
Proactive Detection of

Inadequate Diagnostic Messages

for Software Configuration Errors

Sai Zhang Michael D. Ernst

Google Research University of Washington

Goal: helping developers improve

software error diagnostic messages

2

Users
Software

Configuration

Input data Errors

- Crashing

- Silent failures

--port_num = 100.0
(should be an integer)

A bad diagnostic message:

“… unexpected system failure …”

Our technique: detecting such inadequate diagnostic

messages caused by configuration errors

Goal: helping developers improve

software error diagnostic messages

3

Software

Software

(with improved

diagnostic message)

Our technique:

ConfDiagDetector

Developers

Goal: helping developers improve

software error diagnostic messages

Users

Software

(with improved

diagnostic message)

A good diagnostic message:

“… wrong value in –port_num…”

Configuration

--port_num = 100.0
(should be an integer)

Why configuration errors?

• Software systems often require configuration

5

Why configuration errors?

• Software systems often require configuration

• Software configuration errors are common and severe

6

Root causes of high-severity issues in

a major storage company [Yin et al, SOSP’11]

Configuration errors can have

disastrous impacts

(downtime costs 3.6% of revenue)

Why diagnostic messages?

• Often the sole data source available to understand an error

• Many diagnostic messages in practice are inadequate

− Missing

− Ambiguous

Why diagnostic messages?

• Often the sole data source available to understand an error

• Many diagnostic messages in practice are inadequate

− Missing

− Ambiguous A misconfiguration in Apache JMeter
output_format = XYZ (an unsupported format)

No diagnostic message, but JMeter saves output in

the default “XML” format

Why diagnostic messages?

• Often the sole data source available to understand an error

• Many diagnostic messages in practice are inadequate

− Missing

− Ambiguous
A misconfiguration in Apache Derby

derby.stream.error.method = hello

Diagnostic message:

IJ ERROR: Unable to establish connection

Why diagnostic messages?

• Often the sole data source available to understand an error

• Many diagnostic messages in practice are inadequate

− Missing

− Ambiguous

Our technique: detecting those inadequate messages

before they arise in the field.

Outline

• Motivation

• The ConfDiagDetector technique

• Evaluation

• Related work

• Contributions

11

Challenges of proactive detection of

inadequate diagnostic messages

12

• How to trigger a configuration error?

• How to determine the inadequacy of a diagnostic message?

• How to trigger a configuration error?

• How to determine the inadequacy of a diagnostic message?

ConfDiagDetector’s solutions

13

‒ Configuration mutation + checking system tests’ results

‒ Use a NLP technique to check its semantic meaning

system testsconfiguration + failed tests ≈ triggered errors

Diagnostic messages

output by failed tests
Use manual

Similar semantic meanings?

ConfDiagDetector workflow

Software (binary)

An example configuration

System tests

All tests pass!

ConfDiagDetector workflow

Software (binary)

An example configuration

System tests

Use manual Diagnostic messages

issued by failed tests

Configuration

mutation

Inadequate

Diagnostic

messages

Message

analysis

Mutated configurations
…

Run tests under each

Mutated configuration

Configuration mutation

• Randomly mutates option values

– One mutated option in each mutated configuration

16

A configuration

Mutated configurations

…

Configuration mutation

• Randomly mutates option values

– One mutated option in each mutated configuration

• Mutation rules for one configuration option

– Delete existing value

format=xml  format=

– Using a random value

format=xml  format= xyz

– Injecting spelling mistakes

format=xml  format= xmk

– Change the case of text

format=xml  format= XML

17

Running tests

• Run the all tests under each mutated configuration

• Parse each failed test’s log file or console to get the

diagnostic message

18

Mutated configurations

…

System tests
+

…
Test results

Running tests

• Run the all tests under each mutated configuration

• Parse each failed test’s log file or console to get the

diagnostic message

19

Mutated configurations

…

System tests
+

…
Test results

Failed tests Diagnostic messages

Message analysis

• A message is adequate, if it

– contains the mutated option name or value

– has a similar semantic meaning with the manual description

20

OR

Message analysis

• A message is adequate, if it

– contains the mutated option name or value

– has a similar semantic meaning with the manual description

21

OR

Example:
Mutated option:

