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Abstract. Most graphical user interface (GUI) libraries forbid accessing Ul ele-
ments from threads other than the UI event loop thread. Violating this requirement
leads to a program crash or an inconsistent UL. Unfortunately, such errors are all
too common in GUI programs.

We present a polymorphic type and effect system that prevents non-UI threads from
accessing Ul objects or invoking Ul-thread-only methods. The type system still
permits non-UI threads to hold and pass references to Ul objects. We implemented
this type system for Java and annotated 8 Java programs (over 140KLOC) for the
type system, including several of the most popular Eclipse plugins. We confirmed
bugs found by unsound prior work, found an additional bug and code smells, and
demonstrated that the annotation burden is low.

We also describe code patterns our effect system handles less gracefully or not
at all, which we believe offers lessons for those applying other effect systems to
existing code.

1 Introduction

Graphical user interfaces (GUIs) were one of the original motivations for object-oriented
programming [1]], and their success has made them prevalent in modern applications.
However, they are an underappreciated source of bugs. A Google search for “SWT invalid
thread access” — the exception produced when a developer violates multithreading
assumptions of the SWT GUI framework — produces over 150,000 results, including
bug reports and forum posts from confused developers and users. These bugs are user-
visible, and programs cannot recover from them. Typically, they terminate program
execution. Furthermore, these bugs require non-local reasoning to locate and fix, and
can require enough effort that some such bugs persist for years before being fixed [2].
Because these bugs are common, severe, and difficult to diagnose, it is worthwhile to
create specialized program analyses to find errors in GUI framework clients.

A typical user interface library (such as Java’s Swing, SWT, and AWT toolkits, as
well as toolkits for other languages) uses one UI thread running a polling event loop to
handle input events. The library assumes that all updates to Ul elements run on the Ul
thread. Any long-running operation on this thread would prevent the Ul from responding
to user input, and for this reason the Ul library includes methods for running tasks on
background threads. A background thread runs independently from the UI thread, and
therefore it does not block Ul interactions, but it is also restricted in its interactions with
the Ul The Ul library also provides mechanisms for background threads to update Ul
elements, primarily by executing a closure on the UI thread, synchronously or asyn-
chronously. For SWT, these correspond to the static methods syncExec and asyncExec



respectively, in the Display class. Each accepts a Runnable instance whose run ()
method will be executed (synchronously or asynchronously) on the UI thread. For exam-
ple, a method to update the text of a label from a background thread might look like this:

private final JLabel mylabel;

public void updateText (final String str) {
Display.syncExec (new Runnable {
public void run() { mylabel.setText (str); }
1

The separation between the UI and background threads gives several advantages to
the UI library implementor:

— Forced atomicity specifications: background threads must interact with the Ul only
indirectly through the closure-passing mechanism, which implicitly specifies Ul
transactions. Because all UI updates occur on one thread, each transaction executes
atomically with respect to other UI updates.

— Minimal synchronization: Assuming clients of the Ul library never access Ul objects
directly, no synchronization is necessary within the UI library when the UI thread
accesses Ul elements. The only required synchronization in the UI library is on the
shared queue where background threads enqueue tasks to run on the UI thread.

— Simple dynamic enforcement: Any library method that is intended to run only on
the UI thread can contain an assertion that the current thread is the UI thread.

These advantages for the library implementor become sources of confusion and
mistakes for client developers. Each method may be intended to run on the UI thread
(and may therefore access Ul elements) or may be intended to run on another, back-
ground, thread (and therefore must not access Ul elements). Client developers must
know at all times which thread(s) a given block of code might execute on. In cases
where a given type or routine may be used sometimes for background thread work and
sometimes for UI work, maintaining this distinction becomes even more difficult. There
are alternative designs for GUI frameworks that alleviate some of this confusion, but
they are undesirable for other reasons explained in Section

The key insight of our work is that a simple type-and-effect system can be applied
to clients of UI frameworks to detect all Ul thread-access errors statically. There is a
one-time burden of indicating which UI framework methods can be called only on the
UI thread, but this burden is tractable. Annotations in client code are kept small thanks
to a judicious use of default annotations and simple effect polymorphism.

We present a sound static polymorphic effect system for verifying the absence of
(and as a byproduct, finding) UI thread access errors. Specifically, we:

— Present a concise formal model of our effect system, Ay, . (Section

— Describe an implementation Javay for the Java programming language, including
effect-polymorphic types, that requires no source modifications to UI libraries or
clients beyond Java annotations for type qualifiers and effects. (Section [3)

— Evaluate Javay, by annotating 8 UI programs and Eclipse plugins totalling over
140KLOC. Our experiments confirm bugs found by unsound previous work [2], find



an additional bug, and verify the absence of such bugs in several large programs.
(Section )

— Identify coding and design patterns that cause problems for our effect system and
probably for other effect systems as well, and discuss possible solutions. (Section

4.4)

Our experience identifying Ul errors in large existing code bases is likely to prove
useful for designing other program analyses that may have nothing to do with UI code.
Applying a static type-and-effect system to a large existing code base requires a design
that balances expressiveness with low annotation burden. In particular, we found that
while effect polymorphism was important, only a limited form (one type-level variable
per class) is needed to verify almost all code. However, some programming idioms that
do occur in practice are likely to remain beyond the reach of existing static analyses.
Overall, we believe our work can pave the way for practical static analyses that enforce
heretofore unchecked usage requirements of modern object-oriented frameworks.

Javay and our annotated subject programs are publicly available at:

http://github.com/csgordon/javaui

2 Core Language A

The basis for our Java type system is Ay, a formal model for a multithreaded lambda
calculus with a distinguished UI thread. Figure[T] gives the syntax and static semantics
for the core language. The language includes two constructs for running an expression
on another thread: spawn{e} spawns a new non-UI thread that executes the expression
e, while asyncUl{e} enqueues e to be run (eventually) on the UI thread. There are also
two kinds of references: refq,fe € creates a standard reference, while ref,; e creates a
reference that may be dereferenced only on the UI thread. Other constructs are mostly
standard (dereference, application, function abstraction, assignment, natural numbers,
and a unit element) though the lambda construct includes not only an argument and body,
but an effect bound & on the body’s behavior.

Effects & include ui for the effect of an expression that must run on the UI thread,
and safe for the effect of an expression that may execute on any thread. Types include
natural numbers, unit, the standard effectful function type, and reference types with an
additional parameter describing the effect of dereferencing that reference.

Figurealso gives the static typing rules for Ay, . The form I'F e : T;& can be read
as: given a type environment I, the expression e evaluates to a value of type T, causing
effects at most &. Most of the rules are fairly standard modulo the distinctions between
spawn{e} and asyncUl{e} and between refs e and ref,; e. The rules also assume a least-
upper-bound operator on effects (L) for combining multiple effects, and the rules include
T-SUBEFF for permitting safe bodies in ui functions. Richer subtyping/subeffecting, for
example full subtyping on function types, would be straightforward to add.

The operational semantics in Figure[2)are mostly standard, with the exception that the
distinguished UI thread has a FIFO queue of expressions to execute. After reducing its
current expression to a value it dequeues the next expression if available. The expression
reduction relation is labeled with the effect of a given action, and the background threads
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Fig. 1. Ay syntax for terms and types, and monomorphic type and effect system.

get “stuck” if the next reduction would have the Ul effect Typing for runtime program
states is given in Figure[3]

The type system in Figure [T]is sound with respect to the semantics we define in

Figure [2] (using the runtime and state typing from Figure [3) and is expressive enough
to demonstrate soundness of the effect-related subtyping in the source language Javay;.

