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Synopsis

Specifications are useful for many tasks
» Use of specifications has practical difficulties

Dynamic analysis can capture specifications

« Recover from existing code
* Infer from traces

 Results are accurate (90%-+)
« Specification matches implementation
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Advantages of
specifications

 Describe behavior precisely
« Permit reasoning using summaries

« Can be verified automatically
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Problems with
specifications

 Describe behavior precisely
» Tedious and difficult to write and maintain

 Permit reasoning using summaries
 Must be accurate If used In lieu of code

 Can be verified automatically
* \erification may require uninteresting annotations
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Solution

Automatically generate and check
specifications from the code

Code
H Specification
0]
» Generator >
myStack.push (elt) ; myStack.isEmpty () = false
. -
Checker >
— Q.E.D.
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Solution scope

* Generate and check “complete” specifications
 Very difficult

« Generate and check partial specifications
* Nullness, types, bounds, modification targets, ...

* Need not operate In isolation
 User might have some interaction
» Goal: decrease overall effort
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Previous approaches

GeneratiOn: H » Generator >
o B hand myStack.push (elt) ; myStack.isEmpty() = fals

y 1 - L: Checker .

o Static analysis

Checking
« By hand
 Non-executable models
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Our approach

oae
i]
myStack.

push (elt

» Generator

)

Checker

v

» Dynamic detection proposes likely properties
» Static checking verifies properties

« Combining the techniques overcomes the

weaknesses of each
e Ease annotation
o Guarantee soundness
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Daikon:
Dynamic invariant detection

Original Instrumented
program program 9
database
0] 0] Detect

— | Instrument — Run EEEEEE— EEEEEE—

=

ook for patterns in values the program computes:
* Instrument the program to write data trace files
* Run the program on a test suite

« Invariant detector reads data traces, generates
potential invariants, and checks them
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ESC/Java:

Invariant checking

ESC/Java: Extended Static Checker for Java

Lightweight technology: intermediate between
type-checker and theorem-prover; unsound

Intended to detect array bounds and null
dereference errors, and annotation violations

/*@ requires x '= null */
/*Q@ ensures this.a[this.top] == x */

void push (Object x);
Modular: checks, and relies on, specifications
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Integration approach

Code

&
[0 ]
» Daikon >
myStack.push (elt) ; myStack.isEmpty () = fals
ESC/Java >
> Q.E.D.

Run Daikon over target program
Insert results into program as annotations
Run ESC/Java on the annotated program

All steps are automatic.
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Stack object invariants

public class StackAr ({

ObjeCt[] theArray; theArray — = A  E | | O | U Y

int topOfStack; opOfStack "
/*@

invariant theArray !'= null;

invariant \typeof (theArray) == \type (Object[]);

invariant topOfStack >= -1;

invariant topOfStack < theArray.length;
invariant theArray[O0..topOfStack] != null;
invariant theArray|[topOfStack+l..] == null;

*/

Jeremy Nimmer, page 14



Stack push method

theArray — > A | E | | 1O U |Y a

topOfStack
/*@ requires x '= null;

requires topOfStack < theArray.length - 1;
modifies topOfStack, theArray[*];
ensures topOfStack == \old(topOfStack) + 1;
ensures x == theArray|[topOfStack];
ensures theArray[0..\old(topOfStack)];

== \old(theArray[0..topOfStack]); */

public void push( Object x ) {
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Stack summary

ESC/Java verified all 25 Daikon invariants

Reveal properties of the implementation
(e.g., garbage collection of popped elements)

No runtime errors If callers satisfy preconditions
Implementation meets generated specification
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Accuracy experiment

» Dynamic generation Is potentially unsound
« How accurate are Iits results in practice?

« Combining static and dynamic analyses
should produce benefits

« But perhaps their domains are too dissimilar?
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Programs studied

11 programs from libraries, assignments, texts
» Total 2449 NCNB LOC in 273 methods

e Test sultes

» Used program’s test suite 1f provided (9 did)
* If just example calls, spent <30 min. enhancing

« ~70% statement coverage
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Accuracy measurement

« Compare generated specification to a
verifiable specification

invariant theArray !'= null;

invariant topOfStack >= -1;

invariant topOfStack < theArray.length;
—avarirant—theArray{0—Iength—31==null—
invariant theArray[O0..topOfStack] != null;
invariant theArray|[topOfStack+l..] == null;

« Standard measures from info ret [Sal68, vR79]
 Precision (correctness) : 3/4 =75%
» Recall (completeness) :3/5 =60%
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Experiment results

 Daikon reported 554 invariants
* Precision: 96% of reported invariants verified
* Recall: 91% of necessary invariants were reported
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Causes of inaccuracy

Limits on tool grammars

 Daikon: May not propose relevant property

« ESC: May not allow statement of relevant property
Incompleteness in ESC/Java

Always need programmer judgment

Insufficient test suite
« Shows up as overly-strong specification

« Verification failure highlights problem; helpful in fixing
« System tests fared better than unit tests
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Experiment conclusions

« Our dynamic analysis Is accurate

« Recovered partial specification
« Even with limited test suites

 Enabled verifying lack of runtime exceptions
 Specification matches the code
 Results should scale
 Larger programs dominate results
« Approach is class- and method-centric
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Value to programmers

Generated specifications are accurate
 Are the specifications useful?
 How much does accuracy matter?

« How does Daikon compare with other
annotation assistants?

Answers at FSE'02
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Conclusion

 Specifications via dynamic analysis
 Accurately produced from limited test suites
« Automatically verifiable (minor edits)
 Specification characterizes the code

 Unsound techniques useful in program
development
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Questions?
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Formal specifications

 Precise, mathematical desc. of behavior [LGO01]
 (Another type of spec: requirements documents)

e Standard definition; novel use

 (Generated after Implementation
o Still useful to produce [PC86]

* Many specifications for a program
« Depends on task
* e.¢g. runtime performance
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Effect of bugs

« Case 1: Bug Is exercised by test suite

« Falsifies one or more invariants
» Weaker specification

« May cause verification to fall

« Case 2: Bug Is not exercised by test suite

 Not reflected in specification
 Code and specification disagree

« \erifier points out inconsistency
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