
Checking Conformance 
against GUI Policies
Zhen Zhang (UW), Yu Feng (UCSB), Michael D. Ernst (UW),

Sebastian Porst (Google), Isil Dillig (UT Austin)

Virtually Presented at ESEC/FSE 2021



2

Motivations



Motivations: What can be wrong with GUI in Apps?
In this work, we focus on the following types of problems:

Ad Policy Violations

Design Guideline Violations

GDPR Regulation Violations

3



Ad Policy Violations
● Ad Platforms (e.g. AdMob) publish Ad 

Policies.
● Violations can harm advertisers and 

users.

https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf

4

https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf


Ad Policy Violations
Ad Policy examples:

● The size ratio between the ad and the screen is 
required to be greater than a minimum 
threshold.

● Full-screen ads should not overlap with other 
buttons.

● Ads should not be placed adjacent to a button.
● ….

5



Ad Policy Violations
● Ad Platforms publish Ad Policies.
● Violations can harm advertisers and 

users.
● Problem is novel & severe
● Detection is hard

https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf

More than 50% of potentially harmful apps in 
Google Play were click fraud (a major type of ad 
policy violation)

6

Why: “Ad” is an abstract concept 
implemented with GUI elements

https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf


Design Guideline Violations
● App UI might violate the best practices, degrading UX (User Experiences)
● Examples:

○ Material Design
○ iOS Human Interface Guidelines

●

1. K. Moran, B. Li, C. Bernal-Ca ́rdenas, D. Jelf, and D. Poshyvanyk, “Automated reporting of GUI design violations for mobile apps,” in Proceedings of the 40th International 
Conference on Software Engineering, 2018 7



8

Example 2: Don't attach a bottom app bar to 
the top of the keyboard.
https://material.io/components/app-bars-botto
m#behavior 

Example 1: It is discouraged to put more than 
one FABs (Float Action Button) on the same 
screen. 
https://material.io/components/buttons-floating-a
ction-button#usage

https://material.io/components/app-bars-bottom#behavior
https://material.io/components/app-bars-bottom#behavior
https://material.io/components/buttons-floating-action-button#usage
https://material.io/components/buttons-floating-action-button#usage


Design Guideline Violations
● App UI might violate the best practices, degrading UX (User Experiences)
● Examples:

○ Material Design
○ iOS Human Interface Guidelines

● Related work: Automated reporting of GUI design violations for mobile apps (K. 
Moran et al., ICSE 2018)

● Our work: first static checking against formal specifications

K. Moran, B. Li, C. Bernal-Ca ́rdenas, D. Jelf, and D. Poshyvanyk, “Automated reporting of GUI design violations for mobile apps,” in Proceedings of the 40th International Conference on Software Engineering, 2018
9



General Data Protection Regulation (GDPR)
● Applications that display personalized ads 

should get user consent when they are 
started. (Android GDPR compliance guide1)

● Personal data be processed lawfully, fairly 
and in a transparent manner (Article 5.1 of 
GDPR).

○ One concrete violation: La Liga “spy mode”2.

1. https://developers.google.com/admob/android/eu-consent
2. https://techcrunch.com/2019/06/12/laliga-fined-280k-for-soccer-apps-privacy-violating-spy-mode

10

https://developers.google.com/admob/android/eu-consent
https://techcrunch.com/2019/06/12/laliga-fined-280k-for-soccer-apps-privacy-violating-spy-mode


Background: Android GUI in a Nutshell
Next up: How are these violations implemented?

Ad Policy Violations

Design Guideline Violations

GDPR Regulation Violations

11



● GUI is central to mobile applications.
● Each app has many “Window”s 

(Activity/Dialog).
● Each “Window” has its lifecycles.
● One “Window” might transit to another 

“Window”.