Aui

models the ability to statically confine actions to a distinguished thread. Effect-

polymorphism is not modeled, but mostly orthogonal: it would require a handful of
additional checks at polymorphic instantiation, and an extended subeffecting relation
(safe C polyui C ui). Full proofs via syntactic type soundness [3]] are available in our
technical report [4]. We state the additional notation, judgments, and main lemmas here:

¥ for standard-style heap type.

Y + H for typing the heap H.

YT e: 1;& as the expression typing judgment extended for heap typing.

H,e —¢ H '.¢’, O for small-step expression reduction. The effect & is the runtime-
observed effect of the reduction; e.g., dereferencing a ui reference has the runtime
effect ui. O is an optional effect-expression pair for reductions that spawn new
threads; the effect indicates whether a new background thread is spawned or a new
UI task is enqueued for the UI thread.

(X,7,,7) for machine typing: the heap type, a vector of expression types for the UI
thread’s pending (and single active) expressions, and a vector of expression types
for background threads. The maximal effects for each expression are implicit; they
depend on which thread the expression is for: UI expressions may type with effect
ui, while background threads must type with the effect safe).

(H ,e,,e) for machine states: heap, pending Ul expressions, and background threads,
as with machine state typing.

(X,7,,7) F (H,e,,e) for typing a machine state.

! This requires labeling heap cells with the effect of dereferencing the cell. These labels are used

only for proving soundness and need not exist in an implementation.
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Fig. 2. Ay runtime expression syntax and operational semantics.

- (H,e,,e) — (H',él,,¢') as machine reduction, nondeterministically selecting either
the first UI expression or an arbitrary background thread expression to reduce with
the heap.

We prove soundness using syntactic type soundness [3]]. First, we prove single-threaded
type soundness. Contingent on that result, we prove soundness for all threads: all
operations with the UI effect execute on the UI thread.

Lemma 1 (Expression Progress). If L - H and ;T + e : T;& then either e is a value,
or there exists some H', ¢, and O such that H,e —¢ H',¢', O.

Lemma 2 (Expression Preservation). If L;T'Fe: 1,6, X+ H and H, e —¢ H e, 0,
then there exists ¥ D X such that Y = H', ¥;T k€ : ;€ and if O = (" ,&') then there
also exists T, such that T;T = e" : 1,5 €.

Corollary 1 (Expression Type Soundness). If X;T' e : 1€ and 2+ H, then e is a
value or there exists ¥ D X, €', H', and O such thatY' - H', and H,e — H',¢', O, and
Y;Tke ;€ and if O = (e",&) then there exists T, such that ¥';0 + €" : 1,; €.

Lemma 3 (Machine Progress). If (£,7,,T) b (H,e,,e) for non-empty e,, then either
e, =v: | ande =0 or there exists H' e, ,e such that (H,e,,e) — (H' /&, ,¢).
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Fig. 3. Ay program and runtime typing, beyond extending the source typing with the additional X.

Lemma 4 (Machine Preservation). If (X,7,,T) - (H,e,,e) and (H,e,,e) — (H',&, &),
then there exists X', T, T such that ¥’ O ¥ and (X',7, 7)) - (H' e, &)

Corollary 2 (Machine Type Soundness). If (£,7,,T) - (H,e,,e) for non-empty ey,
then either e, = v :: || and € = 0 or there exists ¥/ H'\T, e,/ T ;¢ such that ¥’ DO ¥ and
(X' %/ Ty (H' e/ e)and (H e, e) — (H e, e).

3 Javay: Extending Ay to Java

Javay, soundly prevents inappropriate access to Ul objects by background threads.
Javay, extends Java with type qualifier annotations and method effect annotations to
indicate which code should run on the Ul thread and which code should not directly
access Ul objects. From the Java developer’s perspective, Javay prevents invalid thread
access errors, which occur when a background thread calls UI-only methods (such as
JLabel.setText ()) that may only be called from the UI thread. Javay, handles the full
Java language, including sound handling of inheritance and effect-polymorphic types. A
major design goal for Javay, was to avoid changes to Ul library code. Specifically, we
did not modify the implementation or underlying Java type signature of any library.
We implemented our qualifier and effect system on top of the Checker Frame-
work [5l6]], which is a framework for implementing Java 8 type annotation processors,
providing support for, among other things, AST and type manipulation, and specifying
library annotations separately from compiled libraries themselves. The Javay, syntax is
expressed via Java 8’s type annotations. Type annotations are propagated to bytecode,
but have no runtime effect, thus maintaining binary API compatibility between Javay,
and Java code (developers use the real Ul libraries, not one-off versions coupled to
Javay). The implementation consists of two main components: a core checker for the
effect system, and a sizable annotation of some standard Java Ul framework libraries.

3.1 Javay Basics

There are two method annotations that indicate whether or not code may access Ul
objects (call methods on UI objects):

— @UIEffect annotates a method that may call methods of UI objects (directly or
indirectly), and must therefore run on the UI thread.



Role [Annotation HTarget [Purpose

@SafeEffect ||Method |Marks a method as safe to run on any thread
(default)

@UIEffect Method [Marks a method as callable only on the UI
Effects thread

@PolyUlEffect||Method |Marks a method whose effect is polymorphic
over the receiver type’s effect parameter
@UIType Type Decl.|Changes the default method effect for a type’s
methods to @UIEffect

@UlPackage ||Package |Changes the default method effect for all meth-
Defaults ods in a package to @UIEffect

@SafeType ||Type Decl.|Changes the default method effect for a
type’s methods to @SafeEffect (useful inside a
@UIPackage package)

@PolyUIType ||Type Decl.|Marks an effect-polymorphic type (which takes
exactly one effect parameter)

@Safe Type Use |Instantiates an effect-polymorphic type with
the @SafeEffect effect (also used for monomor-
phic types, considered subtypes of @Safe
Object)

@Uul Type Use |(Instantiates an effect-polymorphic type with
the @UIEffect effect

@PolyUl Type Use |Instantiates an effect-polymorphic type with
the @PolyUIEffect effect (the effect parameter
of the enclosing type)

Polymorphism

Instantiating
Polymorphism

Table 1. Javay annotations.

— @SafeEffect annotates a method that does not call methods of UI objects, and may
therefore run on any thread.

@UIEffect corresponds to A,; from the Ay core language: it annotates a method as
having a (potentially) Ul-effectful body. Similarly, @SafeEffect corresponds to Agate.

The other annotations in Table[T]are all about changing the default effect (@UIType,
@SafeType, @UIPackage) or handling polymorphism (@PolyUIEffect, @PolyUl, @Safe,
@Ul, @PolyUlIType).

