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Abstract

This paper presents theoperational differencetechnique
for generating, augmenting, and minimizing test suites. The
technique is analogous to structural code coverage tech-
niques, but it operates in the semantic domain of program
properties rather than the syntactic domain of program text.

The operational difference technique automatically se-
lects test cases; it assumes only the existence of a source
of test cases. The technique dynamically generates opera-
tional abstractions (which describe observed behavior and
are syntactically identical to formal specifications) from test
suite executions. Test suites can be generated by adding
cases until the operational abstraction stops changing. The
resulting test suites are as small, and detect as many faults,
as suites with 100% branch coverage, and are better at de-
tecting certain common faults.

This paper also presents theareaand stacking tech-
niques for comparing test suite generation strategies; these
techniques avoid bias due to test suite size.

1 Introduction

Program specifications play a valuable role in dynamic
analyses such as software testing [GG75b, ROT89, CRS96,
OL99]. Most previous research on automated specification-
based testing has required software testers to provide a for-
mal specification. Furthermore, the research has generally
focused on systematic generation of test suites rather than
evaluation and comparison of existing test suites. The ap-
plicability of previous research is limited by the fact that
very few programs are formally specified — most lack even
assert statements. Additionally, software engineers may
desire to improve existing test suites or to use other tools for
selecting test cases.

The operational difference(OD) technique is a new
specification-based test case selection technique that en-
ables augmentation, minimization, and generation of test
suites in cooperation with any existing technique for test
case generation. It does not require a specification to be

provideda priori, nor does it require an oracle that indi-
cates whether a particular test case passes or fails. It au-
tomatically provides users with anoperational abstraction.
An operational abstraction is syntactically identical to a for-
mal specification, but describes actual behavior, which may
or may not be desired behavior. For future testing, the op-
erational abstraction can provide the benefits of ana priori
specification, such as assisting regression testing by reveal-
ing removed functionality and checking test results. The
operational abstractions are also useful in their own right.

This research builds on previous testing research, such
as structural coverage criteria, but applies it to the seman-
tic domain of program properties rather than the syntactic
domain of program text. The key idea behind the opera-
tional difference technique is comparison of operational ab-
stractions, which are dynamically generated from program
executions. A test case that improves the operational ab-
straction can be added to a test suite; a test case that does
not can be removed, if appropriate. We have implemented
the technique and experimentally demonstrated its efficacy
in creating test suites with good fault detection.

The remainder of the paper is organized as follows. Sec-
tion 2 describes how to automatically induce an operational
abstraction from a program and a test suite. Section 3
presents the operational difference technique for generating,
augmenting, and minimizing test suites. Section 4 details
our experimental methodology, and Section 5 reports exper-
iments demonstrating that the operational difference tech-
nique compares favorably with other methods. Section 6
provides intuition (and experimental data) for why the tech-
nique works. Section 7 summarizes related research, then
Section 8 concludes.

2 Generating operational abstractions

An operational abstractionis a formal mathematical de-
scription of program behavior: it is a collection of logical
statements that abstract the program’s runtime operation.
An operational abstraction is identical in form to a formal
specification. However, a formal specification is intended to
be written before the code and to express desired behavior.
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By contrast, an operational abstraction expresses observed
behavior and is induced dynamically from program execu-
tions.

Our experiments use the Daikon dynamic invariant de-
tector to generate operational abstractions, but the ideas
generalize beyond any particular implementation. Briefly,
Daikon discovers likely invariants from program executions
by running the program, examining the values that it com-
putes, and detecting patterns and relationships among those
values. The detection step uses an efficient generate-and-
check algorithm that reports properties that hold over exe-
cution of an entire test suite. The output is improved by sup-
pressing invariants that are not statistically justified and by
other techniques [ECGN00].1 Dynamic invariant detection
is not affected by the internal structure of the program com-
ponent being analyzed. In Zhu’s terminology [ZHM97], our
technique is interface-based, which is a variety of black-box
testing.

Generation of operational abstractions from a test suite
is unsound: the properties are likely, but not guaranteed, to
hold in general. As with other dynamic approaches such as
testing and profiling, the accuracy of the inferred invariants
depends in part on the quality and completeness of the test
cases. When a reported invariant is not universally true for
all possible executions, then it indicates a property of the
program’s context or environment or a deficiency of the test
suite. In many cases, a human or an automated tool can
examine the output and enhance the test suite, but this paper
does not address that issue.

Operational abstractions often match human-written for-
mal specifications [Ern00, ECGN01] or can be proved cor-
rect [NE02a, NE02b, NWEG+03]. However, the opera-
tional difference technique does not depend on these prop-
erties: it generates test suites that detect faults even if the
operational abstraction differs from the formal specification
that a human might have written, and even if the program is
incorrect.

3 Operational difference technique

This section describes the operational difference (OD)
technique for generating, augmenting, and minimizing test
suites. The OD technique compares the operational ab-
stractions induced by different test suites in order to decide
which test suite is superior.

The operational difference technique is automatic, but
for test suite generation and augmentation, it assumes the
existence of a source of test cases. In other words, the tech-
nique selects, but does not generate, test cases — much like
other techniques such as those based on code coverage. Test

1The statistical tests use a user-settable confidence parameter. The re-
sults in this paper use the default value, .01. We repeated the experiments
with values of .0001 and .99, and the differences were negligible.

procedure OD-GENERATE (program P , int n)
testsuiteS ← {}
int i ← 0
while i < n do

testcasec ← NEWCASE()
if OPABSTR(P, S) 6= OPABSTR(P, S ∪ {c}) then

S ← S ∪ {c}
i ← 0

else
i ← i + 1

return S

Figure 1. Pseudocode implementation of the basic operational dif-
ference (OD) test suite generation technique.NEWCASE is a user-
specified procedure that generates a candidate test case; our ex-
periments randomly select test cases from a pool.OPABSTR is
a procedure that generates an operational abstraction from a pro-
gram and a test suite; our experiments use the Daikon invariant
detector (Section 2).

cases may be created by a human, generated at random or
from a grammar, generated from a specification, extracted
from observed usage, or produced in any other fashion.