Background: Android GUI in a Nutshell

12



Background: Android GUI in a Nutshell
● GUI is central to mobile applications.
● Each app has many “Window”s 

(Activity/Dialog).
● Each “Window” has its lifecycles.
● One “Window” might transit to another 

“Window”.
● Each window has a hierarchy of view 

nodes
a. Declared in XML, or
b. Constructed imperatively in code

13



Background: Android GUI in a Nutshell

14

● GUI is central to mobile applications.
● Each app has many “Window”s 

(Activity/Dialog).
● Each “Window” has its lifecycles.
● One “Window” might transit to another 

“Window”.
● Each window has a hierarchy of view 

nodes
○ Declared in XML
○ Constructed imperatively

● View nodes might be registered with 
event handlers, e.g. onClick



Background: Android GUI in a Nutshell

● For attacker: ability to create a wide 
variety of apps with GUI for harmful or 
fraudulent intentions

● For developer: possible to create GUIs 
with design defects which degrades 
user experience

15

Powerful & Flexible but



Where we are now..

Background & Motivation

Example GUI Policy for AdFraud Detection

Specification language: Vesper Representation: ELF (Event-driven Layout Forest)

Venus: Checking Conformance against GUI Policies

Evaluation and Results 16



Example GUI Policy for AdFraud Detection

17



Example GUI Policy for AdFraud Detection

bg is a background 
view associated some 

other view.

bg’s attributes indicates 
its transparency.

When bg is clicked, 
it will lead to ads.

Policy: Transparent background should not be clickable (and leads to unwanted 
contents, typically ads).

18
https://support.google.com/admanager/answer/7031536?hl=en

https://support.google.com/admanager/answer/7031536?hl=en


Recap: Challenges of Checking GUI Problems

19

Android GUI is powerful and flexible
Challenge #1: Reason about the 

semantics of GUI API, control flow, 
data-flow ...

No existing repository of clear and 
formal policies for Android GUI

Challenge #2: Detection and 
analysis is ad-hoc, manual and not 

scalable



Contributions
● Vesper: a formal specification language for describing GUI policies
● Event-driven Layout Forest (ELF): a program abstraction and a static 

analysis technique for generating this abstraction
● Venus1: the first tool for statically checking conformance between Android 

apps and GUI specifications
● Evaluated on 3 datasets (2361 Android applications) with 17 formalized 

policies, significant improvement compared to VirusTotal and FraudDroid

1. Open Source Code: https://github.com/izgzhen/ui-checker
20

https://github.com/izgzhen/ui-checker


Next...

Case Study: a Real World Violation Example

21

Background & Motivation

Specification language: Vesper Representation: ELF (Event-driven Layout Forest)

Venus: Checking Conformance against GUI Policies

Evaluation and Results



GUI Policies Collection

Google Play Ads Policy

AdMob Help

GDPR Regulation

Material Design Policies

Collect 49 Informal Policies Vagueness 
Check

24 Clear Policies

Vasper-
expressible

22



GUI Policies Formalization - Vesper language

Built-in predicate examples:

● Dialog(v): v is a dialog view
● contains(u, v): u contains v as a 

sub-view
● showWindow(u, e, v): Event e on u 

results immediately in display of 
element v

23



Event-driven Layout Forest (ELF)

● Node: GUI Element (Window, View, etc.)
● Edge: spatial (solid) / behavioral (dashed)

○ Event: click, touch etc.
24



Next...

Case Study: a Real World Violation Example

25

Specification language: Vesper Representation: ELF (Event-driven Layout Forest)

Venus: Checking Conformance against GUI Policies

Evaluation and Results

Background & Motivation



Venus: Checking Conformance against GUI Policies
● Core static analysis

○ XML Resource Analysis
○ Inter-procedural Data-flow Analysis
○ ELF generation

● Implementation
○ Built on top of Soot 1 framework and its 

SPARK framework for points-to analysis
○ Leverage IC3 tool 2 for Inter-Component 

Communication Analysis
○ Soufflé 3 for datalog solving

1. https://github.com/soot-oss/soot
2. https://github.com/siis/ic3
3. https://souffle-lang.github.io/

Why static analysis? (1) Cheaper: GUI 
interactions can lead to explosive number 
of concrete states (2) Higher Coverage: 
Malicious code can depend on dynamic 
triggers which is hard to satisfy.