A @SafeEffect method (the default) is not permitted to call @UIEffect methods. Only
@UIEffect methods (which have the UI effect) are permitted to call other @UIEffect
methods. With few exceptions (e.g., syncExec (), which background threads may call
to enqueue an action to run on the Ul thread), methods of Ul elements are annotated
@UIEffect, and that is how improper calls to Ul methods are prevented:

public @SafeEffect void doSomething(JLabel 1) {
l.setText(...); ERROR: setText () has the UI effect
}

The other method effect annotation @UIEffect annotates a method as able to call all
@UIEffect methods, and only other methods with the UI effect may call it.



public QUIEffect void doSomethingUI (JLabel 1) {
l.setText(...); // OK: setText () and this method have UI eff

o

}

public @SafeEffect void doSomethingSafe (JLabel 1) {
doSomethingUI (1) ; ERROR: doSomethingUI () has the UI effect

}

The safe effect @SafeEffect is a subeffect of the Ul effect @UIEffect. So a @SafeEffect
method may override a @UIEffect method, but a @UIEffect method cannot override a
@SafeEffect method:

public class Super { public @SafeEffect void doSomethingSafe(){ ... }}
public class Sub extends Super {
public QUIEffect void doSomethingSafe(){ ... }}
" ERROR: invalid effect override

Controlling Defaults Especially for subclasses of Ul elements, it could be tedious to
write @UIEffect on every method of a class. Three additional annotations locally change
the default method effect:

— @UIType: A class (or interface) declaration annotation that makes all methods of
that class, including constructors, default to the UI effect.

— @UIPackage: A package annotation that makes all types in that package behave
as if they were annotated @UIType. Subpackages must be separately annotated;
@UIPackage is not recursive.

— @SafeType: Like @UIType, but changes the default to @SafeEffect (useful inside
@UlPackage packages).

In all three cases, individual methods may be annotated @SafeEffect or @UIEffect .
This is how we have annotated SWT, Swing, and JFace: we annotated each package
@UIPackage, then annotated the few safe methods (such as repaint ()) as @SafeEffect.

3.2 Effect-Polymorphic Types

A single class may be used sometimes for Ul-effectful work, and other times for work
safe to run on any thread. @SafeEffect and @UIEffect do not handle this common use
case. In particular, consider Java’s java.lang.Runnable interface:

public interface Runnable {
void run();

}

The Runnable interface is used to encapsulate both code that must run on the UI thread
(which is passed to the syncExec () and asyncExec () methods in UI libraries), and
also code that should not run on the UI thread, such as the code passed to various general
dispatch queues, including thread pools.

Javay, provides three type qualifiers [SI67]], each corresponding to instantiating an
effect-polymorphic type with a specific effect:



— @Safe: A qualifier to instantiate a type with the @SafeEffect effect.

— @UI: A qualifier to instantiate a type with the @UIEffect effect.

— @PolyUl: A qualifier to instantiate a type with the @PolyUIEffect effect (when used
inside an effect-polymorphic class).

as well as a type declaration annotation @PolyUIType that annotates a class or interface
as effect—polymorphicE]
The final declaration for the Runnable interface is:

@PolyUIType public interface Runnable {
@PolyUIEffect void run();
}

This declares Runnable as being a class polymorphic over one effect, and the effect of
the run () method is that effect. Our type system implicitly adds a receiver qualifier of
@PolyUl so the body can be checked for any instantiation.

Given an instance of a Runnable, the effect of calling the run () method depends on
the qualifier of the Runnable. For example:

@Safe Runnable s = ...;

s.run(); has the safe effect
@UI Runnable u = ...;

u.run(); // has the UI effect
@PolyUI Runnable p = ...;

p.run(); has a polymorphic effect

Assuming the last line appears inside an effect-polymorphic type, its effect will be
whatever effect the type is instantiated with. Note that the @Safe annotation on s is not
necessary: the default qualifier for any type use is @Safe if none is explicitly written.
Since most code does not interact with the UI, this means that most code requires no
explicit annotations.

Effect-Monomorphic Subtypes of Effect-Polymorphic Supertypes Deriving a con-
crete subtype from an effect-polymorphic supertype is as simple as writing the appropri-
ate qualifier on the supertype:

public class SafeRunnable implements @Safe Runnable ({
@SafeEffect void run() {
/ any effect other than safe causes a type error here
}
}

Again, note that @SafeEffect is the default effect for unannotated methods, so the use of
@SafeEffect here is not strictly necessary. Inside the body of run (), this will have type
@Safe SafeRunnable. In this case, the @Safe could be omitted from the implements
clause due to defaults, but a class that implements @U| Runnable would require the
explicit qualifier.

2 Javay uses different annotations for monomorphic effects (@SafeEffect) and for instantiating
polymorphic effects (@Safe) because of a parsing ambiguity in Java 8 where method annotations
and return type annotations occupy the same source locations.



It is also possible to derive from a polymorphic type without instantiating, by simply
declaring a polymorphic type that derives from a polymorphic instantiation of the
supertype:

@PolyUIType public interface StoppableRunnable implements @PolyUI Runnable {

@PolyUIEffect void run();

@PolyUIEffect void stop();

}

Concrete or abstract classes may be effect-polymorphic. The body of an effect-polymorphic
method is limited to calling safe methods and other methods with their same effect (e.g.,
other effect-polymorphic methods of the same instance, which will have the same effect
as the executing method).

It is not permitted to derive a polymorphic type from a non-polymorphic type (see
Section [3.4]for why). Therefore, Object is declared as effect-polymorphic.

Qualifier Subtyping and Subeffecting In addition to nominal subtyping (e.g., @Safe
SafeRunnable above is a subtype of @Safe Runnable), Javay also permits qualifier
subtyping, which reflects effect subtyping (“subeffecting”’). For example, it may be
useful to pass a @Safe Runnable where a @UI Runnable is expected: any run ()
implementation with the safe effect is certainly safe to execute where a Ul effect is
allowed. Similarly, a @Safe Runnable can be passed in place of a @PolyUl Runnable,
which can be passed in place of a @UI Runnable since both subtyping relations are
sound for any instantiation of @PolyUl.

Anonymous Inner Classes Many programs use anonymous inner classes to pass “clo-
sures” to be run on the Ul thread. Qualifiers can be written on the type name. Thus code
such as the following is valid (type-correct) Javay code:

asyncExec (new @UI Runnable() { public @UIEffect void run(){/* UI stuff */}});

If an effect-monomorphic supertype declares @UIEffect methods, no annotation is needed
on the anonymous inner class, and all overriding methods default to the effect declared
in the parent type, without additional annotation.

3.3 Annotating UI Libraries

To update UI elements, non-UI code uses special methods provided by the UI library
that run code on the Ul thread: the Java equivalent of Ay’s asyncUI{e} construct. Real
Ul libraries have both synchronous and asynchronous versions:

— For Swing, these special functions are methods of javax.swing.SwingUtilities:
e static void invokeAndWait (Runnable doRun);
e static void invokeLater (Runnable doRun);
— For SWT, these special functions are methods of the class
org.eclipse.swt.widgets.Display:
e static void syncExec (Runnable runnable);
e static void asyncExec (Runnable runnable);



Other UI libraries have analogous functionality. We annotated each of these library
methods as @SafeEffect (safe to call on any thread) and accepting a @UI instance of the
Runnable interface (allowing Ul-effectful code in the Runnable). This is comparable
to Ayi’s T-ASYNCUTI in Figure[1} Our library annotations use the Checker Framework’s
stub file support [6.5] for stating trusted annotations for code in pre-compiled JAR files.
We did not check the internals of GUI libraries, which would require dependent effects
(Section[3.4).

3.4 Limitations

There are a few theoretical limits to this effect system. In our evaluation (Section E]),
these did not cause problems.

