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Abstract
A compiler-checked immutability guarantee provides useful docu-
mentation, facilitates reasoning, and enables optimizations. This
paper presents Immutability Generic Java (IGJ), a novel language
extension that expresses immutability without changing Java’s syn-
tax by building upon Java’s generics and annotation mechanisms.
In IGJ, each class has one additional type parameter that is Mutable,
Immutable, or ReadOnly. IGJ guarantees both reference immutabil-
ity (only mutable references can mutate an object) and object im-
mutability (an immutable reference points to an immutable object).
IGJ is the first proposal for enforcing object immutability within
Java’s syntax and type system, and its reference immutability is
more expressive than previous work. IGJ also permits covariant
changes of type parameters in a type-safe manner, e.g., a readonly
list of integers is a subtype of a readonly list of numbers. IGJ ex-
tends Java’s type system with a few simple rules. We formalize this
type system and prove it sound. Our IGJ compiler works by type-
erasure and generates byte-code that can be executed on any JVM
without runtime penalty.

Categories and Subject Descriptors: D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.2.1 [Software Engineer-
ing]: Requirements / Specifications[Languages]; D.3.3 [Program-
ming Languages]Language Constructs and Features
General Terms: Design, Languages, Theory
Keywords: const, Generic, IGJ, Immutability, Java, Readonly

1. Introduction
Immutability information is useful in many software engineer-

ing tasks, such as modeling [7], verification [30], compile- and run-
time optimizations [9, 25, 28], refactoring [17], test input genera-
tion [1], regression oracle creation [24,32], invariant detection [15],
specification mining [10], and program comprehension [13]. Three
varieties of immutability guarantee are:
Class immutability No instance of an immutable class may be

changed; examples in Java include String and most subclasses
of Number such as Integer and BigDecimal.

Object immutability An immutable object can not be modified,
even if other instances of the same class can be. For example,
some instances of List in a given program may be immutable,
whereas others can be modified. Object immutability can be
used for pointer analysis and optimizations, such as sharing
between threads without synchronization, and to help prevent
hard-to-detect bugs, e.g., the documentation of the Map inter-
face in Java states that “Great care must be exercised if mutable
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objects are used as map keys. The behavior of a map is not spec-
ified if the value of an object is changed in a manner that affects
equals comparisons while the object is a key in the map.”

Reference immutability A readonly reference [2, 5, 12, 22, 25, 29,
31] (or a const pointer in C++) cannot be used to modify its
referent. However, the referent might be modified using an
aliasing mutable reference. Reference immutability is required
to specify interfaces, such as that a procedure may not modify
its arguments (even if the caller retains the right to do so) or
a client may not modify values returned from a module. Past
work does not guarantee object immutability, unless reference
immutability is combined with an alias/escape analysis to guar-
antee that no mutable aliases to an object exist [2, 3].

This paper presents Immutability Generic Java (IGJ), a language
that supports class, object, and reference immutability. Each object
is either mutable or immutable, and each reference is Immutable,
Mutable, or ReadOnly. Inspired by work that combines ownership
and generics [27], the distinctions are expressed without changing
Java’s syntax by adding one new type parameter (at the beginning
of the list of type parameters):

1: // An immutable reference to an immutable date; mutating the
// referent is prohibited, via this or any other reference.
Date<Immutable> immutD = new Date<Immutable>();

2: // A mutable reference to a mutable date; mutating the referent
// is permitted, via this or any other mutable reference.
Date<Mutable> mutD = new Date<Mutable>();

3: // A readonly reference to any date; mutating the referent is
// prohibited via this reference, but the referent may be changed
// via an aliasing mutable reference.
Date<ReadOnly> roD = ... ? immutD : mutD;

Statement 1 shows object immutability in IGJ, and statement 3
shows reference immutability. Fig. 4 shows a larger IGJ example.

Java’s type arguments are no-variant, to avoid a type loophole [6,
20], so statement 3 is illegal in Java. Statement 3 is legal in IGJ,
because IGJ allows covariant changes in the immutability parame-
ter. IGJ even allows covariant changes in other type parameters if
mutation is disallowed, e.g., List<ReadOnly,Integer> is a subtype
of List<ReadOnly,Number>.

IGJ satisfies the following design principles:
Transitivity IGJ provides transitive (deep) immutability that pro-

tects the entire abstract state of an object. For example, an im-
mutable graph contains an immutable set of immutable edges.
C++ does not support such transitivity because its const-guarantee
does not traverse pointers, i.e., a pointer in a const object can
mutate its referent.

IGJ also permits excluding a field from the abstract state. For
example, fields used for caching can be mutated even in an im-
mutable object.

Static IGJ has no runtime representation for immutability, such
as an “immutability bit” that is checked before assignments
or method calls. Testing at runtime whether an object is im-
mutable [29] hampers program understanding.
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MutableReadOnlyImmutable
Figure 1: The hierarchy of immutability parameters, which have
special meaning when used as the first type argument, as in
List<Mutable,T>. (See also Fig. 6 in Sec. 2.4.)

The IGJ compiler works by type-erasure, without any run-time
representation of reference or object immutability, which en-
ables executing the resulting code on any JVM without run-
time penalty. A similar approach was taken by Generic Java
(GJ) [6] that extended Java 1.4. As with GJ, libraries must
either be retrofitted with IGJ types, or fully converted to IGJ,
before clients can be compiled. IGJ is backward compatible:
every legal Java program is a legal IGJ program.

Polymorphism IGJ abstracts over immutability without code du-
plication by using generics and a flexible subtype relation. For
instance, all the collection classes in C++’s STL have two over-
loaded versions of iterator, operator[], etc. The underlying
problem is the inability to return a reference whose immutabil-
ity depends on the immutability of this:

const Foo& getFieldFoo() const;

Foo& getFieldFoo();

Simplicity IGJ does not change Java’s syntax. A small number of
additional typing rules make IGJ more restrictive than Java. On
the other hand, IGJ’s subtyping rules are more relaxed, allow-
ing covariant changes in a type-safe manner.

The contributions of this paper are: (i) a novel and simple design
that naturally fits into Java’s generics framework, (ii) an implemen-
tation of an IGJ compiler, proving feasibility of the design, and
(iii) a formalization of IGJ with a proof of type soundness. Our
ideas, though demonstrated using Java, are applicable to any stati-
cally typed language with generics, such as C++, C#, and Eiffel.

Outline. The remainder of this paper is organized as follows.
Sec. 2 describes the IGJ language, which is compared to previous
work in Sec. 3. Sec. 4 discusses case studies of our IGJ implemen-
tation, and Sec. 5 formalizes IGJ and gives a proof of soundness.
Sec. 6 concludes.

2. IGJ language
The first type parameter of a class/interface in IGJ is called the

immutability parameter. The first type argument of a type in IGJ is
called the immutability argument, and it can be Mutable, Immutable,
or ReadOnly.

2.1 Type hierarchy
Fig. 1 depicts the type hierarchy of immutability parameters. The

subtyping relation is denoted by¹, e.g., Mutable ¹ ReadOnly. The
classes Mutable, Immutable, and ReadOnly may not be extended,
they have no subtype relation with any other types, and they can be
used only as the first type argument or as a type bound.

