = C<T>

class C<X V> / C
′
<U> S = asType∆([T/X]C′

<U>, D)

asType∆(C<T>, D) = S

Fig. 12. asType returns C<T>’s supertype of class D.

4.2 Parametric Types (Java Generics)

Parametric types (Java generics) are handled similarly to arrays. For a para-
metric type, constraint variables are created for the upper and lower bound of
each type argument to a parametric class. As with arrays, type parts serve as
constraint variables.

The following meta-syntax represents parametric types. Figure 8 shows the
type meta-variable definitions. As with arrays, / denotes type arguments’ upper
bounds and . denotes their lower bounds.

Auxiliary Functions The subtyping rules use the auxiliary function bound∆.
bound∆(T) returns the declared upper bound of T if T is a type variable; if T
is not a type variable, T is returned unchanged. In this formulation, there is a
global type environment, ∆, that maps type variables to their declared bounds.
bound ignores any upper bound (/) or lower bound (.) subscripts on the type.

As with arrays, the type constraint generation rules use the auxiliary function
type, which returns the declared type of a reference.

The subtyping rules use the asType∆(C<T>, D) function (Figure 12) to return
C’s supertype of class D5. asType is used when a value is assigned to a reference
that is a supertype of the value’s type. In such a case, asType converts the value’s
type to have the same class as the reference. For example, consider

class Foo<T> extends List<Date> { ... }

Foo<Integer> f;
List<Date> lst = f;
lst.get(0).setMonth(JUNE);

5 We call C<T> a type because its type arguments are present. We call D a class because type
arguments are not provided.



630 J. Quinonez, M.S. Tschantz, and M.D. Ernst

x = y : {type(y) <: type(x)} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {type(y) <: type(thism), type(y) <: type(p), type(retm) <: type(x)}
(Invk)

retVal(m) = retm

return x : {type(x) <: type(retm)}
(Ret)

x = y.f : {type(f) <: type(x), type(x)→ type(y)} (Ref)

x.f = y : {type(x), type(y) <: type(f)} (Set)

Fig. 13. Constraint generation rules in the presence of parametric types.

D→ C T′′ ⊂: S′

T <: S where bound∆(T) = C<T′> and bound∆(S) = D<S′> and
asType∆(C<T′>, D) = D<T′′>

T/ <: S/ S. <: T.

T ⊂: S

Fig. 14. Simplified subtyping rules for mutability in the presence of parametric types.

On the assignment of f to lst, asType converts f’s type from Foo<Integer>

to List<Date> with the call: asType∆(Foo<Integer>, List). This conversion en-
sures that constraints placed on the type of lst elements affect f indirectly
through the type of lst rather than the type of f, so the final inference re-
sult is class Foo<T> extends List</*mutable*/ Date> rather than the incorrect
Foo</*mutable*/ Integer> f.

Constraint Generation As with arrays, the constraint generation rules (shown
in Figure 13) use subtyping constraints. However, the subtyping rules (shown in
Figure 14) are extended to handle type variables. In Javari, a type variable is not
allowed to be annotated as mutable; therefore, type variables cannot occur in the
constraint set. In the case of a type variable appearing in a subtyping constraint,
bound is used to calculate the upper bound of the type variable, and the mutabil-
ity constraints are applied to the type variable’s bound. Therefore, mutation of a
reference whose type is a type variable results in the type variable’s bound being
constrained to be mutable. An example of this behavior is shown in Figure 15.

Type Well-formedness Constraints As with arrays, in addition to the con-
straints from the constraint generation rules, well-formedness constraints are
added to the constraint set. As before, a constraint is added that a type argu-
ment’s lower bound must be a subtype of the type argument’s upper bound.
Parametric types, additionally, introduce the well-formedness constraint that a



Inference of Reference Immutability 631

class Week<X extends /*mutable*/ Date> {

X f;

void startWeek() {

f.setDay(Day.SUNDAY);

}

}

Fig. 15. The result of applying type inference to a program containing a mutable
type variable bound. Since the field f is mutated, X’s upper bound is inferred to be
/*mutable*/ Date. The mutable annotation may not be applied directly to f’s type
because in Javari, a type parameter cannot be annotated as mutable.

type argument’s upper bound (and, therefore, by transitivity, lower bound) is a
subtype of the corresponding type variable’s declared upper bound.