One Effect Parameter Per Type Javay, cannot describe the moral equivalent of

class TwoEffectParams<El extends Effect, E2 extends Effect> {
@HasEffect (E1) public void ml() { ... }
@HasEffect (E2) public void m2() { ... }

}

In our evaluation on over 140,000 lines of code (Section , this was never an issue.
We found that effect-polymorphic types are typically limited to interfaces that are used
essentially as closures. They are used for either safe code or Ul code, rarely a mix. This
restriction also gives us the benefit of allowing very simple qualifier annotations for
instantiated effect-polymorphic types. Supporting multiple parameters would require a
variable-arity qualifier for instantiating effects, and introduce naming of effect parameters.
(We have found one instance of a static method requiring multiple effect parameters:
BusyIndicator.showWhile (), discussed in Section[d.4])

Polymorphic Types May not Extend Monomorphic Types Javay, does not permit, for
example, declaring a subtype PolyUIRunnable of UIRunnable that takes an effect
parameter, because it further complicates subtyping. It is possible in theory to sup-
port this, but we have not found it necessary. To do so, effect instantiations of the
effect-polymorphic subclass would instantiate only the new polymorphic methods of
the subclass (polymorphic methods inherited from further up the hierarchy and instan-
tiated by a monomorphic supertype may not be incompatibly overridden). Subtyping
would then become more complex, as the qualifier of a reference could alternate almost
arbitrarily during subtyping depending on the path through the subtype hierarchy.

Splitting the class hierarchy Because an effect-polymorphic type may not inherit from
a monomorphic type, this forces the inheritance hierarchy into three partitions: @UI
types, @Safe types, and @PolyUl types (Object is declared as @PolyUl, making the
root of the type hierarchy @UI Object). All may freely reference each other, but it does
impose some restrictions on code reuse. This was not an issue in our evaluation. Some
classes implement multiple interfaces that each dictate methods with different effects
(e.g., a listener for a Ul event and a listener for background events, each handler having
a different effect; Eclipse’s UIJob interface has methods of both effects), but we found
no types implementing multiple polymorphic interfaces using different instantiations.



No effect-polymorphic field types We do not allow effect-polymorphic (@PolyUl) fields.
This avoids reference subtyping problems. Solutions exist (e.g., variance annotations [8]])
but we have not found them necessary. Note however that we do inherit Java’s un-
soundness from covariant array subtyping, though we encountered no arrays of any
effect-polymorphic types (or any @UI elements) during evaluation.

Cannot check Ul library internals The effect system currently is not powerful enough to
check the internals of a Ul library, mainly because it lacks the dependent effects required
to reason about the different effects in separate branches of dynamic thread checks. This
means for example the effect system cannot verify the internals of safe Ul methods like
repaint (), which are typically implemented with code like:

if (runningOnUIThread()) { /*direct UI access*/ } else { /*use syncExec()*

3.5 Alternatives

There are four possible approaches to handling Ul threading errors: unchecked exceptions
(the approach used by most GUI libraries), a sound static type and effect system, a
Java checked exception (a special case of effect systems), and making every Ul method
internally call syncExec () if called from a background thread. The unchecked exception
is undesirable for reasons described in the introduction: the resulting bugs are difficult to
diagnose and fix. We propose a sound static type system independent from Java checked
exceptions, and most of this paper explores that option. This section focuses on the two
remaining options, and why our approach is different from existing concurrency analyses.

Why not make the thread access exceptions checked? Java’s checked exceptions are
another sound static effect system that could prevent these bugs. But there are reasons to
use a separate effect system rather than simply making the thread access error exception
a checked (rather than the current unchecked) exception:

— Polymorphism: Certain types, such as Runnable, are used for both UI thread code
and non-UI code — such types are polymorphic over an effect. Java does not support
types that are polymorphic over whether or not exceptions are thrown. We aim to
minimize changes to existing code and to avoid code duplication.

— Reducing annotation burden: For common source code structures, such as putting
most Ul code in a separate package, a programmer can switch the default effect
for whole types or packages at a time. Java provides no way to indicate that all
methods in a type or package throw a certain checked exception. Javay, provides
such shorthands.

— Backwards Compatibility: New checked exceptions breaks compilation for existing
code. This is also the reason we do not leverage Java’s generics support for our
effect-polymorphic types.

— Catching such exceptions would almost always be a bug.



Why not have every Ul method automatically use syncExec () if run on a background
thread? This solution masks atomicity errors on Ul elements. A background thread may
call multiple UI methods — for example, to update a label and title bar together. Different
background threads could interleave non-deterministically in this approach, creating
inconsistencies in the user interface. Additionally, these atomicity bugs would hurt
performance by increasing contention on the shared queue of messages from background
threads due to the increased thread communication.

Why not use an existing concurrency analysis? Our effect system is different from
prior type and effect systems for concurrency. Our goal is to constrain some actions to
a specific distinguished thread, which is not a traditionally-studied concurrency safety
property (as opposed to data races, deadlocks, and atomicity or ordering violations).
In particular, this effect system permits most concurrency errors! This is by design,
because preventing better-known concurrency errors is neither necessary nor sufficient
to eliminate UI thread access errors, and allows the effect system design to focus on
the exact error of interest. Data races on model structures are not UI errors. Because Ul
libraries dictate no synchronization other than the use of syncExec () and asyncExec ()
(and equivalents in other frameworks), deadlocks are not Ul errors. It is also possible for
a program to have a Ul error without having any traditional concurrency bugs. Javay,
only guarantees the Ul library’s assumption that all UI widget updates run uninterrupted
(by other UTI updates) in the same thread. In general, other static or dynamic concurrency
analyses would complement Javay,’s benefits, but the systems would not interact.

4 Evaluation

We evaluated the effectiveness of our design on 8 programs with substantial user interface
components (Table[2). 4 of these programs were evaluated in prior work [2]. The others
were the first 4 Ul-heavy Eclipse plugins we could get to compile out of the 50 most-
installecﬂ (as of May 2012).

We wrote trusted annotations for major user interface libraries (Swing, SWT, and
an SWT extension called JFace), annotated the programs, and categorized the resulting
type-checking warnings. Where false warnings were issued due to the type system being
conservative, we describe whether there are natural extensions to the type system that
could handle those use cases.

4.1 Annotation Approach

Trusted Library Annotations We conservatively annotated the UI libraries used by
subject programs before annotating the programs themselves. Swing contains 1714
classes, SWT contains 708 classes, and JFace 537 classes. We erred on the side of giving
too many methods the Ul effect, and we adjusted our annotations later if we found them
to be overly conservative. We intermingled revisions to library annotations with subject
program annotation, guided by the compiler warnings (type errors). We examined the

3 http://marketplace.eclipse.org/metrics/installs/last30days



Program | LOC[UILOC | Classes | Methods

EclipseRunner 3101 3101 48 354
HudsonEclipse 11077 | 11077 74 649
S3dropbox 2353 1732 42 224
SudokuSolver 3555 3555 10 62
Eclipse Color Theme || 1513 1193 48 215
LogViewer 5627 5627 117 644
JVMMonitor 31147 | 17657 517 2766
Subclipse 83481 | 53907 539 4480

Table 2. Subject programs. Pre-annotation LOC are calculated by sloccount [9]]. Ul LOC is the
LOC for the main top-level package containing most of the application’s UI code; other parts
of a project may have received some annotation (for example, one method in a model might be
executed asynchronously to trigger a Ul update), and some projects were not well-separated at the
package level.

documentation, and in some cases the source, for every library method that caused a
warning. When appropriate, we annotated library methods as @SafeEffect, annotated
polymorphic types and effects for some interfaces, and changed some UI methods to
accept @UI instantiations of effect-polymorphic types. The annotated library surface is
quite large: we annotated 160 library packages as @UIPackage, as well as specifying
non-default effects for several dozen classes (8 effect-polymorphic).