The root of the IGJ type hierarchy (excluding ReadOnly and its
descendants) is Object<ReadOnly>. Fig. 2 depicts the subtype rela-
tion for the classes Object and Date.

In Java, all type parameters are no-variant1 (except when using
wildcards, see Sec. 3.2). The subtyping rules for IGJ are more re-
laxed. IGJ permits covariant changes in the immutability param-
eter, e.g., Date<Mutable> ¹ Date<ReadOnly>. This satisfies the
polymorphism design principle, because a programmer can write
1We use “no-variant” rather than “invariant” to avoid confusion with other
meanings of the latter term.

Object<Mutable>Object<ReadOnly>Object<Immutable>
Date<Mutable>Date<ReadOnly>Date<Immutable>

Figure 2: The subtype hierarchy for Object and Date. The classes
(in bold) still have an underlying tree structure.

a single method that accepts a reference of any immutability, for
example: void print(Date<ReadOnly> d).

IGJ also permits covariant changes in other type parameters if
the immutability argument is ReadOnly or Immutable, e.g.,

List<ReadOnly,Integer> ¹ List<ReadOnly,Number>

Covariant changes are safe only when the object is readonly or im-
mutable because it cannot be mutated in a way which is not type-
safe. Therefore, the following pair is not in the subtype relation:

List<Mutable,Integer> 6¹ List<Mutable,Number>

To illustrate why covariant changes are prohibited in Java, consider
a method that accepts List<Mutable,Number> as one of its argu-
ments. If List<Mutable,Integer> is allowed to be passed into the
method, then inside the method an element in the list could be
changed to some Number that is not an Integer. This will break
the guarantee that a list of the type List<Mutable,Integer> only
contains instances of Integer.

A type parameter X in class C can be annotated2 with @NoVariant

to prevent covariant changes, in which case we say that X is no-
variant and write NoVariant(X, C). Otherwise we say that X is covari-
ant and write CoVariant(X, C). Sections 2.3 and 2.5 discuss when a
type parameter should be no-variant, e.g., the type parameter X in
the interface Comparable<I,X> is no-variant:

interface Comparable<I extends ReadOnly, @NoVariant X>

{ @ReadOnly int compareTo(X o); }

For instance, Comparable<ReadOnly,Integer> is not a subtype of
Comparable<ReadOnly,Number>.

IGJ’s subtype definition for two types of the same class is given
in Def. 2.1. The full subtype definition (formally given in Fig. 12
of Sec. 5) includes all of Java’s subtyping rules, therefore IGJ’s
subtype relation is a superset of Java’s subtype relation.

DEFINITION 2.1. Let C<I, X1, . . . , Xn> be a class. Then, type
S = C<J, S1, . . . , Sn> is a subtype of T = C<J

′, T1, . . . , Tn>, written
as S ¹ T, iff J ¹ J

′ and for i = 1, . . . , n, either Si = Ti or
(Immutable ¹ J

′ and Si ¹ Ti and CoVariant(Xi, C)).

Example. Fig. 3 presents the subtype hierarchy for List<Object>.
The types L<M,O<M>>, L<M,O<IM>>, and L<M,O<R>> have a common
mutable supertype L<M,? extends O<? extends R>>, but the only
value that can be inserted in such a list is null. (See Sec. 3.2 for a
discussion of Java’s wildcards.)

2.2 Reference immutability
This section gives the three key type rules of IGJ that enforce ref-

erence immutability: that is, only a Mutable reference can modify
its referent. To support reference immutability it is sufficient to use
ReadOnly and Mutable references; Sec. 2.4 adds object immutabil-
ity by using Immutable references as well.

2Annotating type parameters is planned for Java 7 [14]. In Java 5, a class or
interface annotation would have to specify which positions are no-variant.
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L<R,O<IM>>L<R,O<R>>L<R,O<M>>L<IM,O<IM>>L<IM,O<R>>L<IM,O<M>> L<M,O<IM>>L<M,O<R>>L<M,O<M>>
Figure 3: The subtype hierarchy for List<Object>, abbreviated as
L<O>. The types ReadOnly, Mutable, and Immutable are abbreviated
as R, M, and IM, respectively. The crossed-out arrows emphasize
pairs that are not subtypes.

We use I(. . .) to denote a function that takes a type or a refer-
ence, and returns its immutability argument. For example, given a
reference mutD of type Date<Mutable>, I(mutD) = Mutable, and we
say that the immutability of mutD is Mutable.

A field can be assigned only by a mutable reference:
FIELD-ASSIGNMENT RULE:
o.someField = ... is legal iff I(o) = Mutable.

Thus, you cannot assign to fields of a readonly reference, e.g.,
Employee<ReadOnly> roE = ...;

roE.address = ...; // Illegal!
The immutability of this depends on the context, i.e., the method

in which this appears:
THIS RULE: I(this) = I(m), in a method m.

Since there is no obvious syntactic way to denote the immutability
of this, IGJ uses method annotations: @ReadOnly, @Mutable, etc.3

For example, below we have I(this) = I(m) = Mutable:
@Mutable void m() { ... this ... }

The default method annotation in IGJ is @Mutable, but for clarity of
presentation, this paper explicitly annotates all methods.

The third type rule of IGJ states when a method call is legal:
METHOD-INVOCATION RULE: o.m(...) is legal iff I(o) ¹ I(m).

IGJ requires that I(o) ¹ I(m), and not simply I(o) = I(m), to
allow a mutable reference to call readonly methods, e.g.,

Employee<Mutable> o = ...;

o.setAddress(...); // OK: I(o) ¹ I(setAddress) = Mutable

o.getAddress(); // OK: I(o) ¹ I(getAddress) = ReadOnly

((Employee<ReadOnly>) o).setAddress(...); // Illegal!

Example. Fig. 4 presents two IGJ classes: Edge and Graph. The
immutability parameter I is declared in lines 1 and 10; by conven-
tion we always denote it by I. If the extends clause is missing
from a class declaration, then we assume it extends Object<I>. We
can use any subtype of ReadOnly in place of I, e.g., ReadOnly (on
line 9), Mutable (on line 14), or another parameter such as I (on
line 11) or X (on line 17).

We will now demonstrate the type-checking rules by example.
The assignment this.id = id on line 5 is legal because according
to THIS RULE we have that I(this) = I(setId) = Mutable, and
according to FIELD-ASSIGNMENT RULE a mutable reference can as-
sign to a field. That assignment would be illegal if it was moved
to line 6, because this is readonly in the context of method getId.
The method invocation this.setId(...) on line 3 is legal accord-
ing to METHOD-INVOCATION RULE because I(this) ¹ I(setId).
That method invocation would be illegal on line 6.

Observe on line 9 that the static method print does not have
an annotation because it does not have an associated this object.
According to Def. 2.1 of the subtype relation, an edge of any im-

3The paper uses the annotation @ReadOnly whereas the IGJ compiler uses
@ReadOnlyThis, because an annotation and a class cannot have the same
qualified name. The same applies for the other annotations.