Constraint Simplification and Applying Results As with arrays, subtyp-
ing (and containment) constraints are simplified into guarded constraints by
removing the subtyping constraint from the constraint set and replacing it with
the subtyping rule’s predicate. The results of the solved constraint set are applied
in the same manner as with arrays. Javari does not allow raw types, and this
analysis is incapable of operating on code that contains raw types. In particular,
this algorithm does not account for the required casts when using raw types.

5 Inferring Mutability Polymorphism

This section extends the inference algorithm to infer the polyread keyword (pre-
viously named “romaybe” [29]). As described in Section 2 and illustrated in Fig-
ure 3, polyread enables more precise and useful immutability annotations to be
expressed than if methods could not be polymorphic over mutability.

5.1 Approach

Methods that have at least one polyread parameter or return type have two
contexts. In the first context, all polyread references are mutable. In the second
context, all polyread references are readonly. Javarifier creates both contexts
for every method. If a parameter/return type has an identical mutability in
both contexts, then that parameter/return type should have that mutability. If
a parameter/return type is mutable in the mutable context and readonly in the
readonly context, then that parameter/return type should be polyread.

To create two contexts for a method, Javarifier creates two constraint vari-
ables for every method-local reference (local variables, return value, and pa-
rameters, including the implicit this parameter). To distinguish each context’s
constraint variables, we superscript the constraint variables from the readonly
context with ro and those from the mutable context with mut. Constraint vari-
ables for fields are not duplicated: polyread may not be applied to fields and,
thus, only a single context exists.



632 J. Quinonez, M.S. Tschantz, and M.D. Ernst

Section 5.3 demonstrates that inferring polyread only requires increasing the
number of constraints (and the time complexity of the algorithm) by a constant
factor.

5.2 Constraint Generation Rules

With the exception of Invk, all the constraint generation rules are the same as
before, except now they generate (identical) constraints for constraint variables
from both the readonly and mutable versions of the methods. For example, x =

y now generates the constraints {xro → yro, xmut → ymut}.
Thus, there are now two constraint variables for every reference, one for

when it is in a mutable context and one for when it is in a readonly context.
For shorthand, we write constraints that are identical with the exception of
constraint variables’ contexts by superscripting the constraint variables with “?”.
For example, the constraints generated by x = y can be written as {x? → y?}.

The method invocation rule (shown in Figure 16) must be modified to invoke
the mutable version of a method when a mutable return type is needed, and
to invoke the readonly version otherwise. This restriction can be represented
using double-guarded constraints. For example, consider the code in Figure 3, in
which the Bicycle.getSeat() method has a polyread return type and a polyread

parameter. In the lowerSeat() method, the returned reference is mutated, so
the mutable version of getSeat() must be used. In the printSeat() method, the
returned reference is indeed readonly, so the readonly version of getSeat() can
be used.

The first constraint in the invocation rule of Figure 16 thus states that if
the returned reference s is mutable, then the reference b on which (the mutable

version of) getSeat() is called must be mutable if the receiver of getSeat() is
mutable inside the mutable version of getSeat(). (Recall that the receiver inside
a readonly method is readonly in both the mutable and readonly versions of
that method, whereas the receiver of a polyread method is mutable only in the
mutable version of the method.)

In matching Figure 3 to the invocation rule of Figure 16, note that the ? super-
scripts would be on the references s and b local to lowerSeat() (or printSeat()),
whereas the explicit mut superscript would only occur on references local to
getSeat(). In particular, since the lowerSeat() and printSeat() methods are
static, they only have one context so the different versions of duplicated con-
straint variables will always be the same. The ? superscripts demonstrate that
after fixing the explicit mut contexts, these constraints are generalized with ? in
the same fashion all other constraints are generalized.