The basic OD generation technique (Figure 1) starts with
an empty test suite and an empty operational abstraction. It
repeatedly adds candidate test cases; if they change the op-
erational abstraction, they are retained, under the (possibly
incorrect) assumption that an operational abstraction gen-
erated from a larger test suite is better. Whenn candidate
cases have been consecutively considered and rejected, the
process is complete. The value chosen forn is a tradeoff
between the running time of the generation process and the
quality of the generated suite; the quality of the test case
generation procedure may also influence the best choice
for n. We further improve the basic OD generation tech-
nique by evaluating several candidate test cases at a time
and selecting the case that changes the operational abstrac-
tion most, and by minimizing the resulting test suite after
generation. The test suite augmentation technique is identi-
cal but starts with a non-empty test suite.

The OD test suite minimization technique considers each
test case in turn and removes each one whose removal does
not change the operational abstraction. Its intuition is that
test cases that affect the operational abstraction are more
different from one another than test cases that do not af-
fect the operational abstraction. Minimization is similar to
generation in that both select a subset of test cases. Min-
imization differs in that it starts from a suite and removes
cases, it considers every case in the suite, and the resulting
suite is guaranteed to have the same qualities (such as cov-
erage or operational abstraction) as the original suite. Thus,
minimization and generation typically produce quite differ-
ent suites. Minimization can be useful after generation, be-
cause later test cases may subsume earlier ones.
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Candidate Operational abstraction forabs Final
test case Precond. Postcondition suite

5 x == 5 x == return
√

1 x >= 1 x == return
√

4 same same
−1 x >= -1 (x >= 1) => (x == return)

√
(x == -1) => (x == -return)
return >= 1

−6 empty (x >= 1) => (x == return)
√

(x <= -1) => (x == -return)
return >= 1

−3 same same
0 same (x >= 0) => (x == return)

√
(x <= 0) => (x == -return)
return >= 0

7 same same
−8 same same
3 same same

Figure 2. Example of generating a test suite via the OD-base tech-
nique. The candidate test cases are considered in order from top
to bottom; a test case is added to the suite if it changes the opera-
tional abstraction. The process terminates whenn = 3 test cases
have been consecutively considered and rejected. The final test
suite is{5, 1,−1,−6, 0}. The final operational abstraction has no
preconditions and three postconditions. All postconditions contain
x = x’ (that is,x is not modified), so it is omitted for brevity.

As with many minimization techniques, the OD tech-
nique does not guarantee that the minimized suite is the
smallest set of cases that can generate the original opera-
tional abstraction. Furthermore, there is no guarantee that
the removed test case cannot detect a fault. A software engi-
neer might use minimization on test suites of questionable
value, such as ones that were randomly generated. Mini-
mization, like test case prioritization, can also be valuable
in reducing a test suite. For instance, a large test suite might
run every night or every weekend, but developers might run
a subset of the suite more frequently.

Statistical tests in the current implementation make the
operational abstractions a multiple-entity criterion [JH01]:
a single test case may not guarantee that a particular in-
variant is reported or not reported. This is not a necessary
condition of the technique, and we plan to experiment with
ways to combine operational abstractions for individual test
cases, which will reduce the cost of suite generation.

Figure 2 illustrates how the OD technique withn = 3
generates a test suite for the absolute value procedure. The
example uses an operational abstraction generator that re-
ports the following properties at procedure entries and exits:

• var = constant
• var ≥ constant
• var ≤ constant
• var = ±var
• property ⇒ property

4 Experimental methodology

This section describes the subject programs we used to
evaluate the operational difference technique, the measure-
ments we performed, and how we controlled for size when
comparing test suite generation strategies.

4.1 Subject programs

Our experiments analyze eight C programs. Each pro-
gram comes with faulty versions and a pool of test cases.
(We discovered additional errors in four of the programs
during the course of this research.) Figure 3 lists the sub-
jects.

The first seven programs in Figure 3 were created
by Siemens Research [HFGO94], and subsequently mod-
ified by Rothermel and Harrold [RH98]. The Siemens
researchers generated tests automatically from test spec-
ification scripts, then augmented those with manually-
constructed white-box tests such that each feasible state-
ment, branch, and def-use pair was covered by at least 30
test cases. The Siemens researchers created faulty versions
of the programs by introducing errors they considered real-
istic. Each faulty version differs from the canonical version
by 1 to 5 lines of code. They discarded faulty versions that
were detected by more than 350 or fewer than 3 test cases;
they considered the discarded faults too easy or too hard to
detect. (A test suite detects a fault if the outputs of the faulty
and correct versions differ.)

The eighth program,space , interprets Array Definition
Language inputs. The test pool forspace contains 13585
cases. 10000 were generated randomly by Vokolos and
Frankl [VF98], and the remainder were added by Graves
et al. [GHK+01] until every edge in the control flow graph
was covered by at least 30 cases. Each time an error was de-
tected during the program’s development or later by Graves
et al., a new faulty version of the program (containing only
that error) was created.