1: class Edge<I extends ReadOnly> {

2: private long id;

3: @AssignsFields Edge(long id) { this.setId(id); }

4: @AssignsFields synchronized void setId(long id) {

5: this.id = id; }

6: @ReadOnly synchronized long getId() { return id; }

7: @Immutable long getIdImmutable() { return id; }

8: @ReadOnly Edge<I> copy() { return new Edge<I>(id); }

9: static void print(Edge<ReadOnly> e) { ... } }

10: class Graph<I extends ReadOnly> {

11: List<I,Edge<I>> edges;

12: @AssignsFields Graph(List<I,Edge<I>> edges) {

13: this.edges = edges; }

14: @Mutable void addEdge(Edge<Mutable> e) {

15: this.edges.add(e); }

16: static <X extends ReadOnly> Edge<X>

17: findEdge(Graph<X> g, long id) { ... } }

Figure 4: IGJ classes Edge<I> and Graph<I>, with the immutability
parameters and annotations underlined. Erasing the immutability
parameters and annotations yields a legal Java program with the
same semantics. The annotations @Immutable and @AssignsFields

are explained in Sec. 2.4; for now assume that @Immutable is the
same as @ReadOnly, and @AssignsFields is the same as @Mutable.

mutability can be passed to print.
Recall that the Transitivity design principle states that the de-

sign must support transitive (deep) immutability. In our example,
in a mutable Graph the field edges on line 11 will contain a muta-
ble list of mutable edges. We call such a field this-mutable [31]
because its immutability depends on the immutability of this: in
a mutable object this field is mutable and in a readonly object it
is readonly. C++ has similar behavior for fields without the key-
words const or mutable. The advantage of IGJ syntax is that the
concept of this-mutable is made explicit in the syntax: a class can
reuse its immutability parameter in its fields, and the underlying
generic type system propagates the immutability information with-
out the need for special type rules. Using generics simplifies both
the design and the implementation.

Moreover, C++ has no this-mutable local variables, return types,
method parameters, or type arguments, whereas IGJ treats I as
a regular type parameter. For example, the following are this-
mutable: the return type on line 8, the type argument Edge<I> on
line 11, and the method parameter edges on line 12.

2.3 Method overriding
IGJ respects the Java class hierarchy. An overriding method can-

not weaken the specification of the overridden method:
METHOD-OVERRIDING RULE:
If method m’ overrides m, then I(m) ¹ I(m’).

For example, overriding can change a mutable method to a readonly
method, but not vice versa.

The erased signature of a method is obtained by replacing type
parameters with their bounds. When the erased signature of an over-
riding method changes, the normal javac inserts a bridge method
to cast the arguments to the correct type [6]. IGJ requires that the
erased signature of an overriding method remains the same if that
method is either readonly or immutable:

ERASED-SIGNATURE RULE: If method m’ overrides method m and
Immutable ¹ I(m), then the erased signatures of m’ and m, exclud-
ing no-variant type parameters, must be identical.
Fig. 5 demonstrates why the ERASED-SIGNATURE RULE prohibits

method overriding if the erased signature changes. As another ex-
ample, if X was annotated as @NoVariant in line 1, then the over-
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1: class MyVector<I extends ReadOnly, X> { ...

2: @ReadOnly void isIn(X o) {...} } // The erased signature is isIn(Object)
3: class MyIntVector<I extends ReadOnly> extends MyVector<I,Integer> { ...

4: // Overriding isIn is illegal due to ERASED-SIGNATURE RULE: the erased signature isIn(Integer) is different from isIn(Object)

5: @ReadOnly void isIn(Integer o) {...} } // Would be legal if X was annotated with @NoVariant

6: MyVector<ReadOnly,Object> v = new MyIntVector<ReadOnly>(); // Would be illegal if X was annotated with @NoVariant

7: v.isIn( new Object() ); // If overriding were legal, the bridge method of isIn(Integer) would cast an Object to an Integer

Figure 5: An example of illegal method-overriding due to the ERASED-SIGNATURE RULE.ReadOnlyAssignsFields ImmutableMutable
Figure 6: The full type hierarchy of immutability parameters.

riding in line 5 would be legal, and covariantly changing X (line 6)
would be illegal.

Out of 82,262 methods in Java SDK 1.5, 30,169 methods over-
ride other methods, out of which only 51 have a different erased
signature, and only the method compareTo(X) is readonly (the rest
are mutable: add, put, offer, create, and setValue). Because X is
no-variant in the Comparable interface, we conclude that ERASED-
SIGNATURE RULE imposes no restrictions on the Java SDK.

2.4 Object immutability
One advantage of object immutability is enabling safe sharing

between different threads without the cost of synchronization. Con-
sider lines 6–7 in Fig. 4. A long read/write is not atomic in Java;
synchronization is necessary. Only an immutable Edge can use
getIdImmutable() to avoid the cost of synchronization.

The referent of a readonly reference (Sec. 2.2) is not immutable:
it could be changed via another pointer. A separate analysis can
indicate some cases when such changes are impossible [31], but it
is preferable for the type system to guarantee that the referent of
immutable references cannot change.

The IGJ type system makes such a guarantee:
A mutable reference points to a mutable object, and
an immutable reference points to an immutable object. (1)

In order to enforce this property, no immutable reference may be
aliased by a mutable one; equivalently, no mutable reference may
point to an immutable object.

2.4.1 Constructors and the annotation @AssignsFields

The rules given so far are sufficient to guarantee object immutabil-
ity for IGJ with the exception of constructors. A constructor that is
making an immutable object must be able to set the fields of the ob-
ject (which becomes immutable as soon as the constructor returns).
It is not acceptable to mark the constructor of an immutable object
as @Mutable, which would permit arbitrary side effects, possibly
including making mutable aliases to this.

IGJ uses a fourth kind of reference immutability, AssignsFields,
to permit constructors to perform limited side effects without per-
mitting modification of immutable objects. Whereas a @Mutable

method can assign and mutate an object’s fields, an @AssignsFields

method can only assign (not mutate) the fields of this. A pro-
grammer can write the @AssignsFields method annotation but may
not write the AssignsFields type in any other way, such as Edge

<AssignsFields>. Therefore, in an @AssignsFields constructor,
this can only escape as ReadOnly. Fig. 6 shows the full hierarchy
of immutability parameters.

AssignsFields is not transitive, i.e., you can assign to fields of
this but not to fields of fields of this. Specifically, we relax FIELD-

ASSIGNMENT RULE by allowing a field of this to be assigned in an
@AssignsFields method:

FIELD-ASSIGNMENT RULE revised:
o.someField = ... is legal iff
I(o) = Mutable or (I(o) = AssignsFields and o = this).

Next, we restrict the METHOD-INVOCATION RULE:
METHOD-INVOCATION RULE revised:
o.m(...) is legal iff
I(o) ¹ I(m) and (I(m) = AssignsFields implies o = this).