The last constraint in the invocation rule states that if the reference s is
later mutated, then the return type of getSeat() must be mutable in the mutable

version of getSeat(). The Ret rule for return types and Ref rule for field
references in Figure 5 together generate the constraint that if the return type
of getSeat() is mutable (in whichever version of the method is called), then
the receiver of getSeat() is mutable (in that version of the method). Since the
method invocation rule in Figure 16 only generates the constraint that the return



Inference of Reference Immutability 633

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {x? → this
mut
m → y

?, x
? → pmut → y?, x

? → ret
mut
m }

(Invk-polyread)

Fig. 16. The core algorithm’s Invk rule (Figure 5) is replaced by Invk-polyread,
which is used for method invocation in the presence of polyread references. Each
superscript denotes the contexts of the method in which the variable is declared. All
of the ? contexts refer to the method containing the references x and y, whereas the
explicit mut contexts refer to context inside method m.

type of getSeat() is mutable in the mutable version of getSeat(), the return type
and receiver of getSeat() are mutable only in the mutable version of the method,
and thus they are both inferred to be polyread.

5.3 Constraint Solving

The algorithm for solving the constraint set extends the algorithm of Section 3.1
to account for double-guarded constraints. We now provide the full algorithm
and demonstrate that it has linear time complexity.

There are three constraint sets: the unguarded constraint set (U) which con-
tains constraints of the form a, the guarded constraint set (G) which contains
constraints of the form a→ b, and the double-guarded constraint set (D) which
contains constraints of the form a→ b→ c. The following pseudocode illustrates
how the algorithm processes constraints using a work-list (W) of unguarded con-
straints:

initialize W with all the constraints from U
while W is not empty

pop a constraint a from W
for each constraint g in G that has a as its guard

let c be the consequent of g
if c is not in U, add c to W and to U

for each double-guarded constraint d in D that has a as its first guard

let b → c be the consequent of d
if b is in U

if c is not in U, add c to W and to U
else, add b → c to G

The algorithm maintains linear time complexity if the sets G and D are
implemented as hash tables. For G, the table maps a guard to the constraint
variable it guards. For D, the table maps the first guard to a set of the con-
sequents (which are single-guarded constraints) that it guards. That is, given
constraints a → b1 → c1 and a → b2 → c2, the hash table maps a to the set
{b1 → c1, b2 → c2}. This allows looking up all single-guarded constraints that are
guarded by the same guard in a double-guarded constraint to take constant time,
in expectation. Since every constraint is read from either G or D at most once,
and each double-guarded constraint only adds one single-guarded constraint to



634 J. Quinonez, M.S. Tschantz, and M.D. Ernst

G, the constraint-solving algorithm has linear time complexity in the total num-
ber of constraints. The number of constraints is linear in the size of the program
under analysis as measured in the three-address core language of Figure 4.

5.4 Interpreting the Simplified Constraint Set

Once the constraint set is solved, the results are applied to the program. For
method-local references, the two constraint variables from the readonly and
mutable method contexts must be mapped to a single method-local Javari type:
readonly, mutable, or polyread.

A reference is declared mutable if both the mutable and readonly contexts
of the reference’s constraint variable are in the simplified, unguarded constraint
set. A reference is declared readonly if both mutable and readonly contexts of
the reference’s constraint variable are absent from the constraint set. Finally, a
reference is declared polyread if the mutable context’s constraint variable is in the
constraint set but the readonly constraint variable is not in the constraint set,
because the mutability of the reference depends on which version of the method is
called.6 Thus, in the example of Figure 3, after the constraints have been solved,
the receiver of getSeat() is known to be mutable in a mutable context but not
known to be mutable in a readonly context, so it is annotated as polyread. The
reference returned by getSeat() is similarly known to be mutable in a mutable

context but not known to be mutable in a readonly context, so it is also annotated
as polyread.