Some of our experiments use test suites generated by
randomly selecting cases from the test pool. Other exper-
iments use statement, branch, and def-use coverage suites
generated by Rothermel and Harrold [RH98]. These suites
were generated by picking tests from the pool at random
and adding them to the suite if they added any coverage,
until all the coverage conditions were satisfied. There are
1000 test suites for each type of coverage, except that there
are no statement or def-use covering suites forspace .

Threats to validity. Our subject programs are of moderate
size; larger programs might have different characteristics.
We chose them because they are well-understood from pre-
vious research and because we did not have access to other
programs with human-generated tests and faulty versions.
We suspect that these programs differ from large programs
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Program size Faulty Test pool Description
Program Procedures LOC NCNB versions cases calls op. abs. size of program

print tokens 18 703 452 7 4130 619424 97 lexical analyzer
print tokens2 19 549 379 10 4115 723937 173 lexical analyzer
replace 21 506 456 30 5542 1149891 252 pattern replacement
schedule 18 394 276 9 2650 442179 283 priority scheduler
schedule2 16 369 280 9 2710 954468 161 priority scheduler
tcas 9 178 136 41 1608 12613 328 altitude separation
tot info 7 556 334 23 1052 13208 156 information measure
space 136 9568 6201 34 13585 8714958 2144 ADL interpreter

Figure 3. Subject programs used in experiments. “LOC” is the total lines of code; “NCNB” is the number of non-comment, non-blank
lines of code. Test suite size is measured in number of test cases (invocations of the subject program) and number of dynamic non-library
procedure calls. Operational abstraction size is the number of invariants generated by the Daikon invariant detector when run over the
program and the full test pool.

less than machine-generated tests and faults differ from real
ones.

The pool of test cases was generated from test specifi-
cation scripts, then augmented with code coverage in mind.
Thus, the pool may be relatively better for code coverage
techniques than for the operational difference technique.
The faults were selected based on how many cases detected
the fault. This has an undetermined effect, particularly since
previous researchers had eliminated the hardest faults, de-
tected by only a few test cases. The small number of faults
for certain programs quantized the fault detection ratio to
a small number of values, making it harder to correlate
with other measures. The combination of few statements —
sometimes only 100 — and high coverage similarly quan-
tized statement coverage.

4.2 Measurement details

This section describes some of the measurements we per-
formed. Others, such as code size, are standard.

Test suite size. We measured test suite size in terms of
test cases and procedure calls. Our primary motivation for
measuring these quantities is to control for them to avoid
conflating them with other effects.

Each test case is an input to the program under test. This
is the most readily apparent static measure of size. How-
ever, a single case might execute only a few machine in-
structions or might run for hours.

The number of dynamic non-library procedure calls ap-
proximates the runtime required to execute the test suite,
which is likely to be more relevant to testers and which has
a strong effect on fault detection. We always measured both
quantities, but we sometimes present results for only one of
them if the other has a similar effect.

Code coverage.For simplicity of presentation, we use the
term “code coverage” for any structural code coverage crite-
rion. We measured statement coverage using the GCCgcov
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Figure 4. Pitfalls of comparing test suites of different sizes. The
labeled points indicate the natural size and fault detection of suites
produced by test suite generation techniques A and B. In the two
graphs, the natural test suites are identical. The curves show the
size and fault detection of “stacked” suites generated by randomly
combining or subsetting the natural suites. In the left-hand graph,
technique A is superior. In the right-hand graph, technique B is
superior.

tool and branch coverage using Bullseye Testing Technol-
ogy’s C-Cover tool. Unreachable code and unrealizable
paths in the programs prevent the tools from reporting 100%
coverage. We normalized all code coverage measurements
by dividing by the number of statements or branches cov-
ered by the full set of test cases.

Fault Detection. A test suite detects a fault (actually, de-
tects a faulty version of a program) if the output of the faulty
version differs from the output of the correct version, when
both are run over the test suite. The fault detection rate of
a test suite is the ratio of the number of faulty versions de-
tected to the number of faulty program versions. Section 4.1
describes the faulty versions.

4.3 Comparing test suites via stacking and area

It is misleading to directly compare test suite generation
techniques that create suites of different sizes, because test
suite size strongly affects fault detection (see Section 6.3).

Comparing test suites using the fault detection to size ra-
tio (also known as “efficiency”) is unsatisfactory because
the fault-detection-versus-size curve is not a straight line
(see Figure 4): doubling size does not double fault detec-
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tion, and any such curve has points of arbitrarily low ef-
ficiency. More seriously, efficiency does not address the
question of what technique to use to detect the greatest num-
ber of faults for a given test budget (in terms of suite exe-
cution time). We propose theareatechnique (described be-
low) to compare test suite generation strategies, rather than
simply comparing test suites.

We first observe that even if a test suite generation strat-
egy produces suites of a particular size (call it the natural
size), a tester can make suites of arbitrary runtime to fit the
testing runtime budget by a process we callstacking. If the
generated suite is too large, the tester can use a subset of
it — if nothing else, a random subset. If the generated suite
is too small, the tester can combine suites generated by the
technique until they reach the goal size, choosing a subset
of the last generated suite. (We assume the test suite gen-
erator is not deterministic, so the suites being combined are
not identical. For instance, the test suite generator may se-
lect test cases, and candidate test cases are presented to it in
different orders to create different suites.)

The stacked suites may not be as good as suites directly
generated to be of equivalent size. For example, it may be
better to generate a suite that covers each statement twice
than to stack single-statement-coverage suites to the size of
the twice-coverage suites. However, directly generating to
an arbitrary size may not be available to testers, and testers
may not know which technique to use to create a suite that
exactly fits their testing budget. Testers can use stacking
with any available test suite generator.