Our results are sound up to the correctness of our library annotations and the type
checker itself. We can only claim the UI framework annotations to be as accurate as our
reading of documentation and source. A few dozen times we annotated “getter” methods
that returned a field value as safe when it was not perfectly clear they were intended as
safe. There are three primary sources of potential unsoundness in library annotations:

1. Incorrectly annotating a method that does perform some UI effect as safe.

2. Incorrectly annotating a method that requires a safe variant of a polymorphic type
as accepting a Ul variant.

3. Incorrectly annotating a callback method invoked by a library as @UIEffect .

To mitigate the first source, we began the process by annotating every Ul-related package
and subpackage we could find as @UIPackage. Javay mitigates the second by the fact
that unspecified polymorphic variants default to safe variants. We addressed the third
by reading the documentation on the several ways the UI frameworks start background
threads, and annotating the relevant classes correctly early on.

Annotating Subject Programs To annotate each subject program, we worked through
the files with the most warnings first. We frequently annotated a class @UIType if most
methods in the class produced warnings; otherwise we annotated individual methods
with warnings @UIEffect . For files with fewer warnings, we determined by manual code
inspection and perusing Ul library documentation whether some methods came from an
interface with Ul-effectful methods, annotating them @UIEffect if needed.

In an effort to make the final warning count more closely match the number of
possible conceptual mistakes, when the body of a method that must be safe (due to



its use or inheritance) contained one basic block calling multiple @UIEffect methods
(e.g. myJLabel.setText (myJLabel.getText ()+"...")), we annotated the method
body @UIEffect, taking 1 warning over possibly multiple warnings about parts of the
method body. We believe this makes the final warning counts correspond better to
conceptual errors. Multiple UI method calls in a safe context likely reflects 1 missing
asyncExec () (a developer misunderstanding the calling context for a method) or 1
misunderstanding on our part of the contexts in which a method is called, not multiple
bugs or misunderstandings. If multiple separated (different control flow paths) basic
blocks called @UIEffect methods, we left the method annotation as @SafeEffect.

We made no effort during annotation to optimize annotation counts (the counts we
do have may include annotations that could be removed). We simply worked through the
projects as any developer might.

We identified several patterns in library uses that cause imprecision; we discuss those
in Section 4.4

Distinguishing warnings that correspond to program bugs, incorrect (or inadequate)
annotations, tool bugs, or false positives requires understanding two things: the semantics
of Javay,’s effect system, and the intended threading design of the program (which code
runs on which thread). The user has detected a program bug or a bad annotation when
JavaUI indicates that the program annotations are not consistent with the actual program
behavior. Finding the root cause may require the user to map the warning to a call
path from a safe method to a UI method. This is similar to other context- and flow-
sensitive static analyses, and when the user does not understand the program, iteratively
running JavaUI can help. The user can recognize a false positive by understanding
what is expressible in JavaUI. A reasonable rule of thumb is that if a warning could be
suppressed by conditioning an effect by a value or method call whose result depends on
the thread it runs on, it is likely a false positive. The user can recognize a tool bug in the
same way, by understanding JavaUI’s simple rules.

4.2 Study Results: Bugs and Annotations

Annotating these projects taught us a lot about interesting idioms adopted at scale, and
about the limitations of our current effect system. The annotation results appear in Table
B} including the final warning counts and classifications, and Table[d] gives the number of
each annotation used for each project. The first four projects each took under an hourﬁ]
to annotate, by the process described in Section[d.1] Eclipse Color Theme took only 8
minutes to annotate, and required only 4 annotations. The effort required for these five
projects was low even though we had never seen the code before starting annotation. The
other projects (LogViewer, JVMMonitor, and Subclipse) were substantially larger and
more complex, and they required substantially more effort to annotate.

Overall we found all known bugs in the subject programs (only the first four were
known to have UI threading related errors [2]), plus one new UI threading defect, and
one defect in unreachable (dead) code.

4 We lack precise timing information because each annotation was interleaved with fixing Javay,
implementation bugs.



Zhang etal. [2] | Defects

[Program [[Warnings[Defects[[Time to Annotate[Warnings|UI[Other [False Pos.[Other]|
EclipseRunner 6 1 <lhr 1 11 0 0 0
HudsonEclipse 3 3* <lhr 13¥* 131 0 2 0
S3dropbox 1 1 <lhr 2 21 0 0 0
SudokuSolver 2 2 <lhr 2 21 0 0 0
Eclipse Color Theme 0 0 8m 0 o 0 0 0
LogViewer 0 0 3h50m 1 0o 0 1 0
JVMMonitor 7 0 6h45m 9 0| O 9 0
Subclipse 24 0 17h20m 19 0o 1 13 5

Table 3. Javay) warnings (type errors). Javay, finds all bugs found by Zhang’s technique [2]],
plus one additional bug. The table indicates UI threading defects, non-exploitable code defects
found because of annotation, definite false positives, and a separate category for other reports,
which includes reports we could not definitively label as defects or false positives, as well as
other warnings such as poor interactions between plugins’ Java 1.4-style code and the 1.7-based
compiler and JDK we used.

*Zhang et al. report 1 bug, but its repair requires adding syncExec () in 3 locations, so we consider it 3 bugs.
** Javay found the same 3 bugs as Zhang et al.’s GUI Error Detector, each with 3—4 warnings due to compound statements.

Program @UIPackage |@UIType | @SafeType | @UIEffect| @SafeEffect| @UI| @Safe || Anno/KLOC
EclipseRunner 0 26 0 2 5 0| 0 10.6
HudsonEclipse 0 17 0 9 4 141 0 3.9
S3dropbox 0 30 0 4 2 141 0 21.2
SudokuSolver 0 2 0 18 1 9] 0 8.4
Eclipse Color Theme 0 1 0 3 0 0| 0 2.6
LogViewer 0 53 0 5 23 15 1 17.2
JVMMonitor 0 129 0 12 47 29| 0 6.9
Subclipse 17 126 60 102 128 138] 0 6.8

Table 4. Annotation statistics for the 8 subject programs. @PolyUlEffect, @PolyUIType, and
@PolyUl were not used in the subject programs themselves — only in annotating the UI libraries.

Table E]includes the error counts for Zhang et al.’s unsound GUI Error Detector [2]
when run on the same program versions. We found all bugs they identified, as well as
1 new bug in S3dropbox. The S3dropbox developer has confirmed the bug, though he
does not plan to fix it because it does not crash the program (Swing does not check the
current thread in every Ul method, allowing some races on Ul objects). If a user drops a
file using drag-and-drop onto the UI, the interface sometimes forks a background thread
that then calls back into UI code. GUI Error Detector misses this bug because of an
unsoundness in WALA [10]], which GUI Error Detector uses for call graph extraction.
For scalability, by default WALA does not analyze certain libraries, including Swing.
GUI Error Detector uses WALA'’s default settings, so the drag-and-drop handler appears
(to the tool) to be unreachable. Call graph construction precision is also a bottleneck for
GUI Error Detector on large programs: Subclipse analysis required a less precise control
flow analysis to finish (0-CFA, others used 1-CFA).

The dead code defect we found was a Ul-effectful implementation of a safe interface
in Subclipse. The type with the invalid override was never used at that interface type
(removing the implements clause fixes the warning) and the method was never called.
We consider this a defect, though it is not exploitable.