It is possible for a method to contain polyread references but no polyread

parameters. For example, below, x and the return value of getNewDate could be
declared polyread.

Date getNewDate() {
Date x = new Date();
return x;

}

However, polyread references are only useful if the method has a polyread pa-
rameter. Thus, if none of a method’s parameters (including the receiver) are
polyread, all the method’s polyread references are converted to mutable refer-
ences.

6 Evaluation

We have implemented the inference algorithm described in Sections 3–5 as a
tool, Javarifier, that reads a set of classfiles, determines the mutability of every
reference in those classfiles, and inserts the inferred Javari annotations in either

6 The case that the readonly constraint variable is found in the constraint set, but the
mutable context’s constraint variable is not, cannot occur by the design of the Invk-
Polyread constraint generation rule.



Inference of Reference Immutability 635

Size Annotatable references
Program lines classes Time Total readonly mutable this-mut. polyread ? readonly

JOlden 6223 57 9 1580 927 553 52 48 0
tinySQL 30691 119 47 5606 2227 2964 175 240 0
htmlparser 63780 238 45 4596 1623 2740 72 144 17
ejc 110822 320 1410 24899 8887 14774 690 548 0

Fig. 17. Subject programs used in our case studies. Inference time is in seconds on a
Pentium 4 3.6GHz machine with 3GB RAM. The right portion tabulates the number
of annotatable references for each inference result (in Javarifier’s closed-world mode).
When counting annotatable references, each type argument counts separately; for ex-
ample, List<Date> is counted as two references.

class files or Java source files. Javarifier is publicly available for download at
http://pag.csail.mit.edu/javari/javarifier/.

To verify that Javarifier infers correct and maximally precise Javari qualifiers
we performed two types of case studies. The first variety (Section 6.1) compared
Javarifier’s output to manually written Javari code that had been type-checked
by the Javari type-checker. The second variety (Section 6.2) compared Javarifier
to another tool for inferring immutability. For both varieties of case study, we
examined every difference among the annotations. The case studies revealed
no errors in Javarifier. It is possible that errors in Javarifier were masked by
identical errors in the other tools and the manual annotations, but we consider
this unlikely.

Figure 17 gives statistics for the subject programs used in our case studies:

– JOlden benchmark suite (http://osl-www.cs.umass.edu/DaCapo/benchmarks.html)
– tinySQL database engine (http://www.jepstone.net/tinySQL/)
– htmlparser library for parsing HTML (http://htmlparser.sourceforge.net/)
– ejc compiler for the Eclipse IDE (http://www.eclipse.org/)

The JOlden benchmark suite is written using raw types, so we first converted
the source code to use generics. We also renamed some identically named but
distinct classes in the different benchmarks within JOlden.

6.1 Comparison to Manual Annotations

Before the Javarifier implementation was complete, a developer (not one of the
authors of this paper) manually annotated the JOlden benchmark suite and ver-
ified the correctness of the annotations by running the Javari type-checker. We
compared the manually-written, automatically-verified annotations with Javar-
ifier’s inference results.

There were 74 differences between the manual annotations and Javarifier’s
output. 58 are human errors, and 16 disappear when using Javarifier’s inference
of assignable fields.



636 J. Quinonez, M.S. Tschantz, and M.D. Ernst

Program inheritance polyread this-mutable arrays

tinySQL 0 3 6 0
htmlparser 12 6 0 2
ejc 1 0 17 31

Fig. 18. Reasons for differences between Javarifier and Pidasa inference results. None
of the differences indicates an error in Javarifier.

The programmer omitted 22 readonly qualifiers, such as on the receiver of
toString(). Tool support while the programmer was annotating the program
would have both eased the annotation task and prevented these errors.