Stacking permits comparison of different test suite gen-
eration strategies at arbitrary test suite sizes. Comparing
at any particular size might disadvantage one strategy or
the other, and different projects have different testing bud-
gets, so it is necessary to compare the techniques at multiple
sizes. We sample from fault-detection-versus-size curves
induced by stacking, then compare the areas under the
curves. This gives an idea of how the techniques are likely
to compare at an arbitrary size. More specifically, we cre-
ate the curves by stacking each test generation strategy to
the natural sizes of all the others. In practice, the curves do
not cross, so the sense (but not the magnitude) of the com-
parison could be determined from any single size. The fact
that the curves do not cross suggests that stacking tends to
preserve the qualities of test suites.

5 Evaluation

This section experimentally evaluates the operational
difference (OD) technique for generating, augmenting, and
minimizing test suites.

5.1 Test suite generation

We compared test suites generated by the operational dif-
ference, statement coverage, branch coverage, def-use cov-

OD Statement Branch Def-use
fault size fault size fault size fault size

print tokens .366 9.3 .409 14.6 .457 16.1 .774 38.6
print tokens2 .506 6.4 .778 11.7 .738 12.0 .966 35.0
replace .451 18.1 .347 18.5 .361 18.7 .787 64.9
schedule .329 10.2 .209 5.8 .442 8.6 .762 23.9
schedule2 .304 13.1 .209 6.9 .242 7.7 .522 25.6
tcas .547 25.6 .180 5.2 .176 5.8 .163 5.5
tot info .719 9.4 .530 6.8 .560 7.4 .704 15.0
Partial average .460 13.2 .380 9.9 .425 10.9 .670 29.8

space .795 62.5 – – .909 155.2 – –
Average .502 19.3 – – .486 28.9 – –

Figure 5. Test suites created via automatic generation techniques.
“Fault” is the fraction of faults detected. “Size” is the number of
test cases in the suite; similar results hold for size measured in
terms of number of procedure calls (runtime). All numbers are av-
eraged across 50 suites of each type for each program. Statement
and def-use coverage suites were not available forspace .

Technique Ratio
Def-use coverage 1.73
Branch coverage 1.66
Operational difference 1.64
Statement coverage 1.53
Random 1.00

Figure 6. Effectiveness of test suite generation techniques, mea-
sured by the area technique of Section 4.3, compared to random
selection.

erage, and random selection techniques.
We arbitrarily chosen = 50 for the OD technique (Fig-

ure 1), meaning the process is terminated when 50 con-
secutive test cases have been considered without changing
the operational abstraction. A different value forn might
change generation time or suite quality. The structural cov-
erage suites were generated to achieve perfect coverage; we
do not know how many candidate test cases were rejected
in a row while generating them.

For each subject program, we generated 50 test suites
using the OD technique and measured their average size
and fault detection. Figure 5 compares them to other au-
tomatically generated suites. These include suites achiev-
ing complete statement, branch, and def-use coverage. The
“average” line shows that the OD test suites are, on average,
2/3 the size of the branch-covering test suites, but achieve
slightly better fault detection (.502 versus .486).

In order to better quantify the differences among the test
generation techniques, we employed the area and stacking
methodology (Section 4.3) to compare them. We generated
operational difference, statement coverage, branch cover-
age, and def-use coverage suites. Then, we stacked (dif-
ferent) OD, statement, branch, def-use, and random suites
to each of their natural sizes, for a total of 20 suites at 4
sizes, describing 5 fault-detection-versus-size curves. We
repeated the process 50 times for each program, for a total
of approximately 2000 fault detection curves (space had
no statement or def-use curves). We summed the area un-
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der all of the curves for a given technique, then computed
the ratios of the sums. Figure 6 presents the results: def-
use performs best, followed by branch and OD (which are
nearly indistinguishable), statement, and random.

Constructing structural coverage suites is difficult, te-
dious, and often impractical. Test cases that covered each
structural element at least 30 times were generated by hand
(see Section 4.1). By contrast, no special test cases were
provided for the OD technique.

5.1.1 Detecting specific faults

The operational difference technique provides about the
same fault detection as branch coverage according to the
area technique; this is more accurate than simply noting that
on average the OD suites are smaller, and have better fault
detection, than the branch coverage suites. Additionally,
the OD technique is superior for detecting certain types of
faults.

We compared the individual fault detection rates for the
OD technique and the branch coverage technique. For each
fault in each program, we measured the proportion of times
the fault was detected by each technique. We then used a
nonparametricP1 = P2 test to determine if there was a
statistically significant difference between the two propor-
tions, at thep = .05 level.

There are a total of 163 faults in the 8 programs we ex-
amined. The OD technique is better at detecting 65 faults,
stacked branch coverage is better at detecting 33 faults, and
the difference is not statistically significant for 65 faults.

We wished to determine whether there is a qualitative
difference between the faults detected best by the OD tech-
nique and the faults detected best by the stacked branch
coverage technique. We examined each faulty version by
hand to determine whether it changed the control flow graph
(CFG) of the program. We treated basic blocks as nodes
of the CFG, so adding a statement to a basic block would
not change the CFG. Examples of CFG changes include:
adding or removing anif statement, adding or removing
a case from aswitch statement, and adding or removing a
return statement. Examples of non-CFG changes include:
adding or removing a statement from a basic block, chang-
ing a variable name, changing an operator, and modifying
the expression in the condition of anif statement. If a fault
is not a CFG change, it must be a change to the value of an
expression in the program. Our results are presented in the
following table.