In Table 3] the number of final warnings exceeding the number of bugs found does
not necessarily indicate false positives: our type system issues a warning for every type-
incorrect expression that could correspond to a thread access error. So a single line with
a composite Ul expression (e.g., a Ul method call with UI expressions as arguments) in a
non-UI context would (correctly) produce multiple compiler warnings. Each subexpres-
sion may have an individual work-around that does not require adding an (a)syncExec ().
We consider a warning to be a false positive only if the target expression’s execution in
context would not improperly access Ul elements from a non-UI thread.

Our sound type and effect system found no new Ul threading errors in the larger
projects, but found several bugs in the smaller projects. There are good reasons to expect
this result. First, the first four projects were previously evaluated by Zhang et al. [2], so
we knew we should find bugs in those projects (Zhang selected several of those subjects
by finding SWT threading errors in bug databases). For the larger projects, we simply
took the most recent release version of each Eclipse plugin. Second, the larger Eclipse
plugins are all mature, heavily used projects, making it quite likely that any UI bugs
would be found and fixed quickly (each has at least 3,000 installs total; Subclipse was
installed 23,855 times between 11/19 and 12/19 2012 alone). We believe Javay, would
have more benefits when used from the beginning of a project, and the relative prevalence
of Ul errors in the younger projects compared to the mature projects supports this theory.

After annotating these programs, we searched all four projects’ issue trackers for
threading-related issues. There were several bug reports for data races between models
and views, and issues with several Ul methods that behave differently on the UI thread
than on other threads; the latter are not uncommon, because many JFace methods return
one result (often null) on non-UI threads, but a different result on the UI thread. The
latter could have been caught by our type system with custom library annotations for
those methods.

The one report we found of a Ul threading error [[11]] is triggered when a background
thread calls into a native method, which then calls back into Ul-effectful Java code. The
call occurs as a result of a logic error in Subversion itself, and the bug was marked
“WONTFIX” (the fix was a patch to Subversion). With a proper annotation on the native
methods, our effect system would have issued a warning.

Non-annotation Changes We made minor changes to the code beyond simply adding
effect-related annotations (and the required import statements) for two reasons: when
naming an anonymous inner class as a new subtype would fix effect (type) errors, and
when converting Java 1.4-style code to use generics would remove warnings. The Action
interface is generally used as a closure for @UIEffect work, but HudsonEclipse in one case
made an anonymous inner class whose run () method was safe, stored it as an Action
(whose run () is @UIEffect), and called the run () of the safe subclass explicitly in
several safe contexts. Rather than making Action (and several supertypes) polymorphic,
which seems to contradict the suggested uses in the documentation, we declared a
subclass of Action that overrode run () as @SafeEffect, and stored the anonymous inner
class as an instance of that (removing 3 warnings). In JVMMonitor, Java 1.4-style (no
generics) use of Java Beans interacted poorly with the Checker Framework’s promotion
of an argument of type Class to Class<? extends @Safe Object>, which was passed
as an argument to a Java Bean method accepting a Class<@Safe Object>. We added



Client code listener (callback) implementations:

class SafePropertyChangelistener extends PropertyChangelistener() {
public void propertyChange (PropertyChangeEvent event) {
if (event.getProperty().equals("stuff")) {
do @SafeEffect stuff
11}
class UIPropertyChangelListener extends PropertyChangelistener() ({
public void propertyChange (PropertyChangeEvent event) {
if (event.getProperty().equals("uistuff")) {
// Call QUIEffect me

nods directly

11}

On Ul thread:

store.addPropertyChangelistener (new UIPropertyChangelListener());
On a background thread:

store.addPropertyChangelistener (new BackgroundPropertyChangelistener());
Next line executes UIPropertyChangelListener’s UI callback on BG thread

store.setValue ("stuff", true);

Fig. 4. JFace global property store issues. Assume store is any expression that accesses a shared
static JFace PreferenceStore; in Eclipse plugins, there is one such store initialized for every
plugin. Listeners for property changes are registered with both possible effects, but all handlers
will run on any thread that updates any property, making UI thread errors possible. As long as
specific properties that actually cause @UIEffect methods to be called (in this case, uistuff) are
only updated from the UI thread, no errors will occur, but this pattern is fragile.

a generic method parameter T and changed the argument to Class<T>, removing one
warning. In Subclipse, we converted 3 Vector fields to Vector<String>, due to a
similar problem with Vector. copyInto, removing 3 warnings.

We allowed these changes because they were minor, and because we expect they
would be natural changes for a project interested in using our effect system to verify
the absence of Ul threading errors. Most of the remaining false positives could be fixed
with more engineering work (e.g. splitting interfaces, splitting callback registration into
safe and Ul-effectful, etc.) but we judged such changes to be too invasive to give a clear
picture of developer effort, and restricted ourselves to only these small changes.

4.3 False Positives and Other Reports

Our evaluation produced 30 false positives in over 140,000 lines of code (0.2 per 1000
lines of code). We consider this an acceptable false positive rate. The false positives fall
into 5 general categories, including limitations of our type system and what we consider
to be poor designs in the Ul libraries and client programs.

Registering Callbacks of Both Effects Four of the projects shared a common source of
false positives: HudsonEclipse (1 false positive), LogViewer (1), JVMMonitor (5), and



Subclipse (1) each suffered imprecision from JFace’s global property store. The plugin
code adds a Ul-effectful property change listener (a @UI instantiation of a polymorphic
interface) to JFace’s global property store. Listeners will fire on any thread that sets a
property, so in general the listeners must be safe. However, in some projects all calls to
setting properties are performed from within the UI thread, making this not a bug. A
potential solution for this class of false positives is to change the library annotations for
JFace’s preference store to permit @UI handlers, and to annotate the property setters
@UIEffect in a project-specific library annotation file used to override the global file. (The
global file would follow documentation as much as possible.) In other cases, particular
properties are only updated from the UI thread, and the Ul-effectful handlers are guarded
by condition checks that only pass for those UI properties, as in Figure

JVMMonitor created its own specific instance of this same problem: the other 4 of
its false positives are from a property store it creates for CPU model changes, where
some properties are only updated from UI code, and the handlers have UI effects but
run only for specific properties. We feel this property store design is faulty, which we
elaborate on in Section .4l

Subtyping Limitations 5 other false positives (1 in HudsonEclipse and 4 in Subclipse)
are from a weakness in our subtyping relation. HudsonEclipse’s subtyping false positive
occurs because a @UI instantiation of a polymorphic type is not a subtype of @Safe
Object. The subtyping false positives in Subclipse are from a combination of that
with the requirement that generic parameters are subtypes of the default Object variant:
the code uses a Java 1.4 style list, but List<T> is implicitly List<T extends @Safe
Object> which makes some types unusable as type parameters. These uses would be
enabled by making the upper bound on List (and Iterator) @UI Object, but doing
so would force many additional annotations where an object was pulled out of a list or
iterator as (implicitly safe) Object, so we opted for the lower annotation burden. This
would not be an issue in properly generic code.

Interface Abuse One false positive in Subclipse is an instance of interface abuse:
subclassing a definitively safe supertype using @UIEffect overrides, then calling the
@UIEffect overrides directly, only from UI contexts. We could have fixed this type error
by making the entire hierarchy of the abusing class’s superclasses effect-polymorphic
(from documentation one superclass is clearly intended as safe), or by introducing a new
type and copying code from parent classes (which is poor design for its own reasons).