Javarifier inferred 36 private fields to be readonly, while the developer ac-
cepted the default of this-mutable, meaning that the fields are part of the ab-
stract state of the object. However, all 36 of these fields are either never read
or are only used to store intermediate values that do not need to be mutated.
Thus, Javarifier pointed out that these fields can be excluded from the abstract
state, or even removed altogether, without affecting the rest of the program.

The remaining 16 annotations that differed between the manual annotations
and Javarifier’s results do not represent any conceptual errors, and when we en-
abled heuristics for inferring assignable fields [22], Javarifier’s results were identi-
cal to the manual annotations. The developer had marked 4 fields as assignable.
Each of these fields is a placeholder for the current element in an Enumeration

class. The assignable annotation allowed the nextElement() method, which re-
assigns the field, to have a polyread receiver and return type. In other words,
the manual annotations differentiate the abstract state from the concrete state
of an object. When run without inference of assignable fields, Javarifier inferred
that the return type is readonly and the receiver is mutable, and this mutability
propagated to other methods, for a total of 16 differences in annotations.

6.2 Comparison to Another Mutation Inference Tool

Pidasa [3] is a combined static and dynamic immutability inference tool for
parameters and receivers. Pidasa uses a different but closely related definition of
reference immutability. We compared Javarifier’s results to Pidasa’s results on
four randomly-selected classes from each of tinySQL, htmlparser, and ejc (for
more details, see Artzi et al. [4]). We manually analyzed each difference to verify
the correctness of Javarifier’s results.

All of the differences can be attributed to four causes, as tabulated in Fig-
ure 18. The first three causes are conservatism in the Javari type system which
makes it impossible to express that a particular reference is not mutated. The
last cause is inflexibility in Pidasa that prevents it from expressing different
mutabilities on arrays and their elements.

Inheritance: In 13 cases, Javarifier inferred a method receiver to be mutable
due to contravariant receiver mutability in Javari, even though Pidasa was able
to recognize contexts in which the receiver could not be mutated. Figure 19 gives
an example.



Inference of Reference Immutability 637

1 class TagNode {

2 private List<Attribute> mAttributes;

3 public /*mutable*/ List<Attribute> getAttributes() /*mutable*/ {

4 return mAttributes;

5 }

6 public String toHtml() /*mutable*/ {

7 String s = "";

8 for(Attribute attr : getAttributes()) {

9 s += attr.toHtml();

10 }

11 return s;

12 }

13 }

14

15 class LazyTagNode extends TagNode {

16 public /*mutable*/ List<Attribute> getAttributes() /*mutable*/ {

17 // Actually mutates the abstract state of the object,

18 // in accordance to the specification for this class.

19 }

20 }

Fig. 19. Inheritance conservatism in the Javari type system, as observed in simplified
code from the htmlparser program. The method LazyTagNode.getAttributes() is
inferred to have a mutable receiver (line 16) because it may change the state of its
receiver. The method subtyping rule thus forces TagNode.getAttributes() to have a
mutable receiver (line 3). Since TagNode.toHtml() calls getAttributes() (line 8), it
must also have a mutable receiver (line 6), even though not every call to toHtml() can
cause a mutation.

polyread: In 9 cases, Javarifier inferred a parameter to be mutable due to
the type rules of the polyread qualifier, but Pidasa inferred the parameter to be
readonly. A method such as filter(polyread Date) cannot mutate its polyread

parameter because the method would not typecheck when all polyread qualifiers
are replaced with readonly. However, when filter is called from another method
(from the same class) that has a mutable receiver, the type of this is mutable

and thus Javari requires that the program typecheck as if the filter method
took a mutable parameter.

this-mutable: In 23 cases, Javarifier inferred a mutable parameter due to
Javari’s type rule that this-mutable fields are always written to as mutable, but
Pidasa inferred the parameter to be readonly. For example, if a method stores a
parameter into a this-mutable field, that parameter must be declared mutable,
even if no mutations occur to it.