--percentage-split

Diagnostic message:

“the value of percentage-split should be > 0”

Message analysis

• A message is adequate, if it

– contains the mutated option name or value

– has a similar semantic meaning with the manual description

22

OR

Example:
Mutated option:

--fnum

Diagnostic message:
“Number of folds must be greater than 1”

User manual description of --fnum:

“Sets number of folds for cross-validation”

Message analysis

• A message is adequate, if it

– contains the mutated option name or value

– has a similar semantic meaning with the manual description

23

OR

A NLP technique [Mihalcea’06]

Key idea of the employed NLP technique

24

Manual description
A message

Has similar semantic meanings, if many words in them

have similar meanings

The program goes wrong

The software fails

Example:

• Remove all stop words

• For each word in the diagnostic message,

tries to find the similar words in the manual

• Two sentences are similar, if “many” words

are similar between them.

Outline

• Motivation

• The ConfDiagDetector technique

• Evaluation

• Related work

• Contributions

25

Research questions

• ConfDiagDetector’s effectiveness

– The detected inadequate messages

– Time cost in inadequate message detection

– Comparison with two existing techniques

26

4 mature configurable software systems

27

Subject LOC #Options #System Tests

Weka 274,448 125 16

JMeter 91,979 212 5

Jetty 123,028 23 7

Derby 645,017 56 7

Converted from usage examples

in the user manual.

Detected inadequate diagnostic messages

28

50 distinct

diagnostic messages

Detected inadequate diagnostic messages

29

50 distinct

diagnostic messages
25 missing

messages
18 ambiguous

messages

7 adequate

messages

Detected inadequate diagnostic messages

30

50 distinct

diagnostic messages
25 missing

messages
18 ambiguous

messages

7 adequate

messages

Validating each message’s

Adequacy by user study

User study

31

3 grad students

Each with 10 years

coding experience

User manual

Diagnostic message

Adequate or not?

User study results

32

50 distinct

diagnostic messages
25 missing

messages
18 ambiguous

messages

7 adequate

messages

17 ambiguous

messages

8 adequate

messages

ConfDiagDetector’s results User’s judgment

Zero false negative, and 2% false positive rate

Differs only in 1 message

Time cost

• Manual effort

– 3.5 hours in total (4.2 minutes per message)

• Converting usage examples into tests

• Extract configuration option description from the user manual

• ConfDiagDetector’s efficiency
– 3 minutes per message, on average

33

Comparison with two existing techniques

• No Text Analysis

– Implemented in ConfErr [Keller’08] and Spex-INJ [Yin’11]

– A message is adequate if the misconfiguration option name or

value appears in it

– False positive rate: 16% (ConfDiagDetector’ rate: 2%)

• Internet search

– Search the diagnostic message in Google

– A message is adequate if the misconfiguration option appears in

the top 10 entries

– False positive rate: 12% (ConfDiagDetector’ rate: 2%)

34

Outline

• Motivation

• The ConfDiagDetector technique

• Evaluation

• Related work

• Contributions

35

Related work

• Configuration error diagnosis techniques

– Dynamic tainting [Attariyan’08], static tainting [Rabkin’11],

Chronus [Whitaker’04]

Troubleshooting an exhibited error rather than detecting

inadequate diagnostic messages

• Software diagnosability improvement techniques

– PeerPressure [Wang’04], RangeFixer [Xiong’12], ConfErr

[Keller’08] and Spex-INJ [Yin’11], EnCore [Zhang’14]

Requires source code, usage history, or OS-level support

36

Outline

• Motivation

• The ConfDiagDetector technique

• Evaluation

• Related work

• Contributions

37

Contributions

• A technique to detect inadequate diagnostic messages

Combine configuration mutation and NLP techniques

– Requires no source code and prior knowledge

– Analyzes diagnostic messages in natural language

– Requires no OS-level support

– Accurate and fast

• An evaluation on 4 mature, configurable systems

– Identify 25 missing and 18 inadequate messages

– No false negative, 2% false positive rate

38

Software (binary) Inadequate diagnostic messages

ConfDiagDetector