Lack of Dependent Types/Effects Subclipse had 7 additional definite false positives, most
of which would require dependent effects (as in dependent types; an effect determined
by a runtime result) to handle:

- 3 warnings resulting from lack of dependent effects (see Section4.5).

— 3 warnings that were subject to some type of dynamic thread check, and would
therefore have executed only on the UI thread

— 1 instance where our type system could not express the proper effect (it would
require a combination of dependent effects with multiple method effect parameters
and explicit least-upper-bound-of-parameters effects)



Other Reports The remaining 5 Subclipse reports are about unsafe effects, but we cannot
determine whether or not the application is using a safe interface as polymorphic (at a
@UI variant) or if the JFace interface, documented as unrelated to interfaces or threads,
should actually just allow UI effects.

4.4 Sources of Difficulty

Weak Documentation The main source of difficulty in annotating all of our subject
programs was understanding the design of the Ul libraries, with respect to which methods
must only be called in the UI thread, or were polymorphic. Once we understood the
design, adding library annotations was easy. Remarkably, none of the UI libraries clearly
and consistently documents the thread safety of all Ul methods. Javay,’s annotations are
precise documentation, and are machine-checkable for client code.

AWT and Swing’s documentation was concise and unambiguous: all methods except
invokeAndWait and invokeLater must be called only from the UI thread. SWT claims
the same about syncExec () and asyncExec (). Confusingly, there are some exceptions
to this rule in SWT (classes Color, Font, and Image).

The prevailing wisdom about JFace is that most of JFace assumes it is running on
the UI thread. But clients call much of JFace directly from non-UI threads, and the JFace
documentation rarely specifies thread assumptions. Clients often interpret the lack of doc-
umentation as license to call: there are many methods of UI elements that documentation
suggests are intended to be called only from the UI thread, but happen to be safe (such as
getter methods) and are therefore often called by clients from contexts that must be safe.

Problematic Idioms There are several idioms that cause problems for our type system.
Most could be handled with richer polymorphism or dependent effects, but we believe
most of these idioms are poor design. Rewriting the offending code is a better option,
and Javay,’s type system encourages this better design.

The most common source of false positives was JFace’s global property store design.
JFace often shares global property sets among all threads, and listeners can be registered
for a callback in the event of a property changing. These listener callbacks will be
executed on whichever thread updates a property, thus all properties callbacks should
be @SafeEffect. However, some programs register @UIEffect callbacks, but avoid issues
by updating the global property store (for any property) only from the UI thread, or
updating the properties with Ul-effectful handlers only from the UI thread. Two of these
safe approaches can be handled using custom library annotations for individual projects:
either callbacks can have the UI effect and properties may only be updated from the
Ul thread, or callbacks must be safe and the properties may be updated by any thread.
The related case as seen with the CPU model change listeners in JVMMonitor could
be handled with some dependent effects, annotating the listener update code with the
properties whose handlers may have Ul effects, and allowing updates to those properties
only from UI contexts. The shared property store design appears to us to be a very
error-prone design; we would prefer separate property stores or listener registrations for
handlers that run on or off the UI thread.

Another problematic idiom, seen only in Subclipse, is code that dynamically checks
which thread it is executing on, and optionally redirects a closure to the UI thread



if necessary. Our design does not support these dynamic checks, which are typically
found only inside Ul libraries themselves. In Subclipse, SWT’s Display.getCurrent ()
is used; it returns null when executed off the UI thread, and otherwise returns a
valid Display object. The same method also sets a local boolean indicating whether
Display.getCurrent () returned null, so handling this code is not a simple matter of
specializing to a particular if-then-else construct.

An idiom responsible for both a number of false reports and for a number of
workarounds in our library annotations is to make ad-hoc polymorphic instances of
a particular type. By this we mean creating a subtype with a Ul-effectful override of a
safe method, storing the reference at the (safe) supertype, but only allowing said values to
flow to and be used in UI contexts. This frequently occurred with a JDK or Eclipse inter-
face that appeared from documentation to be intended as safe, but some part of JFace or
a custom design by a plugin developer co-opted it and treated it as an effect-polymorphic
type. Similarly, developers sometimes implement a totally safe subclass of a Ul-effectful
supertype (often as an anonymous inner class), store references as the supertype, and
call methods of said class in safe contexts (only allowing safe subtype instances to flow
to those call sites). Checking these uses in general would effectively require allowing
every type to take a separate effect parameter for each method. In our evaluation, we
typically annotated such classes as effect-polymorphic, annotated each method of those
classes as @PolyUl|Effect, and added UI instances to the subject programs as necessaryE]
This generally sufficed for UI variants of safe supertypes, unless the problematic class
would then inherit from multiple polymorphic types, which our system does not handle.
The latter case (safe variants of a Ul interface) could be worked around by explicitly
introducing a named subtype that declares a safe override, and storing references as the
safe subtype (which we did once for HudsonEclipse). We speculate that these designs
arise from the designers of the relevant class hierarchies and interfaces not considering
the option of using type hierarchies to separate code that must run on the UI thread
from code that may run anywhere (including hijacking otherwise safe interfaces). The
type hierarchy splitting that fits these cases into our effect system generally seems less
error-prone even without our strict effect system checking, because such splitting already
introduces some type-based barriers to confusing the calling context of Ul code.

A class of idioms that definitely indicates shortcomings of our current effect system
is methods requiring qualifier-dependent method effects: effects that depend on the
qualifier of one or more effect-polymorphic arguments. There are also some methods
whose proper types require a much richer type system. A good example of this is
org.eclipse.swt.custom.BusyIndicator.showWhile (), whose effect depends on:

— The variant of Runnable it receives (@UIl or @Safe),
— The calling context (@UIEffect or @SafeEffect), and
— Whether the Display it receives is null

This method calls the passed Runnable on the current thread, displaying a busy cursor
on the passed Display if any, and no busy information otherwise. Because it is often used
for Ul-effectful work, we annotated it @UIEffect, taking a @UI Runnable. A better, but
still conservative type would be

5 This is always sound: each instantiation is treated soundly, and @Safe instances may flow into
variables for @UI instances.



@PolyUIEffect
public static void showWhile (Display display, @PolyUI Runnable runnable);

Our type system cannot check calls to this presently because there is no receiver qualifier
to tie to the effect at the call site. Checking the method internals would require richer
types, including effect refinements based on the Display.

4.5 Potential Type System Extensions

Our experiences revealed several ways our type system could be extended to verify more
client code.

First, what would be simple polymorphism in the most natural core calculus to
write for the polymorphic effect systerrﬁ becomes lightweight dependent effects in
the implementation. This happens in cases where a method takes a Runnable of some
instantiation and runs it in the current thread. The example we encountered in our
evaluation is the showWhile () method from the previous section, a good signature for
which would be

@EffectFromQualOf ("runnable")
public static void showWhile (Display display, @PolyUI Runnable runnable);

The effect of this runner call will be whatever the effect of the Runnable’s run () method
is. If we could use the same annotation for both qualifiers and method effects, simply
specifying the polymorphic qualifier would be sufficient, and the Checker Framework’s
existing support for polymorphism would handle this. Unfortunately, Java 8’s type
annotation syntax leaves parsing ambiguities: if @UI applied to both types and methods,
there would be no way to disambiguate a use as a method effect annotation from a use as
a method return type annotation. Thus we must use different annotations. So to support
this type of qualifier-dependent effect, we would need lightweight dependent effects,
simply due to limitations of Java’s grammar.