Arrays: In 33 cases, Javarifier correctly inferred an array type to be partly
immutable, but Pidasa was conservative and marked the whole array as mutable.
For example, htmlparser used two readonly arrays of mutable objects. Javarifier
correctly inferred the outer level of the arrays to be readonly and the inner level
to be mutable. Pidasa infers a single mutability for all levels of the array. Ejc
contained examples of mutable arrays of readonly objects.



638 J. Quinonez, M.S. Tschantz, and M.D. Ernst

In conclusion, we found differences among the tools’ definitions, but in every
case Javarifier inferred correct Javari annotations, even where the results are not
immediately obvious — another advantage of a machine-checked immutability
definition such as that of Javari.

7 Related Work

Our full inference algorithm, and experience with a preliminary Javarifier im-
plementation, first appeared as part of Tschantz’s thesis [28]. This paper builds
upon that work with an extensive experimental evaluation.

In subsequent work, JQual [14] cites Tschantz’s thesis and adopts our ap-
proach. JQual’s core rules are essentially identical to Javarifier’s. Like Javarifier,
JQual uses syntax-directed constraint generation, then solves the constraints us-
ing graph reachability, and reports limited experimental results. However, there
are some differences in the approaches. (1) Polymorphism: JQual discards our
support for Java generics, and with it any hope for compatibility with the Java
language. Instead, JQual generalizes our mutability polymorphism. Whereas
polyread introduces exactly one mutability parameter into a method definition,
JQual supports an arbitrary number. Given support for Java generics, we have
not yet found a need for multiple mutability parameters. (2) Expressiveness:
JQual generalizes Javarifier by being able in theory to infer any type qualifier,
not just ones for reference immutability. This generality comes with a cost. JQual
is tuned to simple “negative” and “positive” qualifiers that induce subtypes and
supertypes of the unqualified type; it appears too inexpressive for richer type sys-
tems. JQual was used to create an inference tool for a @ReadOnly qualifier, but it
lacks support for every other Javarifier keyword, for qualifiers on different levels
of an array, for immutable classes, and for various other features of Javari. Addi-
tionally, it has a limitation on inheritance that ignores qualifiers in determining
method overriding: it does not enforce the constraint, required for backward
compatibility with Java, that mutability qualifiers do not affect overriding. (3)
Scalability: Context- and flow-sensitive variants of the JQual algorithm exist,
but the authors report that they are unscalable, so in their experiments they
hand-tuned the application of these features. Even so, JQual has not been run
on substantial codebases, and, except for JOlden, crashed on all of our subject
programs. By contrast, both Javarifier’s algorithm and its implementation are
scalable. (4) Evaluation: JQual’s output and input languages differ (e.g., it has
no surface syntax for its parametric polymorphism), so its analysis results do
not type check even in JQual. Artzi et al. [4] report that JQual’s recall (fraction
of truly immutable parameters that were inferred to be immutable) was 67%,
compared to 94% recall for a version of Javarifier without inference of assignable
or mutable fields. JQual misclassifies a receiver as mutable in method m if m reads
a field f that is mutated by any other method. JQual also suffered a few errors
in which it misclassified a mutable reference as immutable.

Javarifier and JQual can be viewed as extensions of the successful
CQual [12, 13] type inference framework for C to the object-oriented context.



Inference of Reference Immutability 639

Constraint-based type inference has also been used for inferring atomicity an-
notations to detect races [7, 11], inferring non-local aliasing [1], and supporting
type qualifiers dependent on flow-sensitivity (like read, write, and open) [13].

Pidasa [3] is a combined static and dynamic analysis for inferring parameter
reference immutability. Pidasa uses a pipeline of (intra- and interprocedural)
stages, each of which improves the results of the previous stage, and which can
leave a parameter as “unknown” for a future stage to classify. This results in a
system that is both more scalable and precise than previous work. Pidasa has
both a sound mode and also unsound heuristics for applications that require
higher precision and can tolerate unsoundness. By contrast, our work is purely
static, making it sound but potentially less precise. Another contrast is that our
definition is more expressive: our inference determines reference immutability for
fields and for Java generics/arrays. Artzi et al. [4] compare both the definitions
and the implementations of several tools including Javarifier, Pidasa, and JQual.