OD better Same Branch better Total
CFG change 9 11 9 29
Non-CFG change 56 54 24 134

Total 65 65 33 163

The OD technique is better at detecting value (non-CFG)
changes. This makes intuitive sense, because our opera-

tional abstractions make assertions about the values of vari-
ables. The techniques are equally good at detecting CFG
changes. (We expected branch coverage to dominate in this
case, because it is measured in terms of the CFG.) Finally,
in our target programs, the non-CFG change faults outnum-
ber the CFG change faults by a factor of 4.6. The faults were
real faults or were created by people who considered them
realistic and representative, so the distribution of faults in
practice may be similar.

5.2 Test suite augmentation

The operational difference augmentation technique is
identical to the generation technique, except the process is
started with an existing test suite rather than an empty test
suite. We evaluated this technique by starting with branch
coverage suites; the following table gives the results of eval-
uating them using the area technique. (The numbers differ
slightly from previous results because we did not compare
at the def-use natural size, and because this experiment used
the basic rather than the improved OD technique. The raw
numbers are available in a technical report [Har02].)

Technique Ratio
Branch coverage 1.70
Operational difference 1.72
Branch + operational difference 2.16
Random 1.00

As suggested in Section 5.1.1, code coverage and opera-
tional coverage techniques are complementary: combining
them is more effective than using either in isolation.

5.3 Test suite minimization

For each program, we generated 50 random test suites
with 100 cases each. We minimized these by the OD tech-
nique and by maintaining branch coverage; this table gives
the results, as measured by the area technique.

Technique Ratio
Branch coverage 1.50
Operational difference 1.21
Random 1.00

Figure 7 shows some additional data: the OD technique
results in better fault detection, but also substantially larger
test suites, than minimizing while maintaining branch cov-
erage.

6 Why it works

This section explains and justifies the insights that led
to the operational difference test suite improvement tech-
niques. Section 6.1 defines operational coverage, which
measures the quality of an arbitrary operational abstraction

65



Orig OD-min Random Branch-min
fault size fault size fault size fault size

print tokens .651 100 .549 48.2 .443 48.2 .314 7.3
print tokens2 .920 100 .616 14.4 .540 14.4 .740 6.1
replace .657 100 .443 19.8 .281 19.8 .289 10.5
schedule .647 100 .449 30.6 .391 30.6 .240 4.8
schedule2 .649 100 .451 39.9 .331 39.9 .231 4.8
tcas .709 100 .505 26.2 .417 26.2 .177 4.9
tot info .887 100 .683 18.0 .539 18.0 .501 5.2
space .754 100 .736 59.4 .685 59.4 .740 48.0
Average .734 100 .554 32.1 .453 32.1 .404 11.5

Figure 7. Test suites minimized via automatic techniques. “Fault”
is the fraction of faults detected. “Size” is the number of test cases
in the suite. All numbers are averaged across 50 suites of each
type for each program.

against an oracle operational abstraction. Section 6.2 shows
that when tests are added at random to a suite, the suite’s
operational coverage increases rapidly, then levels off at a
high value. Section 6.3 shows that operational coverage is
correlated with fault detection, even when test suite size and
code coverage are held constant.

6.1 Operational coverage

Operational coverage(defined below) measures the dif-
ference between an operational abstraction and an oracle or
goal specification. Like other coverage measures, opera-
tional coverage is a value between 0 and 1 inclusive: 0 for
an empty test suite, and 1 for an ideal test suite. It accounts
for both false assertions present in, and true assertions miss-
ing from, the operational abstraction.

An operational abstraction is a set of assertions about a
program, chosen from some grammar. Assume there ex-
ists an oracle (goal) operational abstractionG, containing
all true assertions in the grammar. We use the oracle only
to evaluate and justify the operational difference technique.
Application of the OD technique does not require existence
of an oracle, though the technique could be extended to take
advantage of an oracle when present.

Given a test suite, an operational abstractionOA con-
tains the assertions that are likely true, based on observa-
tions made while running the program over the test suite.
Definet = |OA ∩G|, the number of true assertions inOA.
The precisionp of OA is the fraction of assertions inOA
that are true, sop = t/|OA|. The recallr of OA is the frac-
tion of assertions inG that are also inOA, sor = t/|G|.
Precision and recall are standard measures from informa-
tion retrieval [Sal68, vR79].

We define the operational coveragec of OA as the
weighted average of precision and recall, givingc = ap +
(1 − a)r. For simplicity, we choosea = .5, giving
c = (p + r)/2. For example, suppose the oracle con-
tains 10 assertions, and the operational abstraction con-
tains 12 assertions: 9 true and 3 false. The precision is
9/12 and the recall is9/10, so the operational coverage is
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Figure 8. Effect of test suite size (measured in cases) on branch
coverage, operational coverage, and fault detection of randomly-
generated test suites, for thereplace program. The other pro-
grams have similar graphs, and graphs of fault detection against
size in terms of calls are also similar.

(9/12 + 9/10)/2 = .825.
Where do the oracles used in Sections 6.2 and 6.3 come

from? The oracle is the set of all invariants in Daikon’s
grammar that are true. This is exactly the operational ab-
straction Daikon would generate, given a good enough test
suite. In the extreme, the (infinitely large) test suite con-
taining all valid inputs to the program would surely be good
enough. We did not have such test suites, so we ran Daikon
on the full pool of test cases for each program (Figure 3)
as an approximation. We believe that the pools are suffi-
ciently large and diverse that adding additional test cases
would change the operational abstraction little or not at all.