A need for dependent effects comes from a pattern seen in Subclipse, where methods
either take a boolean argument (ProgressMonitorDialog.run () and
Activator.showErrorDialog()) or call a related method (Action.canRunAsJob ())
indicating whether or not to fork another thread to execute a Runnable (otherwise the
effect of the runner is polymorphic as in the previous example). If the fork flag is true,
the provided Runnable must be a @Safe Runnable. So for example, the effect of the
main work method for the Action class should be (informally):

@EffectIfTrueElse (this.canRunAsJob (), @SafekEffect,QUIEffect)
indicating that the method must be safe if the method is required to run as a Job (a
background thread task), and otherwise will run on the UI thread. Checking this then
requires executing the canRunAsJob () method during type-checking, and ensuring that
this computation is independent of subtyping (that the canRunAsJob () implementation
is final when used). Other utility methods take a flag with opposite polarity, but the
required type system extension would be the same.

6 Recall that Ay is effect-monomorphic.



5 Related Work

The most similar work to ours is an open source tool, CheckThreadE] It is a Java
compiler plugin that aims to catch arbitrary concurrency bugs, and includes a @Thread-
Confined ("threadName") annotation similar to our @UIEffect, but supporting arbi-
trary thread confinement rather than being limited to one distinguished thread. It appears
to be an effect system, but the authors never describe it as such in the documentation
or code. They allow applying various annotations to whole types as a shorthand for ap-
plying an annotation to all methods on a type (similar to our @SafeType and @UIType).
However, their system does not support polymorphism, and it is not clear from its
documentation if it treats inheritance soundly (from source inspection, it appears not).

Another piece of closely related work is Zhang et al.’s GUI Error Detector [2], which
searches for the same errors as our type and effect system via a control flow analysis. Es-
sentially they extract a static call graph of a program from bytecode, and find any call path
that begins in non-UI code and reaches a UI method without being “interrupted” by a call
to syncExec () or asyncExec (). The false positive rate from the naive approach is too
high, so they couple this with several heuristics (some unsound, potentially removing cor-
rect warnings) to reduce the number of warnings. On four examples from their evaluation,
we find all of the bugs they located, plus one more (Section[4.2). They also annotated 19
subject program methods in their evaluation as trusted safe when they performed dynamic
thread checks; at least 3 of our false positives would disappear if we suppressed warnings
in such methods. Another interesting result of our work is empirical confirmation of the
GUI Error Detector’s unsound heuristics for filtering reports. GUI Error Detector found
most of the bugs our sound approach identified, and the missed bug was due to WALA’s
defaults for scalable call-graph generation, not due to unsound heuristics. Some idioms,
like the global property store design, cause false positives for both techniques.

Our approach has several advantages over Zhang et al.’s approach. Most notably, our
technique is sound, while their heuristics may filter out true reports. Our type and effect
system is also modular and incremental (we naturally support separate compilation and
development) and can reason soundly about code (for example, subclasses) that may not
exist yet. The GUI Error Detector on the other hand must have access to all JAR files
that would be used by the running application in order to gather a complete call graph,
and must rerun its analysis from scratch on new versions. If JARs are unavailable, its
unsoundness increases. For performance reasons, their underlying call graph extraction
tool (WALA [10]) skips some well-known large libraries — including Swing, meaning
that GUI Error Detector misses all callbacks from Swing library code into application
code. This results in additional unsoundness, and is the reason GUI Error Detector did
not find the drag-and-drop bug in S3Dropbox. Our support for polymorphism is also
important: 14 of GUI Error Detector’s 24 false positives on Subclipse were because
Zhang et al.’s technique does not treat the Runnable interface effect-polymorphically.

Our system does have several disadvantages compared to Zhang et al.’s. Our type
and effect system requires manual code annotation, requiring many hours for some large
projects (though this effort is only required once, with only incremental changes to
annotations as the program evolves). Because GUI Error Detector runs on Java bytecode,

7 http://checkthread.org/



it is possible to run the GUI Error Detector on binaries for which source is unavailable,
without writing a trusted stub file. It is also possible (though untested) that their approach
can handle other JVM languages (such as Scala or Clojure) or multi-language programs.
Our type system produces only localized reports; Zhang et al. examine the whole call
graph, so a warning’s report includes a full potentially-erroneous call sequence. When
annotating the sample programs in our evaluation, much of our time was spent manually
reconstructing this information.

Sutherland and Scherlis proposed the technique of thread coloring [12], which is
in some ways a generalization of our UI effect. They permit declaration of arbitrary
thread roles and enforcing that methods for certain roles execute only on the thread(s)
holding those roles. They use a complex combination of abstract interpretation, type
inference, and call-graph reconstruction to reduce annotation burden; the one subject
they specify annotation burden for is lower than ours, but they do not provide annotation
counts for other subjects. They do not describe their false positive rates. They do annotate
AWT and Swing applications successfully; we found AWT and Swing had relatively
consistent policies, and expect they would have had more difficulty with Eclipse’s SWT
and JFace libraries, which were the source of many of our false positives. Like Zhang et
al.’s technique, Sutherland’s implementation lacks role (effect) polymorphism, which
results in an unspecified number of false positives in their evaluation.

There is a long line of work on effect systems, ranging from basic designs [13] to
abstract effect systems designed for flexible instantiation [[14/15]. Rytz et al. [15]] propose
an effect-polymorphic function type for reasoning about effects, where for functions
of type T = T» the effect of invoking it is the join of the concrete effect e with the
effect of the argument 77, implying that the function may call 77 (if the argument is
itself a function). This is similar to what we would need to support qualifier-dependent
effects (e.g., showihile in Section {.5). Other effect systems are designed to reason
about more general safe concurrency properties [[16417]], but we are the first to build a
polymorphic effect system for the issue of safe UI updates. Another approach would
be to encapsulate UI actions within a monad, since every effect system gives rise to
a monad [[18]. Functional languages such as Haskell use monads to encapsulate many
effects, and in fact some Haskell UI libraries use a Ul monad to package UI updates safely
(e.g., Phooey [19]]). Another use of monads in functional languages is to support software
transactional memory [20121], including a strong separation between data accessed inside
or outside a transaction. Viewing the closures run on the Ul thread as Ul transactions,
our type system enforces a weakly atomic [22] form of transactions, where Ul elements
are guaranteed to be transaction-only but non-UI elements have no atomicity guarantees.

6 Conclusion

In almost every Ul framework, it is an error for a background thread to directly access Ul
elements. This error is pervasive and severe in practice. We have developed an approach
— a type and effect system — for preventing these errors that is both theoretically sound
and practical for real-world use. We have proven soundness for a core calculus Ay;. Our
implementation, Javay, is both precise and effective: in 8 projects totalling over 140,000



LOC, Javay found all known bugs with only 30 spurious warnings, for a modest effort
of 7.4 annotations per 1000 LOC on average.

We have identified error-prone coding idioms that are common in practice and ex-
plained how to avoid them. We also identified application patterns that Javay cannot type
check that will probably be issues for other effect systems applied to existing code: ad-
hoc effect polymorphism, value-dependent effects, and data structures mixing callbacks
with different effects. These idioms suggest improvements to existing code (such as segre-
gating callbacks with different known effects) and profitable extensions to effect systems.
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