JPPA [27] is a previous reference immutability inference implementation.
(Sălcianu also provides a formal definition of parameter safety, but JPPA imple-
ments reference immutability rather than parameter safety.) JPPA uses a whole-
program pointer analysis, limiting scalability. Earlier work by Rountev [24] takes
a similar approach but computes a coarser notion of side-effect-free methods
rather than per-parameter mutability.

Reference immutability is distinct from the related notions of object im-
mutability and of parameter “safety” [27]; none of them subsumes the others.
They are useful for different purposes; for example, reference immutability is
effective for specifying interfaces that should not modify their parameters (even
though the caller may do so), and for a variety of other purposes [29]. A method
parameter is safe if the method never modifies the object passed to the param-
eter during method invocation. Effect analyses [8, 26, 23, 25, 17, 16] can be used
to compute safety or object immutability, often with the assistance of a heavy-
weight context-sensitive pointer analysis to achieve reasonable precision. (Like
type qualifier inference, points-to analysis aims to determine the flow of objects
or values through the program.) Our algorithm is much more scalable — the al-
gorithm is flow-insensitive, and the base algorithm is context-insensitive — but
is tuned to take advantage of the parametric polymorphism offered by both Java
and Javari.

Porat et al. [21] and Liu and Milanova [15] propose immutability inference
for fields in Java, the latter in the context of UML, but their definitions differ
from ours.

Our focus in this paper is on inference of reference immutability. For reasons
of space, we cannot review the extensive literature proposing different variants
of immutability. We briefly mention type checkers for closely related notions
of reference immutability. Birka built a type-checker for an earlier dialect of
Javari that lacked support for Java generics, and wrote 160,000 lines of code
in Javari [6]. Correa later wrote a complete Javari implementation using the
Checker Framework [20] and did case studies involving 13,000 lines of Javari [19].
The JQual inference system [14] (discussed above) can be treated as a type
checker. JavaCOP [2] is a framework for writing pluggable type systems for
Java. Like JQual, JavaCOP aims for generality rather than practicality. Also



640 J. Quinonez, M.S. Tschantz, and M.D. Ernst

like JQual, JavaCOP has been used to write a type checker for a small subset
of Javari. The checker handles only one keyword (readonly) and cannot verify
even that one in the presence of method overriding. Neither the checker nor any
example output is publicly available, so it is difficult to compare to our work.
Other frameworks that could be used for writing pluggable type systems include
JastAdd [9], JACK [5], and Polyglot [18].

8 Conclusion

This paper presents an algorithm for statically inferring the reference immutabil-
ity qualifiers of the Javari language. Javari extends the full Java language (includ-
ing generics, wildcards, and arrays) in a rich and practical way: for example, it
includes parametric polymorphism over mutability and permits excluding fields
from an object’s abstract state. To the best of our knowledge, ours is the first
inference algorithm for a practical definition of reference immutability.

The algorithm is both sound and precise. Its correctness has been experi-
mentally confirmed. The experiments also show that, like any conservative static
type system, the Javari language’s definition sometimes requires a reference to
be declared mutable even when no mutation can occur at run time.

The Javarifier tool infers immutability constraints and inserts them in either
Java source files or class files. Javarifier solves two important problems for pro-
grammers who wish to confirm that their programs are free of (a large class of)
mutation errors. First, it can annotate existing programs, freeing programmers
of that burden or revealing errors. Second, it can annotate libraries; because the
Javari checker conservatively assumes any unannotated reference is mutable, use
of any unannotated library makes checking of a program that uses it essentially
impossible. Together, these capabilities permit programmers to obtain the many
benefits of reference immutability at low cost.