6.2 Effect of test suite size on fault detection

When tests are added at random to a suite, the opera-
tional coverage increases rapidly, then levels off at a high
value. In other words, there are two distinct types of test
suites. Suites inducing relatively poor operational abstrac-
tions are measurably improved by almost any augmentation.
Suites inducing good operational abstractions are little af-
fected by augmentation, and the operational abstractions are
already so close to ideal that they can never be substantially
improved.

Figure 8 plots average branch coverage, operational cov-
erage, and fault detection against suite size for thereplace

program, for 1500 randomly generated test suites of case
sizes 1–500. Figure 8 does not plot statement coverage be-
cause it lies almost exactly under branch coverage.

Figure 8 also plots the knee of each curve. We computed
the knee by finding the size that minimizes the summed
mean square error of two lines regressed to the sets of points
to its left and right. The knee is the intersection of the pair
of lines that fit best. The knee does not necessarily lie on
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cases knee calls knee
cases coverage calls coverage

statement cov. 10 0.96 2971 0.90
operational cov. 15 0.81 3243 0.80
branch cov. 20 0.94 3409 0.87
fault detection 53 0.74 11796 0.73

Figure 9. Table of knee locations, averaged across seven programs.
These numbers indicate where plots of statement coverage, opera-
tional coverage, fault detection, and branch coverage against time
switch from one nearly-linear component to another; they indicate
average positions of the knees plotted for one program in Figure 8.
The table gives knees using two different metrics for test suite size:
number of cases and number of calls.

the curve. Figure 9 gives the average positions of all the
knees across all programs. Intuitively, the knee appears at
the size that separates low-coverage, easily-improved suites
from high-coverage suites that benefit little from the addi-
tion of test cases.

The knees are significant for two reasons. First, they in-
dicate roughly what size and coverage users can expect of
the generated suites; it is encouraging that they have small
sizes and high coverages. More significantly, if the knee
was not at a high coverage value, then the slope after the
knee would not be very horizontal, and the generation pro-
cess would take longer to terminate.

6.3 Operational coverage and fault detection

Section 6.2 demonstrated that high absolute levels of
operational coverage are achievable. This section shows
that increasing the operational coverage (that is, improv-
ing the operational abstraction) results in greater fault de-
tection. Section 6.3.1 demonstrates the result for arbitrary
test suites, and Section 6.3.2 demonstrates that even when
a test suite achieves 100% code coverage, increasing opera-
tional coverage improves fault detection.

6.3.1 Random suites

We analyzed 1000 randomly generated test suites for each
of the eight programs. The suite sizes, in cases, were uni-
formly distributed between 1 and the number of cases at
the fault detection knee (Section 6.2). We did not consider
larger suites, because augmenting a large test suite has little
effect.

For each test suite, we calculated its size (in cases and
calls), statement coverage, branch coverage, operational
coverage, and fault detection. Then, we performed six mul-
tiple regressions for each program. These regressions indi-
cate how each predictor affects each result, while holding
all other factors constant; for example, it avoids conflating
the effect of size and coverage, even though larger suites
tend to have more coverage.

Independent Dependent variable
variable op. cov. stmt. cov. fault detection
cases .285 .037 .250
calls .068 −.005 .337
op. cov. - .741 .130
stmt. cov. .593 - .167

Independent Dependent variable
variable op. cov. branch cov. fault detection
cases .169 .162 .229
calls .075 −.005 .337
op. cov. - .723 .095
branch cov. .676 - .234

Figure 10. Standardized multiple regression coefficients, averaged
across eight programs. Standardized coefficients are the coeffi-
cients that would be produced if the data analyzed were in standard
score form. “Standard score” form means that the variables have
been standardized so that each has a mean of zero and a standard
deviation of 1. Thus, standardized coefficients reflect the relative
importance of the predictor variables. Each column of each table
presents the results from a separate multiple regression.

Each column of Figure 10 presents results of one multi-
ple regression. For instance, the upper-left regression uses
size and statement coverage as the independent variables,
and uses operational coverage as the dependent variable.
(We performed two sets of three multiple regressions, rather
than one set involving all five variables, because statement
coverage and branch coverage are highly correlated; they
fail a test of non-collinearity and bias the results. Separat-
ing the variables avoids this problem. This means the coeffi-
cients for statement and branch coverage cannot be directly
compared. There is no significant interaction effect among
any other predictor variables at thep = .10 level.)

We also computed, but do not show here, raw correla-
tion coefficients. For example, when operational coverage
is used to predict fault detection, the coefficient is .340. This
means that if operational coverage is increased by 1 percent,
and all other predictors are held constant, fault detection in-
creases by .340 percent.

The standardized coefficients in Figure 10 indicate the
direction and relative magnitude of correlation between the
independent and dependent variables. Test suite runtime is
the most important predictor of fault detection, followed by
branch coverage, number of cases, statement coverage, and
operational coverage.

The important conclusion to draw from this experiment
is that operational coverage is a useful predictor of fault de-
tection: test suites with more operational coverage detect
faults better. Operational coverage is about as good a pre-
dictor of fault detection as statement coverage, but is less
good than some other metrics, such as test suite size.