(Adding o = this ensures that AssignsFields is not transitive.)
Creating a mutable object is legal only when using a @Mutable,

@AssignsFields, or @ReadOnly constructor, i.e., it is illegal to cre-
ate a mutable object using an @Immutable constructor because an
immutable alias might escape the constructor. Similarly, it is ille-
gal to create an immutable object using a @Mutable constructor. It
is not always known at compile time whether a new operation cre-
ates a mutable or an immutable object, e.g., see line 8 of Fig. 4. In
such cases, IGJ prohibits using either a @Mutable or an @Immutable

constructor.
OBJECT-CREATION RULE: new SomeClass<X,...>(...) is ille-
gal iff the annotation Y of the constructor satisfies:
Y = @Mutable and X 6= Mutable, or
Y = @Immutable and X 6= Immutable.

Example. The assignment this.id = id, on line 5 of Fig. 4,
is legal according to the revised FIELD-ASSIGNMENT RULE because
method setId is annotated with @AssignsFields and thus the im-
mutability of this is I(this) = AssignsFields. The method call
this.setId(...) on line 3 is legal because

I(this) = AssignsFields ¹ I(setId) = AssignsFields.
The METHOD-INVOCATION RULE was revised to avoid transitivity
of AssignsFields. E.g., adding this.edges.get(0).setId(42) to
line 13 is legal in the old METHOD-INVOCATION RULE, but not in the
revised one. Note that this addition must be illegal because it could
mutate an immutable edge in the list edges.

IGJ can express immutable cyclic data-structures, as the follow-
ing example of a bi-directional list shows:

class BiNode<I extends ReadOnly> {

BiNode<I> prev, next;

@AssignsFields BiNode(int len, BiNode<I> p) {

next = len==0 ? null : new BiNode<I>(len-1, this);

prev = p; } }

BiNode<Immutable> l = new BiNode<Immutable>(42,null);

A field of an immutable object can be assigned multiple times in
the constructor or even in other @AssignsFields methods. This is
harmless, and the programmer can mark a field as final to ensure
that it is assigned in the constructor once and no more than once.

Field initializers. Field initializers are expressions that are used
to initialize the object’s fields. The immutability of this in such
expressions is the maximal immutability among all constructors.
For example, if all constructors are mutable, then this is mutable;
if there exists a readonly constructor, then this is readonly.
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1: class AccessOrderedSet<I extends ReadOnly,

2: @NoVariant X> {

3: private List<Mutable,X> l;

4: public @ReadOnly boolean contains(X x) { ...

5: // We can mutate this.l even though this is ReadOnly
6: this.l.addFirst(x); } }

Figure 7: Class AccessOrderedSet with a mutable field l. Vari-
able X must be no-variant because it is used in a mutable field.

2.5 Mutable and assignable fields
A type system should guarantee facts about the abstract state of

an object, not merely its concrete representation. Therefore, a tran-
sitive guarantee of immutability for all fields of an object may be
too strong. For example, fields used for caching are not part of the
abstract state. This section discusses how to permit a given field
to be assigned or mutated even in an immutable object, and than
discusses special restrictions involving such fields.

Assignable fields. An assignable field is in essence the reverse of a
final field: a final field cannot be re-assigned whereas an assignable
field can always be assigned (even using a readonly reference).
An assignable field is denoted by @Assignable. We revise FIELD-
ASSIGNMENT RULE to always allow assigning to an assignable field:

FIELD-ASSIGNMENT RULE revised again:
o.someField = ... is legal iff
I(o) = Mutable or (I(o) = AssignsFields and o = this) or
someField is annotated as @Assignable.

For example, consider this code snippet:
private @Assignable int memoizedHashCode = 0;

public @ReadOnly int hashCode() {

if (memoizedHashCode == 0)

memoizedHashCode = ...;

return memoizedHashCode; }

The assignment memoizedHashCode=... is legal even though hash-

Code is readonly, due to the @Assignable annotation.

Mutable fields. A mutable field can always be mutated, even us-
ing a readonly reference. No new linguistic mechanism is required
to express a mutable field: its immutability argument is Mutable.

For instance, AccessOrderedSet in Fig. 7 implements a set using
a list l (line 3). As an optimization, l is maintained in access-order,
even during calls to readonly methods such as contains (line 4).
Because l is mutated (line 6) in a readonly method, l is declared as
a mutable field.

Covariant and no-variant type parameters. The type parameter
X in Fig. 7 must be annotated as @NoVariant (line 2) due to its use in
the mutable field l. If X could change covariantly, we would have:

AccessOrderedSet<ReadOnly, Integer> ¹
AccessOrderedSet<ReadOnly, Number>

We could than add a Number to an Integer list using the contains

method in line 4 of Fig. 7. To avoid such type loopholes, IGJ re-
quires a @NoVariant annotation on a type parameter which is used
in a mutable field. An assignable field or a mutable superclass cause
the same restriction as a mutable field:

NOVARIANT RULE: A type parameter must be no-variant if it is
used in a mutable field, an assignable field, a mutable superclass,
or in the position of another no-variant type parameter. (See a
formal definition in Fig. 11 of Sec. 5.)
The immutability parameter must be allowed to change covari-

antly, or else a mutable reference could not call a readonly method:
COVARIANT RULE: CoVariant(I, C) must hold for any class C.

For example, declaring the following field is prohibited:

@Assignable Edge<I> f; // Illegal! I must be covariant.

2.6 Exceptions, immutable classes, reflection,
and arrays

In IGJ’s syntax, the immutability is an integral part of the type. In
Javari [31] (see Sec. 3) it is syntactically possible but semantically
illegal to write this code:

class Cell<X> { readonly X x; ...}

It is semantically illegal because the immutability of X is deter-
mined in the client code, e.g., Cell<readonly Date>. In compar-
ison, IGJ’s syntax does not even enable such a declaration: it is
syntactically and semantically illegal.

Throwable. Generics and immutability naturally combine in an-
other aspect: their usage limitations. For example, it is forbidden
to throw a readonly reference because the catcher can mutate that
reference. Similarly, Java prohibits adding type parameters to any
subclass of Throwable because the compiler cannot statically con-
nect the throwing and catching positions. IGJ implicitly inherits
this usage limitation from the underlying generics mechanism. In
contrast, Javari explicitly prohibits throwing readonly exceptions.

Manifest classes and immutable classes. IGJ supports manifest
classes [27], which are classes without an immutability parameter.
Manifest classes can be used to express class immutability, e.g.,

class String extends Object<Immutable> ...

IGJ treats all methods of String as if they were annotated with
@Immutable, and issues errors if mutable methods exist.

Reflection. It is discouraged in IGJ to use reflection or to remove
the immutability parameter by casting to a raw type. The IGJ com-
piler issues a warning in both cases because they can create holes in
the type system. (IGJ does not consider these errors because they
might be necessary to call legacy code.)

Arrays. Java does not permit arrays to have type parameters.
IGJ supplies a wrapper class Array<I extends ReadOnly,T> that
enables the creation of immutable arrays. IGJ treats an array type
T[] as Array<Mutable,T>, i.e., arrays are mutable by default.