26

https://github.com/soot-oss/soot
https://github.com/siis/ic3
https://souffle-lang.github.io/


Evaluation: Datasets

Dataset Name Description

Google Play We collected 1488 popular applications that were
available on the Google Play Store in Jan 2019.

GPP Applications flagged as potential malware by Google’s internal tools 
and manually audited by Google security analysts (2019)

AdFraudBench Benchmark collected in the FraudDroid paper (2018) 1

1. Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F. Bissyandé, Tianming Liu, Guoai Xu, and Jacques Klein. 2018. FraudDroid: automated ad fraud detection for Android apps. In 
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018).

27



Evaluation: Venus Summary

Dataset # apps # violating apps # violations Recall Precision Avg. time (s)

Google Play 1488 711 1645 N/A 89.2% 465.3

GPP 773 243 391 86.8% 94.7% 464.7

AdFraudBench 100 54 90 91.2% 96.3% 302.1

All 2361 1008 2126 N/A 91.3% 458.2

28



Dataset # apps # violating apps # violations Recall Precision Avg. time (s)

Google Play 1488 711 1645 N/A 89.2% 465.3

GPP 773 243 391 86.8% 94.7% 464.7

AdFraudBench 100 54 90 91.2% 96.3% 302.1

All 2361 1008 2126 N/A 91.3% 458.2

Evaluation: Venus Summary
About ½ the time is spent on pre-analysis, 
and the other ½ for ELF analysis. Datalog 
solving cost is negligible.

29



Results I: Google Play Dataset
● Identified 11 APKs with previously unknown Ad Policy violations

○ e.g. Ads should not be placed in a location that covers up or hides any area that users have 
interest in viewing during typical interaction.

● Identified 24 APKs with Design Guidelines violations
○ e.g. Smallest recommended main text font size in Material design is 10sp.

● Identified 16 APKs with GDPR violations
○ e.g. Access personal information without displaying a consent form

30



Results II: GPP Dataset
● Compared to VirusTotal 1

○ 2.7x improvement in precision
○ 12.8x improvement in recall

● Source of errors
○ False negatives: foreign binary code
○ False positives: imprecision in pointer analysis

1. https://www.virustotal.com/: a service that aggregates many commercial antivirus/scanning engines
31

https://www.virustotal.com/


Results III: AdFraudBench Dataset

1. Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F. Bissyandé, Tianming Liu, Guoai Xu, and Jacques Klein. 2018. FraudDroid: automated ad fraud detection for Android apps. In 
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018).

Significantly better recall

Venus FraudDroid 1 VirusTotal-a VirusTotal-b

Precision 96.3% 91.8% 79.6% 75.0%

Recall 91.2% 78.9% 75.4% 89.5%

32



Recap: Contributions
● Venus1: the first tool for statically checking conformance between Android 

apps and GUI specifications
● Vesper: a formal specification language for describing GUI policies
● Event-driven Layout Forest (ELF): a program abstraction and a static 

analysis technique for generating this abstraction
● Evaluated on 3 datasets (2361 Android applications) with 17 formalized 

policies, significant improvement compared to VirusTotal and FraudDroid

33



Thanks!
The work is partially supported by the funds:

● NSF Grants #1908494, #1908304
● CCF-#2005889, CNS-#1822251
● Google Faculty Research Award

More resources:

● Code: https://github.com/izgzhen/ui-checker
● Draft: https://bit.ly/fse21-venus-preprint

34

🍻

https://github.com/izgzhen/ui-checker
https://bit.ly/fse21-venus-preprint


Supplementary Materials

35



Predicates

36



Inference Rules

37