6.3.2 The effect of 100% code coverage

A final experiment further demonstrates the value of opera-
tional coverage as a test suite quality metric that is indepen-

67



Coverage Op. cov. Mean Mean # stat. # not
type coefficient op. cov. fault detect sig. sig.
statement .483 .877 .396 5 2
branch .308 .866 .461 6 2
def-use .507 .950 .763 2 5

Figure 11. Multiple regression coefficient for operational cover-
age, when regressed against fault detection. The coefficient for
size was not statistically significant for any of the programs, and
has been omitted from the table. The coefficient for operational
coverage was only statistically significant for some of the pro-
grams. The “# stat. sig.” column contains this number, and the
“# not sig.” column contains the number of programs for which
the coefficient was not statistically significant. Each value was
averaged across all programs for which the operational coverage
coefficient was statistically significant.

dent of code coverage metrics.
For each of the subject programs exceptspace , we ana-

lyzed 1000 suites with statement coverage, 1000 suites with
branch coverage, and 1000 suites with def-use coverage.
For space , we only analyzed 1000 suites with branch cov-
erage. (We obtained the suites from Rothermel and Har-
rold [RH98]; there were no statement or def-use covering
suites forspace , nor were we able to generate them.) Sec-
tion 4.1 describes these test suites, and Figure 5 presents
their average sizes in cases. The statement and branch cov-
erage suites have about the same number of cases, while the
def-use coverage suites are three times as large.

We calculated the size, operational coverage, and fault
detection rate of each test suite. For each type of coverage
and each program, we performed a multiple regression, with
size and operational coverage as the independent variables
and fault detection as the dependent variable. We performed
22 multiple regressions in total (7 programs× 3 coverage
criteria, plus 1 coverage criterion forspace ). Figure 11
summarizes the results.

The coefficient describes the relationship between oper-
ational coverage and fault detection. For example, the coef-
ficient of .48 for statement coverage suites suggests that if
the operational coverage of a suite were increased by 1 per-
cent, and all other factors held constant, the fault detection
rate would increase by approximately .48 percent.

The mean operational coverage and fault detection indi-
cate how much improvement is possible, since their maxi-
mum values are 1.

These results show that, for test suites with branch or
statement coverage, increasing operational coverage does
increase fault detection. However, for suites with def-use
coverage, fault detection is often independent of operational
coverage (only 2 programs had statistically significant co-
efficients). This might be because operational coverage is
already near perfect (.95) for those test suites: there is little
room for improvement.

Further, these results show that operational coverage is

complementary to code coverage for detecting faults. Even
when statement or branch coverage is 100%, increasing op-
erational coverage can increase the fault detection of a test
suite without increasing test suite size. Stated another way,
operational coverage indicates which of otherwise indistin-
guishable (with respect to code coverage) test suites is best.

6.3.3 Effort to improve test suites

We have demonstrated that both code coverage and opera-
tional coverage are correlated to fault detection, and that im-
proving operational coverage tends to detect different faults
than improving code coverage does (Section 5.1.1). How-
ever, this does not indicate how much relative effort a soft-
ware tester should invest in improving the two types of cov-
erage. Future work should assess how difficult it is for the
programmer to increase operational coverage, relative to the
work it takes to achieve a similar gain in statement cover-
age. Also, the last few percent of code coverage are the
hardest to achieve. Is operational coverage similar?

7 Related work

This work complements and extends research in
specification-based testing. For the most part, previous
research has focused on systematic generation, not evalu-
ation, of test suites, and has required users to provide a
specificationa priori. We relax those constraints, provide
new applications, and show how to bring new benefits to
specification-based testing.

7.1 Specifications for test suite generation

Goodenough and Gerhart [GG75b, GG75a] suggest that
users partition the input domain into equivalence classes
and select test data from each class. Specification-based
testing was formalized by Richardson et al. [ROT89], who
extended implementation-based test generation techniques
to formal specification languages. They derive test cases
(each of which is a precondition–postcondition pair) from
specifications. The test cases can be used as test adequacy
metrics. Even this early work emphasizes that specification-
based techniques should complement rather than supple-
ment structural techniques, for each is more effective in cer-
tain circumstances; our results reinforce this point.

The category-partition method [OB88] calls for writing a
series of formal test specifications, then using a test genera-
tor tool to produce tests. The formal test specifications con-
sist of direct inputs or environmental properties, plus a list
of categories or partitions for each input, derived by hand
from a high-level specification. Balcer et al. [BHO89] auto-
mate the category-partition method for writing test scripts
from which tests can be generated, obeying certain con-
straints. These specifications describe tests, not the code,
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and are really declarative programming languages rather
than specifications. Although their syntax may be the same,
they do not characterize the program, but the tests, and so
serve a different purpose than program specifications.

Donat [Don97] distinguishes specifications from test
classes and test frames. He gives a procedure for con-
verting the former into each of the latter (a goal proposed
in earlier work [TDJ96]), but leaves converting the test
frames into test cases to a human or another tool. Dick
and Faivre [DF93], building on the work of Bernot et
al. [BGM91], use VDM to generate test cases from precon-
ditions, postconditions, and invariants. Meudec [Meu98]
also uses a variety of VDM called VDM-SL to generate
test sets from a high-level specification of intended behav-
ior. Offutt et al. generate tests from constraints that describe
path conditions and erroneous state [Off91] and from SOFL
specifications [OL99].

All of this work assumes ana priori specification in
some form, and most generate both test cases and test suites
composed of those test cases. By contrast, the operational
difference technique assumes the existence of a test case
generator (any of the above could serve), then generates
both a test suite and an operational abstraction.

7.2 Specifications for test suite evaluation
Chang and Richardson’s structural specification-based

testing (SST) technique [CR99] uses formal specifications
provided by a test engineer for test selection and test cover-
age measurement. Their ADLscope tool converts specifica-
tions written in ADL [HS94] into a series of checks in the
code called coverage condition functions [CRS96]. Once
the specification (which is about as large as the original
program) is converted into code, statement coverage tech-
niques can be applied directly: run the test suite and count
how many of the checks are covered. An uncovered test in-
dicates an aspect of the specification that was inadequately
exercised during testing. The technique is validated by dis-
covery of (exhaustively, automatically generated) program
mutants.