2.7 Inner classes
Nested classes that are static can be treated the same as normal

classes. An inner class is a nested class that is not explicitly or
implicitly declared static (see JLS 8.1.3 [18]). Inner classes have
an additional this reference: OuterClass.this. According to THIS

RULE, the immutability of this depends on the immutability of the
method. Because methods in IGJ have a single method annotation,
the immutability of this and OuterClass.this should be the same.
Therefore, in IGJ an inner class cannot have its own immutability
parameter:

INNER-CLASS RULE: An inner class inherits the immutability pa-
rameter of the outer class.
Lines 1–5 in Fig. 8 show the declaration of the Iterator inter-

face, in which the only mutable method is remove. The immutabil-
ity of an iterator is inherited from its container. Even though
method next (line 3) changes the state of the iterator, it does not
change the state of the container, and is thus readonly. In contrast,
method remove (line 4) changes the container, and is thus mutable.

Now consider the class ArrayList and its inner class ArrItr. The
inner class ArrItr lacks an explicit immutability parameter (line 8),
because it is implicitly inherited from ArrayList. On line 13 both
this references are mutable because remove() is mutable. Finally,
consider the creation of a new iterator on line 7. We handle this
new operation using METHOD-INVOCATION RULE: this method call
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1: interface Iterator<I extends ReadOnly,E> {

2: @ReadOnly boolean hasNext();

3: @ReadOnly E next(); // Although next changes the iterator, it is readonly because it does not change the container.
4: @Mutable void remove(); // remove is mutable because it changes the container.
5: }

6: class ArrayList<I extends ReadOnly, E> ... { ...

7: public @ReadOnly Iterator<I,E> iterator() { return this.new ArrItr(); } // OK: I(this) ¹ I(ArrItr) = ReadOnly

8: class ArrItr implements Iterator<I,E> { // ArrItr has no explicit immutability parameter: it is inherited from the outer class
9: private @Assignable int currPos;

10: public @ReadOnly ArrItr() { this.currPos=0; } // OK: currPos is @Assignable
11: public @ReadOnly boolean hasNext() { return this.currPos < ArrayList.this.size(); }

12: public @ReadOnly E next() { return ArrayList.this.get( this.currPos++ ); } // OK: I(this) ¹ I(get) = ReadOnly

13: public @Mutable void remove() { ArrayList.this.remove( this.currPos - 1 ); } // OK: I(this) ¹ I(remove) = Mutable

14: } }
Figure 8: Declaration of the interface Iterator and the class ArrayList with an inner class ArrItr.

is legal because this is readonly and the constructor of ArrItr is
readonly. We do not use OBJECT-CREATION RULE because the inner
object inherits the immutability of the outer object.

Anonymous inner classes have no name and no constructor. IGJ
assumes that the immutability of the missing constructor is the
same as the immutability of the method declaring the anonymous
inner class. For instance, the code in Fig. 8 can be converted to use
an anonymous inner class:

public @ReadOnly Iterator<I,E> iterator() {

return new Iterator<I,E>() { ... }; }

In the example above the immutability of the constructor is read-
only because iterator() is readonly.

3. Previous Work
We are not aware of any previous work that proposed a static

object-oriented typing-system for object immutability and not just
reference immutability. Pechtchanski and Sarkar [25] describe an-
notations for immutability assertions, such as @immutableField,
@immutableParam, etc., and show that such assertions enable op-
timizations that can speed up some benchmarks by 5–10%. They
do not present any typing rules to enforce such assertions.

Functional languages such as ML default all fields to being im-
mutable, with mutable (“ref”) fields being the exception. Such
languages do not support this-mutable fields nor allow partially
initialized objects to escape from the constructor.

Java already includes various classes whose instances are im-
mutable, and it supports non-transitive immutability using final,
which prohibits field assignments after the constructor finishes.

C++’s const mechanism has similar semantics to IGJ: a field can
be declared as const (similar to readonly in IGJ), mutable, or by de-
fault as this-mutable. In contrast to IGJ, C++ has no this-mutable
parameters, return types, local variables, or type arguments. Other
disadvantages are: (i) const can be cast away at any time, making it
more a suggestion than a binding contract, (ii) const protects only
the state of the enclosing object and not objects it points to, e.g.,
you cannot mutate an element inside a const node in a list, but the
next node is mutable, and (iii) using const results in code duplica-
tion such as two versions of operator[] in every collection class in
the STL.

Most of the IGJ terminology was borrowed from Javari [31] such
as assignable, readonly, mutable, and this-mutable. In Javari, this-
mutable fields are mutable as lvalue and readonly as rvalue. Javari
does not support object immutability, and its reference immutabil-
ity is more limited than that of IGJ because Javari has no this-
mutable parameters, return types, or local variables. Javari’s key-
word romaybe is in essence a template over immutability. IGJ uses
generics directly to achieve the same goal, as demonstrated by the

static method findEdge on line 16 of Fig. 4. The same method in
Javari would be written as

romaybe Edge findEdge(romaybe Graph g, long id)

Finally, Javari uses ?readonly which is similar to Java’s wildcards.
Consider, for instance, the class Foo written in Javari’s syntax:

class Foo { mutable List<Object> list; }

Then in a readonly Foo the type of list is
mutable List<? readonly Object>

which is syntactic sugar for
mutable List<? extends readonly Object

super mutable Object>

Thus, it is possible to insert only mutable elements to list, and
retrieve only readonly elements.

Skoglund and Wrigstad [29] propose a system with read and
write references with similar semantics to C++’s const. They also
introduce a caseModeOf construct which permits run-time checking
of reference writeability.

Several papers proposed a mechanism of access rights. JAC [22]
is a compile-time access-right system with this access-right order:
readnothing < readimmutable < readonly < writeable. Right
readnothing cannot access fields of this (only the identity for
equality), and readimmutable can only access immutable state of
this. JAC uses additional keywords (such as nontransferable)
that address other concerns than immutability. Capabilities for shar-
ing [5] are intended to generalize various other proposals for ac-
cess rights, ownership and immutability, by giving a lower level se-
mantics that can be enforced at compile- or run-time. A reference
can possess any combination of these 7 access rights: read, write,
identity (permitting address comparisons), exclusive read, exclu-
sive write, exclusive identity, and ownership (giving the capability
to assert rights). Immutability, for example, is represented by the
lack of the write right and possession of the exclusive write right.

Boyland [4] concludes that readonly does not address observa-
tional exposure, i.e., modifications on one side of an abstraction
boundary that are observable on the other side. IGJ’s immutable
objects address such exposure because their state cannot change.
Boyland’s second criticism was that the transitivity principle (see
Sec. 1) should be selectively applied by the designer, because, “the
elements in the container are not notionally part of the container” [4].
In IGJ, a programmer can solve this problem by using a different
immutability for the container and its elements.

Non-null types [16] has a similar challenge that IGJ has in con-
structing immutable objects: a partially-initialized object may es-
cape its constructor. IGJ uses @AssignsFields to mark a construc-
tor of immutable objects, and a partially initialized object can es-
cape only as ReadOnly. Non-null types uses a Raw annotation on
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references that might point to a partially-initialized object, and on
methods to denote that the receiver can be Raw. A non-null field of
a Raw object has different lvalue and rvalue: it is possible to assign
only non-null values to such field, whereas reading from such field
may return null. Similarly to IGJ, non-null types cannot express
the staged initialization paradigm in which the construction of an
object continues after its constructor finishes.

