Automatic Generation
of Program Specifications

Jeremy Nimmer

MIT Lab for Computer Science
http://pag.lcs.mit.edu/

Joint work with Michael Ernst

mmer, page 1

Synopsis

Specifications are useful for many tasks
» Use of specifications has practical difficulties

Dynamic analysis can capture specifications

« Recover from existing code
* Infer from traces

 Results are accurate (90%-+)
« Specification matches implementation

Jeremy Nimmer, page 2

Outline

Motivation

Approach: Generate and check specifications
Evaluation: Accuracy experiment
Conclusion

Jeremy Nimmer, page 3

Advantages of
specifications

 Describe behavior precisely
« Permit reasoning using summaries

« Can be verified automatically

mmer, page 4

Problems with
specifications

 Describe behavior precisely
» Tedious and difficult to write and maintain

 Permit reasoning using summaries
 Must be accurate If used In lieu of code

 Can be verified automatically
* \erification may require uninteresting annotations

Jeremy Nimmer, page 5

Solution

Automatically generate and check
specifications from the code

Code
H Specification
0]
» Generator >
myStack.push (elt) ; myStack.isEmpty () = false
. -
Checker >
— Q.E.D.

Jeremy Nimmer, page 6

Solution scope

* Generate and check “complete” specifications
 Very difficult

« Generate and check partial specifications
* Nullness, types, bounds, modification targets, ...

* Need not operate In isolation
 User might have some interaction
» Goal: decrease overall effort

Jeremy Nimmer, page 7

Outline

Motivation

Approach: Generate and check specifications
Evaluation: Accuracy experiment
Conclusion

Jeremy Nimmer, page 8

Previous approaches

GeneratiOn: H » Generator >
o B hand myStack.push (elt) ; myStack.isEmpty() = fals

y 1 - L: Checker .

o Static analysis

Checking
« By hand
 Non-executable models

Jeremy Nimmer, page 9

Our approach

oae
i]
myStack.

push (elt

» Generator

)

Checker

v

» Dynamic detection proposes likely properties
» Static checking verifies properties

« Combining the techniques overcomes the

weaknesses of each
e Ease annotation
o Guarantee soundness

Jeremy Nimmer, page 10

Daikon:
Dynamic invariant detection

Original Instrumented
program program 9
database
0] 0] Detect

— | Instrument — Run EEEEEE— EEEEEE—

=

ook for patterns in values the program computes:
* Instrument the program to write data trace files
* Run the program on a test suite

« Invariant detector reads data traces, generates
potential invariants, and checks them

Jeremy Nimmer, page 11

ESC/Java:

Invariant checking

ESC/Java: Extended Static Checker for Java

Lightweight technology: intermediate between
type-checker and theorem-prover; unsound

Intended to detect array bounds and null
dereference errors, and annotation violations

/*@ requires x '= null */
/*Q@ ensures this.a[this.top] == x */

void push (Object x);
Modular: checks, and relies on, specifications

Jeremy Nimmer, page 12

Integration approach

Code

&
[0]
» Daikon >
myStack.push (elt) ; myStack.isEmpty () = fals
ESC/Java >
> Q.E.D.

Run Daikon over target program
Insert results into program as annotations
Run ESC/Java on the annotated program

All steps are automatic.

Jeremy Nimmer, page 13

Stack object invariants

public class StackAr ({

ObjeCt[] theArray; theArray — = A E | | O | U Y

int topOfStack; opOfStack "
/*@

invariant theArray !'= null;

invariant \typeof (theArray) == \type (Object[]);

invariant topOfStack >= -1;

invariant topOfStack < theArray.length;
invariant theArray[O0..topOfStack] != null;
invariant theArray|[topOfStack+l..] == null;