This work is similar to ours in that both assume a test
case generation strategy, then evaluate test suites or test
cases for inclusion in a test suite. However, SST requires
the existence of ana priori specification, whereas the oper-
ational difference technique does not, but provides an oper-
ational abstraction.

7.3 Related coverage criteria
Several researchers have proposed specification-based

notions of coverage that are similar to our definition of op-
erational coverage (Section 6.1). In each case, a test suite is
evaluated with respect to a goal specification. The related
work extends structural coverage to specifications, comput-
ing how much of the specification is covered by execution

of the test suite. By contrast, our operational coverage com-
pares two operational abstractions.

Burton [Bur99] uses the term “specification coverage”
to refer to coverage of statements in a specification by an
execution; this concept was introduced, but not named, by
Chang and Richardson [CR99]. Burton further suggests
applying boolean operand effectiveness (modified condi-
tion/decision coverage or MC/DC) to reified specifications;
this coverage criterion requires that each boolean subterm of
a branch condition take on each possible value. Other exten-
sions of structural coverage criteria to specification checks
are possible [Don97] but have not been evaluated.

Hoffman et al. [HSW99, HS00] present techniques for
generating test suites that include tests with (combinations
of) extremal values. These suites are said to have bound-
ary value coverage, a variety of data coverage. The Roast
tool constructs such suites and supports dependent domains,
which can reduce the size of test suites compared to full
cross-product domains. Ernst [Ern00] uses the term “value
coverage” to refer to covering all of a variable’s values (in-
cluding boundary values); the current research builds on
that work.

Hamlet’s probable correctness theory [Ham87] calls for
uniformly sampling the possible values of all variables.
Random testing and operational testing are competitive with
or superior to partition testing, debug testing, and other di-
rected testing strategies, at least in terms of delivered relia-
bility [DN84, HT90, FHLS98, FHLS99]. This work makes
several reasonable assumptions, such as that testers have
good but not perfect intuition and that more than a very
small number of tests may be performed. Operational cov-
erage is likely to assist in both operational and random test-
ing, permitting improved test coverage, and better under-
standing of the test cases, in both situations.

Chang and Richardson’s operator coverage [CR99] is not
a measure of test suite quality, but concerns the creation of
mutant (faulty) versions of programs. Operator coverage
is achieved if every operator in the program is changed in
some mutant version. The mutants can be used to assess test
suite comprehensiveness, in terms of fault detection over the
mutants.

Amman and Black [AB01] measure test suite coverage
in terms of number of mutant specifications (in the form of
CTL formulae) killed. A mutant version of a specification
contains a specific small syntactic error, and a test suite is
said to kill the mutant if the test suite gives a different re-
sult over the faulty version than it does over the correct ver-
sion. Amman and Black use model checking to check the
test cases against the CTL specifications. If every mutant is
killed, then every component of the specification is covered,
since every component of the specification was mutated.
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8 Conclusion

We have presented the operational difference (OD) tech-
nique for generating, augmenting, and minimizing test
suites. The technique selects test cases by comparing oper-
ational abstractions dynamically generated from test suites.
An operational abstraction describes observed behavior and
is syntactically identical to a formal specification. A test
case is considered interesting if its addition or removal
changes the operational abstraction. The OD technique is
automatic, but (for generation or augmentation) assumes the
existence of a test case generator that provides candidate
test cases.

The OD generation technique produced test suites that
are smaller, and slightly more effective at fault detection,
than branch coverage suites. The OD suites are equally
good at detecting errors that change the control flow graph
and are more effective at detecting non-CFG-changing er-
rors. The two techniques are complementary: combining
structural and operational coverage techniques is more ef-
fective than using either in isolation.

Two characteristics of our technique for inducing opera-
tional abstractions explain the efficacy of the OD technique.
First, it is possible to create a high-quality operational ab-
straction (without knowing precisely how good it is or what
the ideal would be) by randomly adding test cases until the
operational abstraction stabilizes. Second, improvements in
the operational abstraction are correlated with fault detec-
tion, even for test suites with 100% code coverage. Thus,
even after statement or branch coverage can no longer dif-
ferentiate among test cases, the OD technique can deter-
mine which test cases are most advantageous.

The results do not depend on the generated operational
abstraction — which describes actual, not intended, behav-
ior — being close to the formal specification that a human
might write (though in practice, they are). Likewise, the
results do not depend on the program being correct: the
OD technique produces test suites with good fault detection
even from buggy programs. (In our experiments, the test
programs used to generate the operational abstractions con-
tained errors, and further experiments have confirmed that
the OD technique is not hindered by errors in the program
from which the operational abstraction is induced.) Finally,
there is no need for an oracle that determines whether a test
case passes or fails, though subsequent use of the generated
test suites might require creation of such an oracle.

The operational difference technique is automatic; it
takes as input a test case generator (any test suite or sam-
ple inputs will do) but does not require a programmer to
provide ana priori formal specification. Since such speci-
fications are rare and programmers are loathe to write them
(because programmers perceive the cost as too high and the
benefit as too low), the OD technique expands the applica-
bility of specification-based testing. The technique has the

added benefit of generating a high-quality operational ab-
straction for the program, which has many benefits in itself;
however, users not interested in this benefit never need ex-
amine the operational abstraction.

The OD technique is directly analogous to techniques
for creating code coverage suites, but it operates over pro-
gram properties in the semantic domain rather than over
source code constructs in the syntactic domain. We believe,
and our experiments validate, that operating over (automat-
ically generated) program properties rather than program
text holds substantial promise for testing and other software
engineering tasks.
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