Huang et al. [19] propose an extension of Java (called cJ) that
allows methods to be provided only under some static subtyping
condition. For instance, a cJ generic class, Date<I>, can define

<I extends Mutable>? void setDate(...)

which will be provided only when the type provided for parame-
ter I is a subtype of Mutable. Designing IGJ on top of cJ would
make METHOD-INVOCATION RULE redundant, at the cost of replac-
ing IGJ’s method annotations with cJ’s conditional method syntax.

Finally, IGJ uses the type system to check immutability statically.
Controlling immutability at runtime (for example using assertions
or Eiffel-like contractual obligations) falls outside the scope of this
paper.

3.1 Ownership types and readonly references
Ownership types [3, 23] impose a structure on the references

between objects in a program’s memory. Ownership-enabled lan-
guages such as Ownership Generic Java [27] prevent aliasing to the
internal state of an object. While preventing exposure of owned ob-
jects, ownership does not address exposing immutable parts of an
object that cannot break encapsulation.

One possible application of ownership types is the ability to rea-
son about read and write effects [8] which has complimentary goals
to object immutability. Universes [12] is a Java language extension
combining ownership and reference immutability. Most ownership
systems enforce that all reference chains to an owned object pass
through the owner. Universes relaxes this demand by enforcing
this rule only for mutable references, i.e., readonly references can
be shared without restriction.

3.2 Covariant subtyping
Covariant subtyping allows type arguments to covariantly change

in a type-safe manner. Variant parametric types [21] attach a vari-
ance annotation to a type argument, e.g., Vector<+Number> (for co-
variant typing) or Vector<-Number> (for contravariant typing). Its
subtype relation contains this chain:

Vector<Integer> ¹ Vector<+Integer> ¹
¹ Vector<+Number> ¹ Vector<+Object>

The type checker prohibits calling someMethod(X) when the receiver
is of type Foo<+X>. For instance, suppose there is a method isIn(X)

in class Vector<X>. Then, it is prohibited to call isIn(Number) on
a reference of type Vector<+Number>.

Java’s wildcards have a similar chain in the subtype relation:
Vector<Integer> ¹ Vector<? extends Integer> ¹
¹ Vector<? extends Number> ¹ Vector<? extends Object>

Java’s wildcards and variant parametric types are different in the le-
gality of invoking isIn(? extends Number) on a reference of type
Vector<? extends Number>. A variant parametric type system pro-
hibits such an invocation. Java permits such an invocation, but the
only value of type ? extends Number is null.

IGJ also contains a similar chain:
Vector<Mutable,Integer> ¹ Vector<ReadOnly,Integer> ¹
¹ Vector<ReadOnly,Number> ¹ Vector<ReadOnly,Object>

The restriction on method calls in IGJ is based on user-chosen se-
mantics (whether the method is readonly or not) rather than on
method signature as in wildcards and variant parametric types. For

example, IGJ allows calling isIn(Number) on a reference of type
Vector<ReadOnly,Number> iff isIn is readonly.

3.3 Typestates for objects
In a typestate system, each object is in a certain state, and the

set of applicable methods depends on the current state. Verifying
typestates statically is challenging due to the existence of aliases,
i.e., a state-change in a particular object must affect all its aliases.
Typestates for objects [11] uses linear types to manage aliasing.

Object immutability can be partially expressed using typestates:
by using two states (mutable and immutable) and declaring that
mutating methods are applicable only in the mutable state. An ad-
ditional method should mark the transition from a mutable state to
an immutable state, and it should be called after the initialization of
the object has finished. It remains to be seen if systems such as [11]
can handle arbitrary aliases that occur in real programs, e.g., this
references that escape the constructor.

4. Case studies
Our preliminary experience suggests that IGJ is useful in express-

ing and checking important immutability properties.
We created two Eclipse plug-ins for converting Java code into

IGJ. The first plug-in converts a class to IGJ by adding to it an
immutability parameter, and setting the immutability argument to
Mutable in all clients of that class. The second plug-in generates
IGJ skeletons of libraries’ public signatures, permitting signature
annotation without the need to modify the library code.

The IGJ compiler is a relatively small and simple extension to
Sun’s javac. The IGJ compiler uses a visitor pattern to visit every
element in the Abstract Syntax Tree (AST) before the Java attribu-
tion phase, checking for appropriate use of the immutability param-
eter. After the Java attribution phase, it uses another AST visitor to
detect any violation of the typing rules. Finally, it modifies javac’s
isSubType according to Def. 2.1.

We performed case studies on the jolden benchmark programs4,
the htmlparser library5, and the SVNKit Subversion client6. In all,
we converted 328 classes (106 KLOC) of code to type-correct IGJ,
refactoring the code only in minor ways noted below. We also an-
notated the signatures of 113 JDK classes and interfaces.

Conversion to IGJ revealed representation exposure errors. For
example, in the htmlparser library, the “and” filter constructor
takes an array of predicates and assigns it to a private field with-
out copying; an accessor method also returns that private field with-
out copying. Clients of either method can mutate both the array’s
length and its contents.

Conversion to IGJ also allowed us to find and fix a conceptual
problem in several immutable classes, where the constructor left
the object in an inconsistent state. For example, consider jolden’s
perimeter program, which computes the perimeter of a region in a
binary image represented by a quad-tree. All instances of Quadrant
and QuadTreeNode are immutable, so we made these classes and
their subclasses immutable. Factory method createTree (Fig. 9)
creates a new GreyNode QuadTreeNode with no children (line 7),
then later calls setChildren (line 10). Such a call is illegal be-
cause QuadTreeNode is an immutable class. Solving such problems
was easy: we added parameters to the constructor/factory to give
it access to the complete state of the new object, or moved all of
the logic of object construction into a single method rather than dis-
persing it. (In the case of QuadTreeNode, we could have used the
AssignsFields immutability for setChildren.)
4http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
5http://htmlparser.sourceforge.net/
6http://svnkit.com/
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T ::= X | N Type.
N ::= C<J, T> Non-variable type.
J ::= ReadOnly | Mutable | Immutable | I Immutability arguments.
L ::= class C<I / ReadOnly, X / N> / C

′
<I, T′>{ T f; M} Class declaration.

M ::= <X / N> T m(T x) { return e;} Method declaration.
e ::= x | e.f | e.m<T>(e) | new N(e) | (N) e | e.f = e | l Expressions.

Figure 10: FIGJ Syntax.

C
′
<Mutable, T> ∈ subterm(C<X>)

Xi ∈ TP(Tj)
NoVariant(Xi, C<X>)

(MC1)
C
′
<T> ∈ subterm(C<X>)

NoVariant(Yj , C
′
<Y>) Xi ∈ TP(Tj)

NoVariant(Xi, C<X>)
(MC2)

Figure 11: Definition of NoVariant(Xi, C<X>).

1: public static

2: QuadTreeNode createTree(QuadTreeNode parent,...) {

3: QuadTreeNode node;

4: if (...) { node = new BlackNode(...); }

5: else if (...) { node = new WhiteNode(...); }

6: else {

7: node = new GreyNode(...);

8: sw = createTree(node, ...);

9: se=...; nw=...; ne=...;

10: node.setChildren(sw,se,nw,ne); }

11: return node;

12: }

Figure 9: The QuadTreeNode.createTree method of the perimeter

program. Class QuadTreeNode should be immutable, so the call to
setChildren on line 10 fails to type-check.