Javarifier is publicly available for download at http://pag.csail.mit.edu/
javari/javarifier/.

References

1. A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking and inferring local
non-aliasing. In PLDI, pages 129–140, June 2003.

2. C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for imple-
menting pluggable type systems. In OOPSLA, pages 57–74, Oct. 2006.

3. S. Artzi, A. Kieżun, D. Glasser, and M. D. Ernst. Combined static and dynamic
mutability analysis. In ASE, pages 104–113, Nov. 2007.

4. S. Artzi, J. Quinonez, A. Kieżun, and M. D. Ernst. A formal definition and eval-
uation of parameter immutability. ASE, 2009.

5. G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet, M. Pavlova,
and A. Requet. JACK: A tool for validation of security and behaviour of Java
applications. In FMCO, Oct. 2006.

6. A. Birka and M. D. Ernst. A practical type system and language for reference
immutability. In OOPSLA, pages 35–49, Oct. 2004.



Inference of Reference Immutability 641

7. K. D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time.
In PLDI, pages 57–66, June 1988.

8. K. D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time.
In PLDI, pages 57–66, June 1988.

9. T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In OOPSLA,
pages 1–18, Oct. 2007.

10. M. D. Ernst. Annotations on Java types: JSR 308 working document. http:

//pag.csail.mit.edu/jsr308/, Nov. 12, 2007.
11. C. Flanagan and S. N. Freund. Type inference against races. In Static Analysis

Symposium, pages 116–132, 2004.
12. J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. In PLDI,

pages 192–203, June 1999.
13. J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In PLDI,

pages 1–12, June 2002.
14. D. Greenfieldboyce and J. S. Foster. Type qualifier inference for Java. In OOPSLA,

pages 321–336, Oct. 2007.
15. Y. Liu and A. Milanova. Ownership and immutability inference for UML-based

object access control. In ICSE, pages 323–332, May 2007.
16. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for

points-to and side-effect analyses for Java. In ISSTA, pages 1–11, July 2002.
17. P. H. Nguyen and J. Xue. Interprocedural side-effect analysis and optimisation in

the presence of dynamic class loading. In ACSC, pages 9–18, Feb. 2005.
18. N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler

framework for Java. In CC, pages 138–152, Apr. 2003.
19. M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst. Pluggable

type-checking for custom type qualifiers in Java. Technical Report MIT-CSAIL-
TR-2007-047, MIT CSAIL, Sep. 17, 2007.

20. M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst. Practical
pluggable types for Java. In ISSTA, pages 201–212, July 2008.

21. S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Automatic detection of
immutable fields in Java. In CASCON, Nov. 2000.

22. J. Quinonez. Inference of reference immutability in Java. Master’s thesis, MIT
Dept. of EECS, May 2008.

23. C. Razafimahefa. A study of side-effect analyses for Java. Master’s thesis, School
of Computer Science, McGill University, Montreal, Canada, Dec. 1999.

24. A. Rountev. Precise identification of side-effect-free methods in Java. In ICSM,
pages 82–91, Sep. 2004.

25. A. Rountev and B. G. Ryder. Points-to and side-effect analyses for programs built
with precompiled libraries. In CC, pages 20–36, Apr. 2001.

26. B. G. Ryder, W. A. Landi, P. A. Stocks, S. Zhang, and R. Altucher. A schema
for interprocedural modification side-effect analysis with pointer aliasing. ACM
TOPLAS, 23(2):105–186, Mar. 2001.

27. A. Sălcianu and M. C. Rinard. Purity and side-effect analysis for Java programs.
In VMCAI, pages 199–215, Jan. 2005.

28. M. S. Tschantz. Javari: Adding reference immutability to Java. Master’s thesis,
MIT Dept. of EECS, Aug. 2006.

29. M. S. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java.
In OOPSLA, pages 211–230, Oct. 2005.