*/

Jeremy Nimmer, page 14

Stack push method

theArray — > A | E | | 1O U |Y a

topOfStack
/*@ requires x '= null;

requires topOfStack < theArray.length - 1;
modifies topOfStack, theArray[*];
ensures topOfStack == \old(topOfStack) + 1;
ensures x == theArray|[topOfStack];
ensures theArray[0..\old(topOfStack)];

== \old(theArray[0..topOfStack]); */

public void push(Object x) {

Jeremy Nimmer, page 15

Stack summary

ESC/Java verified all 25 Daikon invariants

Reveal properties of the implementation
(e.g., garbage collection of popped elements)

No runtime errors If callers satisfy preconditions
Implementation meets generated specification

Jeremy Nimmer, page 16

Outline

Motivation

Approach: Generate and check specifications
Evaluation: Accuracy experiment
Conclusion

Jeremy Nimmer, page 17

Accuracy experiment

» Dynamic generation Is potentially unsound
« How accurate are Iits results in practice?

« Combining static and dynamic analyses
should produce benefits

« But perhaps their domains are too dissimilar?

Jeremy Nimmer, page 18

Programs studied

11 programs from libraries, assignments, texts
» Total 2449 NCNB LOC in 273 methods

e Test sultes

» Used program’s test suite 1f provided (9 did)
* If just example calls, spent <30 min. enhancing

« ~70% statement coverage

Jeremy Nimmer, page 19

Accuracy measurement

« Compare generated specification to a
verifiable specification

invariant theArray !'= null;

invariant topOfStack >= -1;

invariant topOfStack < theArray.length;
—avarirant—theArray{0—Iength—31==null—
invariant theArray[O0..topOfStack] != null;
invariant theArray|[topOfStack+l..] == null;

« Standard measures from info ret [Sal68, vR79]
 Precision (correctness) : 3/4 =75%
» Recall (completeness) :3/5 =60%

Jeremy Nimmer, page 20

Experiment results

 Daikon reported 554 invariants
* Precision: 96% of reported invariants verified
* Recall: 91% of necessary invariants were reported

Jeremy Nimmer, page 21

Causes of inaccuracy

Limits on tool grammars

 Daikon: May not propose relevant property

« ESC: May not allow statement of relevant property
Incompleteness in ESC/Java

Always need programmer judgment

Insufficient test suite
« Shows up as overly-strong specification

« Verification failure highlights problem; helpful in fixing
« System tests fared better than unit tests

Jeremy Nimmer, page 22

Experiment conclusions

« Our dynamic analysis Is accurate

« Recovered partial specification
« Even with limited test suites

 Enabled verifying lack of runtime exceptions
 Specification matches the code
 Results should scale
 Larger programs dominate results
« Approach is class- and method-centric

Jeremy Nimmer, page 23

Value to programmers

Generated specifications are accurate
 Are the specifications useful?
 How much does accuracy matter?

« How does Daikon compare with other
annotation assistants?

Answers at FSE'02

Jeremy Nimmer, page 24

Outline

Motivation

Approach: Generate and check specifications
Evaluation: Accuracy experiment
Conclusion

Jeremy Nimmer, page 25

Conclusion

 Specifications via dynamic analysis
 Accurately produced from limited test suites
« Automatically verifiable (minor edits)
 Specification characterizes the code

 Unsound techniques useful in program
development

Jeremy Nimmer, page 26

Questions?

Jeremy Nimmer, page 27

Formal specifications

 Precise, mathematical desc. of behavior [LGO01]
 (Another type of spec: requirements documents)

e Standard definition; novel use

 (Generated after Implementation
o Still useful to produce [PC86]

* Many specifications for a program
« Depends on task
* e.¢g. runtime performance

Jeremy Nimmer, page 28

Effect of bugs

« Case 1: Bug Is exercised by test suite

« Falsifies one or more invariants
» Weaker specification

« May cause verification to fall

« Case 2: Bug Is not exercised by test suite

 Not reflected in specification
 Code and specification disagree

« \erifier points out inconsistency

Jeremy Nimmer, page 29