We were able to use both immutable classes and immutable ob-
jects. SVNKit used the latter for Date objects that represent the
beginning and expiration of file locks, the URL to the repository
(IGJ could simplify the current design, which uses an immutable
SVNURL class with setter methods that return new instances), and
many Lists and Arrays of metadata. IGJ could also permit use
of immutable objects in some places where immutable classes are
currently used, increasing flexibility.

Our biggest problem in the case study was the fact that Java does
not permit generic arguments to be attached to arrays. The jolden
benchmarks had been transliterated from C and used many arrays;
we expect such uses to be much rarer in good object-oriented code.

Most fields used the containing class’s immutability parameter.
We used few mutable fields; one of the rare exceptions was a col-
lection (in SVNErrorCode) that contains all SVNErrorCodes ever cre-
ated. We never used the NoVariant rule for mutable fields. We used
@Assignable fields only 5 times — to allow the receiver of a tree
rebalancing operation, or the receiver of a method that resizes a
buffer without mutating the contents, to be marked as ReadOnly.

Annotating existing code is an important test of IGJ, but IGJ is
likely to be even more effective on code that is designed with im-
mutability in mind. We saw many places that a different — and
better! — design would have been encouraged by IGJ.

5. Proof of Type Soundness
Proving soundness is essential in the face of complexities such as

the new subtype definition (Def. 2.1) and mutable fields (Sec. 2.5).
This section gives the type rules of a simplified version of IGJ and
proves property (1) from Sec. 2.4. We are not aware of any pre-
vious work that proved a reference immutability theorem such as
“readonly references cannot be converted to mutable”. Property (1)
implies such theorem, or else it would be possible to convert im-
mutable to readonly, and then to mutable.

Our type system, called Featherweight IGJ (FIGJ), is based on

Featherweight Generic Java (FGJ) [20]. FIGJ models the essence
of IGJ: the fact that only mutable references can assign to fields,
and the new subtype definition. All the features of IGJ that are
not in FIGJ do not introduce any new difficulties — merely more
tedious but conceptually similar cases — in the proof. Similar to
the way FGJ removed many features from Java (such as null val-
ues, assignment, overloading, private, etc.), we removed from IGJ
all method annotations. All methods in FIGJ are readonly, thus as-
signment must be done from the “outside”, i.e., instead of calling
a setter method we must set the field from the outside (all fields
are considered public in FGJ). We removed the AssignsFields im-
mutability; FIGJ has a single constructor that assigns its arguments
to the object’s fields. Finally, we restrict each class in FIGJ to have
a single immutability parameter which extends ReadOnly, i.e., FIGJ
cannot express manifest classes such as String.

Sec. 5.1 describes the syntax of FIGJ. Sec. 5.2 presents the FIGJ
subtype relation. Sec. 5.3 modifies FGJ typing and reduction rules.
Sec. 5.4 proves preservation and progress.

5.1 Featherweight IGJ Syntax
FIGJ adds imperative extensions to FGJ such as assignment to

fields, object locations, and a store [26]. Fig. 10 presents the syntax
of FIGJ. It defines types (T), non-variable types (N), immutability
arguments (J), class declarations (L), method declarations (M), and
expressions (e). Expressions in FIGJ include the five expressions
in FGJ (method parameter, field access, method invocation, new
instance creation, and cast), as well as the imperative extensions
(field update and locations). Note that an immutability argument
(J) only appears in the syntax as the first type argument. Thus, the
syntax does not allow defining a field of type ReadOnly nor defining
a class with two type parameters extending ReadOnly. The root of
the class hierarchy is Object<X / ReadOnly>.

The store S = {l 7→ N(l)} maps locations to objects. Note
that we do not need a store typing [26] because the store already
contains the type of each location. For a simpler notation, we use
a single symbol ∆ to denote an environment that maps (i) method
parameters to their types, and (ii) type parameters to their bounds
(which are non-variable types): ∆ = {x : T} ∪ {X ¹ N}.

The field, method type, and method body lookup functions, are
based on their counterparts in FGJ, and thus omitted from this pa-
per. We define an additional auxiliary function that returns the im-
mutability argument I∆(C<J, T>) = J, and for a type parameter re-
turns the immutability argument of its bound I∆(X) = I∆(∆(X)).
We remove the subscript ∆ when it is clear from the context.

We make the same assumptions as in FGJ about the correctness
of the class declarations (e.g., that there are no circles in the sub-
class relation, that we have no method overloading, etc). We also
use the same judgements as in FGJ, such as type, store, expressions,
method and class wellformedness, with minor differences (e.g., in-
stead of Object, we use Object<I>).
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Fig. 11 defines which type parameters are no-variant. We use
two auxiliary functions: (i) TP(T) is the set of type parameters in
T, (ii) subterm(N) is the set of all subterms of types in fields(N). (We
do not need to consider the superclass as in the NOVARIANT RULE

because fields includes all the fields of the superclass as well.)
After NoVariant reaches a fixed point, we define CoVariant as the

negation of NoVariant. In order for the class declarations to be well-
formed, the immutability parameter must always be covariant (see
COVARIANT RULE): CoVariant(X1, C<X>) for any class C.

FIGJ is more strict than FGJ regarding method overriding when
the signature contains covariant type parameters, i.e., FIGJ requires
that the erased signature of an overriding method (excluding no-
variant type parameters) does not change (see ERASED-SIGNATURE

RULE).

5.2 Subtyping
Fig. 12 shows FIGJ subtyping rules. The first four rules are the

same as FGJ rules. Additionally, two special classes — Mutable

and Immutable— are considered a separate class hierarchy extend-
ing ReadOnly. The rule S1 is a formalization of Def. 2.1. We
write T ¹ T

′ as a shorthand for ∆ ` T ¹ T
′. Observe that the

subtype relation is reflexive and transitive. Note that from rule S1
and the COVARIANT RULE we have that

if I ¹ I
′, then C<I, T> ¹ C<I

′, T>.
Observe in rule S1 that the requirement Immutable ¹ T

′
1 is equiv-

alent to T
′
1 6= Mutable and T

′
1 6= I, because an immutability argu-

ment can have only four values according to the syntax rule for J

in Fig. 10.
In FGJ, if A ¹ B and f is a field of B, then the type of field f

in A and B is exactly the same, i.e., A.f = B.f. In FIGJ, we prove
instead that A.f ¹ B.f. For instance, consider the field edges on
line 11 of Fig. 4, and the following two references:

Graph<Mutable> mutG;

Graph<ReadOnly> roG;

// mutG.edges has the type List<Mutable,Edge<Mutable>>

// roG.edges has the type List<ReadOnly,Edge<ReadOnly>>

And indeed the first is a subtype of the latter.
LEMMA 5.1. Let T ¹ T

′, F′ f ∈ fields(T′). Then F f ∈ fields(T)
and F ¹ F

′.

PROOF. It is trivial to prove that field f exists in fields(T). We
will prove that F ¹ F

′ by induction on the derivation of T ¹ T
′.

Consider the last rule in the derivation sequence. The proof for the
first six rules is immediate from the definition of fields and the fact
that subtyping is transitive.

Now consider rule S1, where T = C<U>, and T
′ = C<U′>:

Ui = U
′
i or

(Immutable ¹ U
′
1 and Ui ¹ U

′
i and CoVariant(Xi, C<X>))

(2)

Let V denote the type of field f in C<X>. Then, F = [U/X]V and F
′ =

[U′/X]V. We wish to prove that F ¹ F
′.

We will prove by induction (on the subterm size) that for every
subterm A<S> in V,

[U/X]A<S> ¹ [U′/X]A<S>. (3)

From (3), we will be able to conclude that [U/X]V ¹ [U′/X]V, i.e., F ¹
F
′. In order to apply rule S1 on (3), we need to prove that for all j:

[U/X]Sj = [U′/X]Sj or
`
Immutable ¹ [U′/X]S1 and

[U/X]Sj ¹ [U′/X]Sj and CoVariant(Yj , A<Y>)
´ (4)

Let j be fixed. If for all i, Xi 6∈ TP(Sj) or Ui = U
′
i, then [U/X]Sj =

[U′/X]Sj , and we proved (4) for this j. Thus, exists i for which hold

. . . ∆, S ` e : T I(T) = Mutable

∆, S ` e.fi = e
′ : T′

(T-FIELD-SET)

Figure 13: Typing Rules (only T-FIELD-SET was modified).

S[l] = N(l) I(N) = Mutable

fields(N) = T f S
′ = S[l 7→ [l′/li]N(l)]

l.fi = l
′, S→ l

′, S′
(R-FIELD-SET)

Figure 14: Reduction Rules (only R-FIELD-SET was modified).

both Ui 6= U
′
i and

Xi ∈ TP(Sj). (5)

From (2) and Ui 6= U
′
i, we have that

Immutable ¹ U
′
1 and CoVariant(Xi, C<X>). (6)

If NoVariant(Yj , A<Y>), according to rule MC2 in Fig. 11 and (5), we
have NoVariant(Xi, C<X>), which contradicts (6). Thus,

CoVariant(Yj , A<Y>). (7)

We consider all 4 options for the immutability argument S1 to prove

Immutable ¹ [U′/X]S1. (8)

If S1 = ReadOnly or S1 = Immutable, then (8) holds. If S1 =
Mutable, then according to rule MC1 in Fig. 11 and (5), we have
NoVariant(Xi, C<X>), which contradicts (6). If S1 = I = X1, then
[U′/X]S1 = U

′
1, and from (6) we proved (8).

If Sj is some type parameter Xk, then

[U/X]Sj ¹ [U′/X]Sj , (9)

because from (2) we have Uk ¹ U
′
k. If Sj is a non-variable type, then

from the induction hypothesis, we also have (9). Using, (7), (8),
and (9), we proved (4) for this j.

In a legal assignment e1.f = e2, where e1 : T, we have that I(T) =
Mutable. Lem. 5.2 proves that in all subtypes T

′ ¹ T, the field f

does not change covariantly.

LEMMA 5.2. Let ∆ ` T ¹ T
′, F′ f ∈ fields(bound∆(T′)), F f ∈

fields(bound∆(T)), and I(T′) = Mutable. Then F = F
′.

PROOF. By induction on the derivation of ∆ ` T ¹ T
′, similarly

to Lemma A.2.8 in [20]. Because I(T′) = Mutable, whenever rule
S1 is applied, it can never be that ∆ ` Immutable ¹ T

′
1, thus we

need to consider the same set of subtyping rules as in FGJ.

5.3 FIGJ Typing and Reduction Rules
Fig. 13 and Fig. 14 present FIGJ typing and reduction rules. Rule

T-FIELD-SET checks at “compile-time” that only a mutable expres-
sion can set a field, whereas R-FIELD-SET checks at “run-time” that
only fields of a mutable object can be set. Note that only objects
have an immutability at run-time, not locations.

5.4 FIGJ Type Soundness
Type preservation states that if an expression reduces to another

expression, then the latter is always a subtype of the former.

THEOREM 5.3. (Type Preservation) If ∆, S ` e : T and e, S→
e
′, S′, then ∃T′ such that ∆ ` T

′ ¹ T and ∆, S′ ` e
′ : T′.

PROOF. By induction on the derivation of e, S → e
′, S′, simi-

larly to the proof of Theorem 3.4.1 in [20], which uses Lemma A.2.8
on page 436 for the case of a field access. Lemma A.2.8 states that
the type of a field does not change in a subclass, but the proof is still
valid if the type of a field changes covariantly, as we have proven
in Lem. 5.1. Our proof also needs to consider field assignment in
R-FIELD-SET, for which we use Lem. 5.2 which showed that fields
that are assigned are no-variant.
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∆ ` T1 ¹ T2 ∆ ` T2 ¹ T3

∆ ` T1 ¹ T3 ∆ ` X ¹ ∆(X)
class C<X / N> / N { . . .}

∆ ` C<T> ¹ [T/X]N

∆ ` T ¹ T ∆ ` Mutable ¹ ReadOnly ∆ ` Immutable ¹ ReadOnly

∀Ti ∈ T : Ti = T
′
i or (∆ ` Immutable ¹ T

′
1 and ∆ ` Ti ¹ T

′
i and CoVariant(Xi, C<X>))

∆ ` C<T> ¹ C<T′>
(S1)

Figure 12: FIGJ Subtyping Rules.

The progress theorem shows that FIGJ programs don’t get “stuck”
and any closed well-typed FIGJ expression can be reduced to some
location or contains a failed downcast.

THEOREM 5.4. (Progress) Suppose e is a closed well-typed ex-
pression. Then, either e is a location, or it contains a failed down-
cast, or there is an applicable reduction rule for e.

PROOF. Using a case by case analysis of all possible expression
types in Fig. 13. The only change from the proof in FGJ is the use
of T-FIELD-SET to prove that I(l) = Mutable in R-FIELD-SET, and thus
we never get stuck due to that rule.

Thm. 5.5 is a formalization of property (1) from Sec. 2.4.

THEOREM 5.5. Let ∆, S ` e : T, and e, S→∗
l, S′, where S′[l] =

N(l). Then ∆ ` I(N) ¹ I(T).
PROOF. From Thm. 5.3, ∆ ` N ¹ T. Thus ∆ ` I(N) ¹

I(T).

6. Conclusion
This paper presented Immutability Generic Java (IGJ), a design

for adding reference and object immutability on top of the existing
generic mechanism in Java. IGJ satisfies the design principles in
Sec. 1: transitivity, static, polymorphism, and simplicity. IGJ pro-
vides transitive immutability to protect the entire abstract state, but
a user can exclude fields from the abstract state. IGJ is purely static,
backward compatible, and the resulting code can run on any JVM
without runtime penalty. IGJ achieves a high degree of polymor-
phism using generics and safe covariant subtyping. Finally, IGJ
does not change Java’s syntax, and has a small number of typing
rules.
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